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Introduction: the 
importance of 
understanding 
and interpreting 
uncertainty

2.1

For anyone interested in how 
evidence can support more 
e#ective decision-making in 
education, the term ‘statistical 
signi"cance’ will be a familiar 
one – and yet one probably 
shrouded in confusion. Despite 
the claims one might hear 
circulating in the media, policy 
circles and from di#erent pundits, 
no study will give the ultimate 
and unquestionable truth 

about whether a programme or 
intervention will achieve a speci"c 
impact. 

Policy decisions and prescriptions 
for action are often made on the 
basis of incomplete and imperfect 
information and the uncertainty 
around quantitative results is 
one of the key factors at play. As 
the eventual implementation of 
interventions may have positive 
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or negative impact on learners, 
understanding uncertainty of 
impact estimates is integral 
to educational practice and 
policy-making. In principle, 
not considering this uncertainty 
means that policies and changes 
in practice, despite being based 
on research evidence, overlook 
relevant scenarios. !is can lead to 
overly cautious decision-making 
in some cases or risk detrimental 
e#ects to learners in others.  

Re$ecting this complexity and 
uncertainty, researchers have been 
using ‘statistical signi"cance’ to 
attempt to deal with uncertain, 
incomplete answers. But the use of 
statistical signi"cance divides the 
research community in a range of 
disciplines, from statistics to social 
policy, including education. Some 
consider statistical signi"cance an 
essential part of impact evaluation, 
just one aspect of a broader 
picture, while others regard it as 
a meaningless and misleading 
concept that should be abolished 
altogether (Shrout, 1997; Ziliak and 
McCloskey, 2008; Tra!mov and Marks, 
2015; Gorard, 2016; Hubbard, 2016; 
Wasserstein and Lazar, 2016; Amrhein, 
Greenland and McShane, 2019; McShane 

et al., 2019; Wasserstein, Schirm and 
Lazar, 2019). 

For the average classroom teacher, 
school leader or policy-maker, 
this lack of consensus among 
educational researchers is highly 
problematic, making it di%cult 
to answer the very reasonable 
question: ‘How well does this 
intervention work?’

!is chapter outlines some key 
concepts underpinning notions of 
uncertainty, and proposes a way 
forward, which is then adopted 
in the subsequent chapter that 
presents estimates of impact, 
costs and certainty for a range of 
common education interventions 
and approaches. !e key proposal 
is that impacts should be reported 
as e#ect sizes, and interpreted 
alongside internal validity and 
uncertainty when making a 
decision about a programme. We 
summarise relevant scholarship 
in this topic, which proposes 
moving away from a dichotomous 
interpretation of p-values and 
signi"cance testing as the means 
to gauge the e#ectiveness of a 
programme.

Despite the claims 
one might hear 
circulating in the 
media, policy circles 
and from different 
pundits, no study 
will give the ultimate 
and unquestionable 
truth about whether 
a programme or 
intervention will 
achieve a speci!c 
impact. 

H O W  W E L L  D O E S  T H I S  I N T E R V E N T I O N  W O R K ?  S T A T I S T I C A L 
S I G N I F I C A N C E ,  U N C E R T A I N T Y  A N D  S O M E  C O N C E P T S  T O  I N T E R P R E T 
T H E  F I N D I N G S  O F  E V A L U A T I O N S  O F  E D U C A T I O N A L  I N T E R V E N T I O N S



How well did this 
intervention work? 
Some building blocks 
and an example 

2.2

KEY CONCEPT 1 – 
EFFECT SIZE

An e#ect size is a number that 
conveys the strength of the 
relationship between two variable 
factors. !is number is obtained, 
for any given dependent variable, 
by scaling the di#erence between 
group means by the dispersion 

of the observations (the standard 
deviation). 

In education, factors manipulated 
experimentally usually are subject 
to a speci"c intervention to 
measure the outcomes achieved 
by learners (e.g. educational 
attainment). In an experimental 
setting, this would usually 
compare the average in the 
intervention group and the average 
in the control group, scaled by 
how dispersed the results are 
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(i.e. the standard deviation). !e 
larger the e#ect size, the larger the 
di#erence between the two groups 
and the stronger the relationship 
between the intervention and the 
outcomes being measured. 

E#ect sizes are an important 
and useful metric because they 
enable us to move away from the 
simplistic question of whether 
something works or not (further 
complicated by the reliance on 
a dichotomous interpretation of 
statistical signi"cance – more on 
this below). Instead, e#ect sizes 
help to answer the more relevant 
question ‘How well did this 
work?’  (Coe, 2002; Major and Higgins, 
2019; Higgins, 2021). E#ect sizes 
are also useful as they provide a 
common metric to compare the 
relative e#ectiveness (see chapter 
1) of di#erent interventions, 
which is more meaningful for 
decision-makers choosing between 
competing alternatives. 

A key challenge regarding the use 
of e#ect sizes is that they describe 
di#erences in terms of standard 
deviations rather than measures 
that are more readily understood 

by the very audience who should 
be able to make the most of 
research results: policy-makers and 
teachers. 

!is is why, when communicating 
evidence of impact, it can be 
helpful to translate outcomes into 
other more meaningful measures 
while trying to introduce them 
into the common parlance of 
decision-makers.

KEY CONCEPT 
2 – MONTHS 
OF (STANDARD) 
PROGRESS AS A 
PRACTICE-ORIENTED 
TRANSFORMATION OF 
EFFECT SIZE

To overcome this communication 
challenge, the Education 
Endowment Foundation’s (EEF) 
toolkit (Major and Higgins, 2019; 
Higgins, 2021) transforms e#ect 

..when communicating
evidence of impact, 
it can be helpful to 
translate outcomes 
into other more 
meaningful measures
while trying to 
introduce them
into the common 
parlance of
decision-makers.

H O W  W E L L  D O E S  T H I S  I N T E R V E N T I O N  W O R K ?  S T A T I S T I C A L 
S I G N I F I C A N C E ,  U N C E R T A I N T Y  A N D  S O M E  C O N C E P T S  T O  I N T E R P R E T 
T H E  F I N D I N G S  O F  E V A L U A T I O N S  O F  E D U C A T I O N A L  I N T E R V E N T I O N S
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size into a single scale of school 
progress: months of progress.

!is transformation is done by 
dividing e#ect size, which is a 
measure of progress in terms 
of standard deviations, by the 
progress that could be expected 
in a school year for a given group 
of learners, also measured in 
standard deviations.  !e result is 
the amount of progress that would 
have been made in comparison 
to the average progress made in 
a year. !at is, a standardised 
benchmark that allows drawing 
comparisons between multiple 
interventions in a metric that is 
easier to understand for teachers 
and decision-makers.      

!e average progress in a year 
is estimated to be around one 
standard deviation; and while 
this is likely to be a conservative 
estimate which may vary for 
di#erent ages and types of tests, 
a crude measure is preferred to 
ensure "ndings remained more 
accessible and meaningful (Major 
and Higgins, 2019; Higgins, 2021). 

Other transformations and metrics 
have been proposed and reviewed 

by (Bloom et al., 2008; Lipsey et al., 
2012; Baird and Pane, 2019; Evans and 
Yuan, 2019). !ese include months 
of progress measures that account 
for di#erences across tests and 
the speed at which pupils learn 
over time, as well as alternatives 
like percentile ranges. !ese 
alternatives have their merits, 
as they address some of the 
methodological shortcomings of 
the simpler months of progress 
measure used by the EEF. 
However, this can also result in 
more complex interpretation, 
which is the problem these 
alternatives are trying to address.  
Stakeholders may decide to 
use one or several of these 
transformations, depending on 
the levels of literacy and exposure 
of the decision-makers they are 
seeking to inform or in$uence. 
For example, using months of 
progress as a metric, researchers 
can explain that an intervention 
that had an impact of 0.3 standard 
deviations could be represented 
as achieving the equivalent of 3 
months’ progress – a measure that 
is likely to be easily understood by 
practitioners and decision-makers. 
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In addition to the ‘mean’ e#ect 
identi"ed by an evaluation, 
quantitative researchers need to 
clearly express the uncertainty 
around those results – that is, 
other results that would be 
plausible under the statistical 
model being used and considering 
characteristics of the data. 

KEY CONCEPT 3 
- ‘CONFIDENCE’ 
INTERVALS (OR 
‘COMPATIBILITY’ 
INTERVALS)

A con"dence interval is a range 
that is often used to measure 
uncertainty around an estimated 
value, such as an e#ect size or the 
mean of a distribution. !is range 
of values is bounded above and 
below the statistic’s mean. A 95% 
‘con"dence interval’ includes a 
range of values for which 95% of 
the con"dence intervals computed 
from many hypothetical studies 

would contain the unknown 
population parameter if all the 
conditions under which the 
intervals are built hold. !e 
interpretation of con"dence 
intervals can be challenging and 
has been extensively criticised 
(Greenland et al., 2016; Morey et 
al., 2016) for reasons akin to the 
problems with p-values (see 
below). 

KEY CONCEPT 
4 - P-VALUES 
AND STATISTICAL 
SIGNIFICANCE

Another standard way of assessing 
this uncertainty is using a 
p-value. !ese are measures of 
the compatibility between the 
observed data and a particular 
model of the data and are closely 
related to the idea of a ‘con"dence 
interval’. Both concepts are 
probabilities computed for many 
hypothetical studies under a set of 
conditions. We de"ne these terms 

A con!dence interval 
is a range that is often 
used to measure
uncertainty around an 
estimated value, such 
as an effect size or the
mean of a distribution.

2.2  .3
2.2  .4
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in greater detail in the section 
‘!e problems with statistical 
signi"cance’. 

P-values are di%cult to interpret 
for researchers and practitioners 
alike and have been widely 
criticised for misleading decision-
making and biasing the literature, 
particularly given the tendency to 
interpret them in a dichotomous 
way due to a reliance on the 
idea of ‘statistical signi"cance’ 
(Greenland et al., 2016; Wasserstein 
and Lazar, 2016; Amrhein et al., 2019; 
Wasserstein, Schirm and Lazar, 2019).  

A result is deemed ‘statistically 
signi"cant’ if the 95% con"dence 
interval does not include zero 
or if a p-value is below a given 
threshold, often 0.05, which 
is symmetrical to the 95% 
con"dence interval. When a 
result is ‘statistically signi"cant’ 
it is often interpreted as meaning 
that the intervention ‘had an 
e#ect’. As explained in the section 
‘the problems with statistical 
signi"cance’, this is not true.      
!is dichotomous interpretation is 
at the heart of the problems with 
p-values, con"dence intervals and 
signi"cance testing.

Nonetheless, the interpretation 
of p-values could be seen as more 
heinous than con"dence intervals 
because a range of values is more 
likely to be interpreted with 
caution. A range of values is more 
plausible than imprinting a false 
sense of certainty for decision-
makers who observe a result that is 
‘statistically signi"cant’ and believe 
it to be the ‘true’ e#ect. !is has 
been re$ected in the preference of 
a growing number of journals to 
report con"dence intervals instead 
of p-values (Greenland et al., 2016).

KEY CONCEPT 5 – 
INTERNAL VALIDITY
To evaluate the impact of a 
programme or intervention, 
researchers would like to compare 
the ‘treatment’ outcomes those 
without the ’treatment’ or 
intervention. !is scenario is 
called the counterfactual. Clearly, 
it is not possible to observe 
both scenarios in the real world, 
which requires researchers to 
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compare the results of the group 
that was treated with those of 
a group identi"ed as a suitable 
comparison (that is, a valid 
counterfactual). !e di#erences in 
outcomes between the treatment 
and the comparison groups, 
considering the mean outcome 
and its variability in each group, 
is interpreted as the estimate of 
impact and measured as an ‘e#ect 
size’. 

Most EEF-funded evaluations 
use a randomised controlled trial 
(RCT) design to estimate the 
impact of a programme; this is 
one of the most robust ways to 
identify a valid counterfactual. 
!e evaluation design, in this 
case an RCT, is one of the crucial 
factors de"ning how con"dent 
we can be that the "ndings are a 
good representation of the impact 
of the intervention. However, 
to make this assessment, it is 
also important to consider other 

dimensions including: 

- the overall size of the study2;

- whether the relevant information 
from participants is present, 
and, if not, understanding why 
(outcome attrition);

- whether appropriate and reliable 
outcome measures were used to 
track progress;

- whether those in the control 
group received the intervention 
being tested or experienced any 
other changes that could a#ect 
their behaviour and progress, 
such as non-compliance or 
experimental e#ects, among 
others. 

Taken together, these may be 
understood as the internal validity 
of a study. EEF-funded studies 
are assigned a ‘padlock rating’ 
using the EEF’s classi"cation of 

Most EEF-funded 
evaluations use a 
randomised controlled 
trial (RCT) design to 
estimate the
impact of a 
programme; this is
one of the most robust 
ways to identify a valid 
counterfactual.

2 Sample sizes are intrinsically linked to the level of ‘uncertainty’ in a study, but they are also 
related to its internal validity. While one can obtain an unbiased (yet imprecise) treatment impact 
estimate from a small study, a larger study is less likely to su#er internal validity problems such 
as randomisation failure whereby the two groups are substantially di#erent. !e e#ectiveness 
of randomisation relies on the law of large numbers and the central limit theorem, which are 
compromised in smaller samples.
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S I G N I F I C A N C E ,  U N C E R T A I N T Y  A N D  S O M E  C O N C E P T S  T O  I N T E R P R E T 
T H E  F I N D I N G S  O F  E V A L U A T I O N S  O F  E D U C A T I O N A L  I N T E R V E N T I O N S



the security of the "ndings. !is 
systematically summarises the 
characteristics that de"ne the 
internal validity and whether these 
make an estimate of impact from a 
given study more or less credible. 

!ese dimensions cumulatively 
a#ect how much credence we 
give to a study. For instance, a 
study that succeeds to capture 
information on every participant 
would be more credible than one 
where only 60% sat the relevant 
exam (all else being equal). 
Failing to include every learner 
in the follow up (called outcome 
attrition) can be a problem 
because those who did not sit the 
exam could have been di#erent 
from those who did in a way that 
is related to the intervention.

!e EEF’s classi"cation system for 
single studies summarises relevant 
aspects of the internal validity 
of "ndings and considers the 
professional judgement of the peer 
reviewers assigning them. !ese 
ratings should not be understood 
in a de"nite manner either, but as 
providing useful information to 
interpret "ndings. However, there 

are many other tools and resources 
used to gauge the robustness of 
a single study: from relatively 
simple approaches focusing 
on study design such as the 
Maryland Scienti"c Methods Scale 
(Farrington et al., 2002), to others 
that consider multiple sources of 
bias and external validity problems 
depending on the type of design 
being considered (Higgins et al., 2016; 
Sterne et al., 2017).

AN EXAMPLE 

Now, using the key concepts 
described above, imagine you have 
three studies in the same domain, 
each with the goal of establishing 
the impact of an intervention: 

- the evaluation of programme 
A was well-designed and well-
conducted and found an e#ect 
size (ES) of 0.10; compatibility 
interval (CI): ‒0.10, 0.3; not 
statistically signi"cant; 
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3 Using the EEF’s classi"cation system for single studies, these studies would be awarded a very low 
rating – probably one or two padlocks. For example, this could be an observational study designed 
to compare outcomes before and after without a control group. As it would not be possible to 
distinguish the e#ects of the intervention and the natural progress of pupils, we are unable to 
con"dently conclude the intervention can improve pupil outcomes.

4 Using the EEF’s classi"cation system for single studies, these studies would be awarded the 
maximum of "ve padlocks. 

- the evaluation of programme 
B, also well-designed and well-
conducted, found an ES of 0.10; 
CI: ‒0.01, 0.21; not statistically 
signi"cant; 

- the evaluation of programme 
Z1 was fraught with problems of 
internal validity that reduced its 
credibility; it found an ES of 0.20; 
CI: ‒0.20, 0.4;  not statistically 
signi"cant. 

- the evaluation of programme 
Z2 was fraught with problems 
of internal validity that reduced 
its credibility; it found an ES of 
0.20; CI: 0.10, 0.3; statistically 
signi"cant. 

!e evaluation of programmes Z1 
and Z2 su#ered from important 
internal validity limitations3 and 
thus the results are more likely 
to be called into question. One 

additional di%culty is that these 
problems with the design and 
implementation of a study are not 
always measurable and might be 
operating in di#erent directions. 
!is means that we might be 
overstating or underestimating 
the impact of an intervention, but 
the magnitude and direction in 
which this is happening is both 
di%cult to ascertain and quantify.  
On these grounds, researchers are 
unlikely to recommend the use of 
Z as the evidence is not credible 
enough to claim that Z might be 
e#ective at improving outcomes. 
!e "ndings could be understood 
as tentative at best and additional 
evidence of the e#ectiveness of Z 
would be necessary, by means of a 
better study.

Studies for programmes A and 
B were well-conducted and 
methodologically robust4 and had 

The !ndings could be 
understood as tentative 
at best and additional
evidence of the 
effectiveness of Z
would be necessary, 
by means of a better 
study.
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the same estimate of impact: an 
ES of 0.10, which is equivalent to 
+2 months’ additional progress5. 
However, as we stated above, 
studies do not give a single, 
unequivocal and de"nitive 
answer. !e CI associated with 
both studies indicates that the 
data for programme B were also 
compatible with a range of e#ects 
from no impact to moderate 
impact, whereas the data for 
programme A was also compatible 
with  a range of e#ects from a 
small negative impact to high 
impact. 

Using statistical signi"cance as the 
only criteria, researchers would 
have concluded that programme 
Z2 had statistically signi"cant 
results (which is often understood 
as ‘having an impact’) while both 
programmes A and B had non-
signi"cant results (which is often 
understood as ‘not having an 
impact’). 

!is dichotomous interpretation 
of statistical signi"cance is at 
the core of its problems and the 

source of contention around its 
use (Wasserstein and Lazar, 2016).!e 
advancement and use of scienti"c 
knowledge in the quantitative 
approach is not as simple as 
concluding that something 
works, and something does not. 
!is example illustrates how the 
exclusive reliance on statistical 
signi"cance could be very 
misleading as it obscures a much 
more nuanced picture: one where 
we are interested in understanding 
how well something works and 
which are the plausible scenarios 
that we can expect – that is, the 
uncertainty around the results. 

Quantitative studies in education 
and other applied domains provide 
a range of possible answers that 
need to be analysed, considering 
multiple sources of uncertainty. 
Otherwise, decision-making is 
severely impeded. In the context 
of the example, no sound decision 
can be made exclusively on the 
basis of statistical signi"cance 
because the uncertainty 
highlighted by coupling the e#ect 
size with con"dence intervals 
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considering
multiple sources of 
uncertainty. 5 !e estimate of months of progress is based on EEF Guidance. 
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(an aspect commonly neglected) 
means that the "ndings in A are 
also compatible with a negative 
impact (‒0.1) or a larger positive 
impact (0.3) while those      of 
B are compatible with an 
educationally-very-small negative 
e#ect (‒0.01) or a larger impact 
(0.3). Note that these are not the 
only values that are compatible 
with the data because con"dence 
intervals should not be interpreted 

in a dichotomous way either, see 
section 2.5.

For a teacher or policy-maker 
deciding which of two similar 
programmes to invest in, 
both pieces of information are 
important and are represented 
conceptually in Figure 1. 

Comparing Z with A or B would 
be like a vertical comparison in 
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Figure 1. Schematic representation of internal validity and uncertainty



Figure 1: between not-so-well-
designed, tentative studies, and 
well-conducted, more credible 
studies. !is comparison could be 
interpreted as the internal validity 
of the "nding. 

However, to discern between 
programmes A and B it is also 
relevant to consider other aspects. 
Even if both have the same 
estimate of impact (e#ect size), 
the "ndings of programme A are 
compatible with more variability 
(con"dence intervals): from 
negative e#ects to larger positive 
impacts included in the intervals. 
In contrast, the "ndings of 
programme B show less variability 
being only compatible with a very 
small negative e#ect or a larger 
positive e#ect. !is compares the 
uncertainty of the "ndings.

Making this distinction—
between internal validity and 
uncertainty—accessible to 
decision-makers is fundamental: 
while the best estimate of A 
suggests a positive impact, the 
variability around it suggests 
more caution as the model of 
the data is compatible with 

the programme being harmful; 
however, the best estimate of B 
found the same positive impact, 
but at worst  the model of the 
data was less compatible with the 
programme being harmful. !us, 
with this information, a decision-
maker may be more con"dent to 
implement B. 

Decision-makers also need to 
consider a series of aspects when 
deciding which programme to 
implement; these include costs 
and resources, for example, which 
is why each EEF evaluation 
report provides an estimate of 
the required investment. For 
more information see EEF Cost 
Evaluation Guidance. Other 
aspects include the programme’s 
acceptability, its relevance to the 
problems faced by a particular 
school and the quality of 
programme implementation, 
among others. EEF evaluations 
strive to cover such topics as 
part of the Implementation and 
Process Evaluation component 
of all EEF-funded studies. For 
more information, see EEF IPE 
Guidance.
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need to consider a 
series of aspects when
deciding which 
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include costs and 
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the required 
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more information see 
EEF Cost Evaluation 
Guidance.
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Where does 
uncertainty come 
from?

2.3

!ere are multiple sources of 
uncertainty; but in the context 
of evaluations, two types are 
particularly relevant: sampling 
uncertainty and allocation 
uncertainty. 

Even in a well-designed and 
well-conducted study with good 
internal validity, there are at 

least two steps in an RCT that 
introduce uncertainty. 

1. When a group of schools or 
pupils is selected to take part in 
a study, random sampling leads 
to sampling uncertainty. !is 
uncertainty is accepted because 
it is not practically feasible or 
economically viable to include 
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every school in every single 
study. Even if a random sample 
from the population is selected, 
such schools or pupils might be 
di#erent from the population 
at large for reasons we might 
not be able to identify. Note 
that in most cases, samples of 
participants taking part in a RCT 
are not drawn at random from the 
population. 

2. When these schools or pupils 
are subsequently randomly 
allocated to the intervention 
or control group, random 
assignment leads to allocation 
uncertainty. Even if these are 
randomly assigned, there might 
be di#erences between the two 
groups for reasons we might not 
be able to identify. 

!ese two processes thus introduce 
sampling uncertainty and 
allocation uncertainty, respectively. 

Even if the same experiment is 
repeated a large number of times, 

these sources of uncertainty imply 
that the observed di#erences 
between groups could di#er 
under each of these identical 
hypothetical experiments. !ese 
types of uncertainty are closely 
linked with the heterogeneity 
between units in the population 
and the sample. 

When individuals in the population 
are very di#erent from each other, 
it is more likely that a random 
sample would end up with a group 
with very di#erent characteristics 
for which the estimate of impact 
could be di#erent from the ‘true’ 
population e#ect (1). Likewise, 
even within a given sample, 
the random allocation might 
lead to a treatment group with 
very di#erent characteristics for 
which the estimate of impact 
could also be di#erent from the 
impact estimate that would be 
obtained with a di#erent random 
con"guration of the treatment and 
control groups (2). 
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When these schools 
or pupils are 
subsequently randomly
allocated to the 
intervention or control 
group, random
assignment leads to 
allocation uncertainty.

6 It is not possible to know the ‘true average e#ect size’ as that would require pre‐test and post‐test 
outcomes for each member of the sample/population both with and without the intervention, 
which is not possible.
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!is means that it is always 
possible that the true e#ect size6 
observed in an RCT will di#er 
from the true average e#ect size 
in the sample because, even for 
two identical experiments, the 
observed e#ect size is likely to 
di#er a bit, and will occasionally 
di#er a lot, as a result of this 
statistical uncertainty.

Likewise, the observed e#ect size 
may also be di#erent from that 
on the population. In addition to 
the problems related to inferences 
in a sample, to make broader 
claims around the external validity 
of the "ndings to a population 
it is necessary to consider many 
other aspects beyond statistical 
uncertainty, which are more likely 
to in$uence whether the results 
observed in a sample can be 
expected to be replicated for the 
population (Deaton and Cartwright, 
2018).

However, these are not the only 
sources of statistical uncertainty. 
For instance, to focus on one of 
the most common, the accuracy 
and reliability of an outcome test 

may also introduce measurement 
uncertainty from the selected 
instruments. !is relates to the 
margin of doubt that exists for 
the result of any measurement 
that could be due both to the 
instrument being used (e.g. a test, 
a timer) and how this translates 
the relevant behaviour into a 
quantitative value (e.g. a score). 
!is can also be a#ected by the 
construct being measured (e.g. 
algebra, self-e%cacy). Hence 
every measurement di#ers from 
the ‘true’ value that it is trying 
to capture. !is di#erence is 
the error; while measurement 
uncertainty is the quanti"cation 
of those expected errors and is 
often expressed as a con"dence 
interval around a measurement. 
!e measurement uncertainty 
introduced by using a speci"c 
outcome measure could be 
considered an internal validity 
problem but it also adds to the 
variability of the results observed. 

!is means that it is not possible 
to isolate the multiple sources of 
uncertainty from some aspects of 
internal validity. 
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The problems with 
statistical significance

2.4
To assess uncertainty, many 
researchers consider a hypothetical 
situation where:

1. a (random) sample is drawn 
from the population of interest7 
(which would be related to 
sampling uncertainty);

W O R K I N G
G R O U P  0 4
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7 RCTs are hardly ever a random sample from the population. EEF-funded studies are not random 
samples. !is means that the interpretation of the p-values should not be considered as making 
claims about the external validity of the study (inferences on the impact on the population) but 
only as relating to the sample at hand (inferences on the internal validity of the study on the 
sample). 
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2. the same experiment is 
conducted a large number of 
times on samples drawn from the 
same population (which would be 
related to allocation uncertainty, 
and other sources of uncertainty 
related to the internal validity of 
the study); and

3. the intervention has no true 
impact on the population (that is, 
the real impact of the intervention 
is zero).

!en, researchers estimate 
how likely it would be, in this 
hypothetical situation, to observe 
a di#erence at least as big as the 
di#erence they observed due to 
the statistical uncertainty. 

!is probability to observe a 
di#erence at least as big as the 
di#erence they observed is called 
the p-value. 

!is statistic has been strongly 
criticised because frequent misuse 
and misinterpretation lead to 
distortions in scienti"c enquiry 
(Wasserstein and Lazar, 2016; Amrhein, 
Greenland and McShane, 2019; 
Wasserstein et al., 2019). One of the 

reasons for misinterpretation is 
that p-values give the right answer 
to the wrong question. In practice, 
the question we want to answer 
is, ‘Does this intervention work?’ 
Instead, p-values explain, ‘How 
rare would these results be in a 
world where the intervention had 
no e#ect? (i.e. the hypothetical 
situation, which also requires 
ful"lling the other assumptions 
mentioned above)’. For example, 
imagine you want to identify 
whether a programme improves 
pupil outcomes and you found 
a di#erence equivalent to three 
months of progress. !e question 
we want to answer is: Given that 
we observed a di#erence of three 
months of progress, how likely 
is it that this programme had no 
e#ect? !is is not what a p-value 
tells us. !e p-value shows the 
probability that you would observe 
a di#erence of three months or 
more given that the intervention 
had no impact (the hypothetical 
situation, which also includes 
the other relevant assumptions 
described above).

P-values neither give an indication 
of the likelihood that the 

One of the reasons for 
misinterpretation is 
that p-values give the 
right answer to the 
wrong question



intervention had an e#ect nor give 
the probability that the observed 
result was produced by random 
chance alone (Greenland et al., 2016; 
Wasserstein and Lazar, 2016; Amrhein 
et al., 2019; Wasserstein, Schirm and 
Lazar, 2019). P-values give a very 
indirect answer to the question we 
are truly interested in. !e smaller 
the p-value, the more unusual the 
results if all the assumptions under 
the hypothetical situation are true. 
However, a very small p-value 
does not tell us which of the 
assumptions might be incorrect 
even if we are only truly interested 
in the question of whether this 
intervention worked ‒ closely 
related with the third assumption 
above (Greenland et al., 2016).

However, the most salient 
problem with p-values (and also 
similar statistics such as con"dence 
intervals, discussed below) is the 
convention to treat them in a 
dichotomous way around a 0.05 
threshold ‒ a ‘bright-line’ where 
on one side an impact is inferred 
to exist, while on the other, the 
possibility of an impact is entirely 
disregarded as inconsistent with 
the data. 

!is simpli"cation is a caricature 
of the necessary complexity 
to make inferences to advance 
scienti"c knowledge and violates 
the spirit of how p-values are 
supposed to be interpreted. 
Originally, the 0.05 threshold was 
chosen as a way to limit the risk 
of false positives. It means that if 
you were to repeat the experiment 
100 times under the hypothetical 
situation (that is, the programme 
has no e#ect), in "ve of them, 
you would see results as extreme 
or more extreme than yours. !e 
original proponent of the p-value, 
Ronald Fisher, argued that a 
statistically signi"cant "nding was 
worthy of further investigation. 
Alas, in a gross misrepresentation 
of that spirit, this threshold 
became the value to consider a 
"nding ‘true’, which is not true 
(Wasserstein and Lazar, 2016).

Rather than a ‘bright-line’ where 
e#ectiveness can be decided, 
p-values provide a continuum of 
how compatible the data is with 
the hypothetical situation. Values 
at either side of the threshold 
should not be treated as de"nitive 
answers but as di#erent tonalities 
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(and also similar 
statistics such as 
con!dence intervals, 
discussed below) is 
the convention to treat 
them in a dichotomous 
way around a 0.05 
threshold - a ‘bright-
line’ 
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of grey ‒ data that is more or less 
compatible with the estimate 
of impact. Even if actionable 
recommendations may require 
an a%rmative answer, making 
inferences on the basis of an 
arbitrary threshold is incorrect 
and has distorted decision-making 
(Wasserstein, Schirm and Lazar, 2019). 

!is dichotomy at each side of the 
threshold also con$ates practical 
and statistical relevance. A "nding 
might be of educational/practical 
signi"cance (represented as a 
large e#ect size) even if it is not 
deemed ‘statistically signi"cant’ 
by reaching the arbitrary 0.05 
cut-o# point. !is problem is 
particularly heinous because 
when a study is large, even small 
violations of the assumptions can 

lead to a ‘statistically signi"cant’ 
result that a#ects how decisions 
are made.8 Contrariwise, even an 
educationally relevant di#erence 
could fail to be ‘statistically 
signi"cant’ if the sample is 
not large enough. Sometimes 
a statistically signi"cant result 
simply means that a very large 
sample was used.9

!e most common alternative 
is to report con"dence intervals 
or compatibility intervals (CI). 
As is the case with p-values, 
con"dence intervals are also prone 
to misinterpretation (Greenland 
et al., 2016; Morey et al., 2016). 
!ese estimate that if the same 
experiment were conducted a 
large number of times and interval 
estimates are made on each 

A !nding might be of 
educational/practical
signi!cance 
(represented as a
large effect size) 
even if it is not 
deemed ‘statistically 
signi!cant’ by reaching 
the arbitrary 0.05
cut-off point. A !nding
might be of 
educational/practical
signi!cance 
(represented as a
large effect size) 
even if it is not 
deemed ‘statistically 
signi!cant’ by reaching 
the arbitrary 0.05
cut-off point.
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8 For example, (Sullivan and Feinn, 2012) mention an example of a study for aspirin. In the 
study, more than 22,000 subjects used aspirin over 5 years and the authors identi"ed a statistically 
signi"cant reduction in heart disease even if the reduction in risk was very small – and clinically 
negligible – for most patients. However, aspirin was recommended for general prevention for years. 
More recent studies con"rm aspirin should be taken only for those who have su#ered heart disease 
or a stroke and medical guidelines have been adapted accordingly.

9 !is also highlights the importance of relying on bodies of evidence, instead of single studies. By 
combining the information from multiple studies, systematic reviews (and statistical methods such 
as meta-analysis that combine di#erent "ndings into a single metric) help to use information across 
all observations, which can help mitigate some of the problems related to single studies relying 
on statistical signi"cance. However, it is important that the interpretation of these analyses is not 
subject to the same dichotomous interpretation of statistical signi"cance.



occasion, the resulting intervals 
would bracket the true population 
parameter in approximately 95 
% of the cases if the hypothetical 
situation is true. 

P-values and CI are calculated 
based on similar hypothetical 
situations, and su#er from similar 
problems; including the erroneous 
dichotmous interpretation. CI 
are often interpreted as ‘not 
crossing zero’ to suggest that a 
result is ‘statistically signi"cant’ 
and thus, ‘true’. !is is untrue. 
Symmetrically to p-values, a CI 
can only help to conclude how 
compatible the results are with 
a given statistical model. Just 
because a value lies outside of 
the speci"c CI, it does not mean 
that this value can be refuted or 
excluded from the data – just 
that it is less compatible with the 
assumptions used.

However, as argued above, 
using CI is seen as superior to 
p-values because presenting a 
range of values that is consistent 
with a given model of the data 
is more likely to be interpreted 
with caution rather than a single 
value that is often understood as 
evidence that an e#ect ‘exists’ or 
not (Greenland et al., 2016).     

In short, the issue around the 
interpretation and use of p-values, 
CI and statistical signi"cance has 
less to do with the assumptions 
upon which they are constructed 
than with the obsession with a 
clear decision rule (i.e. a threshold) 
to conclude whether something 
is ‘true’ or not. !is shows a naïve 
interpretation of the statistical 
assumptions underpinning these 
concepts but, more importantly, 
it steers decision-makers and 
practitioners away from key 
pieces of information needed 
to formulate new policies and 
introduce changes.
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P-values and CI are 
calculated based on 
similar hypothetical
situations, and suffer 
from similar problems; 
including the 
erroneous dichotmous 
interpretation
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The way forward: 
bringing together 
internal validity 
and uncertainty 
to make the best 
use of evidence in 
educational decision-
making

2.5



Internal validity and uncertainty 
should be considered in tandem 
when making a decision about a 
programme, as illustrated in the 
discussion above. Internal validity 
measures the suitability of the 
design of the study to produce 
estimates close to the true estimate 
of impact, that is, how close one is 
to the bull’s eye or the bias of the 
estimate. Uncertainty measures 
how likely it is that the same 
experiment, repeated under the 
same conditions, would "nd a 
similar e#ect, that is, how close 
are di#erent estimates of impact 
to each other or to the spread of 
the estimate. !is was represented 
conceptually in Figure 1. 

Ideally, a study should be well-
designed and well-implemented 
(good internal validity) and likely 
to "nd a similar e#ect if replicated 
under the same conditions (low 
uncertainty). However, studies are 
hardly ever de"nitive and both 
aspects need to be factored into 
any interpretation of the results. 

To address the criticisms above we 
propose that "ndings should be 
discussed in terms of e#ect sizes, 

with a thorough description of 
their internal validity using well-
regarded tools; and importantly, 
emphasising the role that 
uncertainty plays in decision-
making and moving away from 
a dichotomous interpretation 
of statistical signi"cance. 
Commissioners and researchers 
may also consider translating these 
measures into other, more readily 
understood, measures such as 
months of progress.

To aid the e#ective 
communication of "ndings for 
educational interventions, we 
propose the following principles, 
which distill work by Wasserstein 
and Lazar (2016), Wasserstein, 
Schirm and Lazar (2019), and 
Amrhein, Greenland and 
McShane (2019).

1. Use e#ect sizes to focus on the 
practical/scienti"c signi"cance 
of a "nding rather than relying 
on whether the "nding was 
statistically signi"cant.

!e arbitrary 0.05 cut-o# 
con$ates practical and statistical 
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better indication of the 
magnitude of impact 
and thus should 
be reported for all 
estimates
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relevance. However, statistical 
signi"cance does not explain 
whether a "nding is practically/
scienti"cally/educationally 
interesting. E#ect sizes provide a 
better indication of the magnitude 
of impact and thus should be 
reported for all estimates. !ese 
may be considered alongside 
other transformations to aid 
interpretation such as measures 
of months of progress that might 
be more accessible for decision-
makers. 

2. Include assessments of internal 
validity.

Results should be accompanied 
by a thorough description of the 
di#erent elements that a#ect the 
internal validity of the study. !is 
could be reported either using 
standardised tools such as Robins 
I or Risk of Bias Assessments, 
or bespoke tools such as EEF’s 
Padlocks Rating. !reats to 
internal validity should always be 
reported transparently, even if the 
magnitude and direction of biases 
are di%cult to quantify. 

3. Accept uncertainty in "ndings 
and always present a measure of 
this uncertainty.

Statistical modelling should 
not be interpreted as providing 
unique and de"nitive answers, 
or what Gelman (2016) calls ‘a 
sort of alchemy that transmutes 
randomness into certainty’. 
Instead, it is paramount to 
understand that, in real-world 
situations, statistical modelling 
only attempts to identify ‘signals’ 
in noisy data with considerable 
variability. !erefore, we should 
acknowledge that statistical 
models only provide incomplete 
and uncertain ‒ yet potentially 
useful ‒ answers to scienti"c 
questions. Abandoning a 
dichotomous interpretation of 
p-values and other statistics, 
including ‘compatibility intervals’, 
advances in this direction‒ moving 
us away from the detrimental 
simpli"cation of "ndings as 
‘true’ or not. !us, researchers 
must present a measure of the 
uncertainty around all e#ect 
sizes, recognising that uncertainty 
is an integral part of statistical 
modelling and scienti"c enquiry.

Results should be 
accompanied by a 
thorough description 
of the different 
elements that affect 
the internal validity of 
the study. This could 
be reported either 
using standardised 
tools such as Robins 
I or Risk of Bias 
Assessments, or 
bespoke tools such as 
EEF’s Padlocks Rating
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4. Use precise language and clearly 
consider assumptions behind 
the statistics used to represent 
uncertainty.

P-values do not measure the 
probability that ‘the studied 
hypothesis is true’ nor the 
probability that the ‘data were 
produced by random chance 
alone’ (Wasserstein and Lazar, 
2016). Similar misinterpretations 
are common when describing 
con"dence intervals (Greenland et 
al., 2016; Morey et al, 2016). To a large 
extent, the problem with p-values 
is that they o#er an answer to a 
question we are not necessarily 
seeking to answer – that of the 
hypothetical scenario. However, 
ignoring the assumptions upon 
which p-values are calculated goes 
a long way toward explaining why 
they have become contentious 
and potentially misleading. !us, 
researchers must be accurate in the 
interpretation of p-values (or any 
other statistic used), what they are 
and what they are not, carefully 
considering the assumptions upon 
which these are constructed. 

5. Report continuous p-values 
(or other measures of statistical 
uncertainty), interpreting them 
as varying degrees of statistical 
uncertainty and avoiding 
dichotomisation of decisions 
around the arbitrary cut-o# of p 
= 0.05.

P-values are the probability, 
under a speci"ed statistical model 
(the hypothetical scenario), that 
the mean di#erence between 
two groups would be equal 
or more extreme than the 
observed value in the study 
(Wasserstein and Lazar, 2016). As a 
continuous probability, p-values 
are a measure of the degree of 
compatibility of the data with the 
hypothetical model imposed on 
that data. Claiming a "nding as 
‘statistically signi"cant’ suggests 
a dichotomous interpretation 
that contravenes Recommendation 
1. !erefore, abandon the 
dichotomous interpretation of 
p-values, recognising that di#erent 
p-values suggest di#erent levels 
of strength of the evidence and 
thus should be reported as a value 
and interpreted as a continuum. 
Findings should be interpreted 
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neutrally, irrespective of whether 
results are ‘positive’ (positive e#ect 
size, not statistically signi"cant) or 
not. Other statements that suggest 
a dichotomous interpretation 
around the 0.05 should also be 
shunned. For example, phrases 
such as ‘no evidence of impact’, 
‘there is no di#erence’, and ‘nearly 
statistically signi"cant’ should be 
discontinued entirely. 

6. Discuss the practical relevance 
of ‘compatibility intervals’.

Avoiding referring to ‘con"dence’ 
intervals as the word con"dence 
suggest ungranted certainty 
(Amrhein, Greenland and McShane, 
2019; Greenland, 2019; Wasserstein, 
Schirm and Lazar et al., 2019). To 
report statistical uncertainty 
around the point estimate, discuss 
the educational/scienti"c relevance 
of the point estimate and also 
the extremes of the compatibility 
intervals. Note that these 
compatibility intervals re$ect other 
values, under the hypothetical 
statistical model used, that are also 
compatible with the data. Even 
if intervals are estimated based 

on a predetermined threshold ‒ 
conventionally 95% aligned with a 
p of 0.05 ‒ they should also not be 
interpreted in a dichotomous way 
as outlined in Recommendation 5: 
values closer to the point estimate 
(the best estimate of impact) are 
better supported by the data, 
while those farther away are less 
compatible with it. Values outside 
these intervals are less compatible 
with the data, not inconsistent 
with it. 

7. Consider accompanying 
p-values and ‘compatibility 
intervals’ with other statistics. 

Explore other statistics that 
could help interpretation, rather 
than interpreting them in a 
dichotomous way regardless 
of which statistic is chosen. 
Researchers may, for instance, 
consider permuted p-values that 
do not rely on the assumption 
of random sampling and 
thus do not intend to make 
generalisations beyond the sample, 
or other statistics like Bayesian 
Compatibility Intervals, which 

To report statistical 
uncertainty around the 
point estimate, discuss
the educational/
scienti!c relevance
of the point estimate 
and also the extremes 
of the compatibility
intervals. To report 
statistical uncertainty
around the point 
estimate, discuss
the educational/
scienti!c relevance
of the point estimate 
and also the extremes 
of the compatibility
intervals.
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rely on other assumptions. !e 
American Statistical Association’s 
(ASA) Special Issue, Statistical 
inference in the 21st century: A 
world beyond p<0.05, o#ers some 
suggestions. Researchers may also 
want to present alternatives to 
test the sensitivity of the statistical 
uncertainty captured by di#erent 
models. 

8. Discuss practical and scienti"c 
signi"cance considering all 
relevant information.

Interpret the "ndings considering 
internal validity, statistical 
uncertainty, the strength of the 
existing evidence, the plausibility 
of the causal mechanism, 
the evidence of the quality 
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of the implementation, and 
considerations of the context. 
Also consider the process through 
which the statistics were obtained: 
For example, if the design and 
analysis were pre-registered, 
the e#ect size is more likely to 
approximate the true e#ect of 
interest than if the e#ect was 
observed only after exploring a 
range of subgroup, outcomes, 
and/or treatment variations 
and selected on the basis of its 
magnitude or associated p value. If 
a design and analysis are not pre-
registered, or if the analytic process 
is not transparently described, 
a promising e#ect should be 
appropriately discounted. 

Furthermore, researchers should 
be thoughtful in describing how 
the "nding shifts the evidence-
base and existing priors. !is 
is important because these 
statistics should be understood 
in the context of the processes 
that generated them, and thus, 
bringing additional information is 
crucial to decisionmaking.

In sum, we propose that "ndings 
should be discussed in terms of 
e#ect sizes, with a statement about 
the internal validity of the "nding 
and representing the statistical 
uncertainty of the "nding as a 
continuous p-value, ‘compatibility 
intervals’, and/or alternative 
statistics.

Advancing scienti"c knowledge in 
education is a complex endeavour. 
But it is also a laudable one - it 
has the potential to improve 
people’s lives by fostering learners’ 
strengths and, if needed, by 
providing sca#olding to move past 
di%culties. We hope that these 
principles will help researchers 
move closer to that goal by 
providing decision-makers the 
necessary information to make the 
right decisions about educational 
interventions grounded in 
evidence of what works, and 
eventually what works best (WG4-
ch1). 

...we propose that 
!ndings should be 
discussed in terms 
of effect sizes, with 
a statement about 
the internal validity 
of the !nding and 
representing the 
statistical uncertainty 
of the !nding as a 
continuous p-value, 
‘compatibility 
intervals’, and/or 
alternative statistics.
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