
1

Inverting The Generator Of A Generative
Adversarial Network

Antonia Creswell and Anil A Bharath, Imperial College London

Abstract—Generative adversarial networks (GANs) learn a
deep generative model that is able to synthesise novel, high-
dimensional data samples. New data samples are synthesised by
passing latent samples, drawn from a chosen prior distribution,
through the generative model. Once trained, the latent space
exhibits interesting properties, that may be useful for down
stream tasks such as classification or retrieval. Unfortunately,
GANs do not offer an “inverse model”, a mapping from data
space back to latent space, making it difficult to infer a
latent representation for a given data sample. In this paper,
we introduce a technique, inversion, to project data samples,
specifically images, to the latent space using a pre-trained GAN.
Using our proposed inversion technique, we are able to identify
which attributes of a dataset a trained GAN is able to model and
quantify GAN performance, based on a reconstruction loss. We
demonstrate how our proposed inversion technique may be used
to quantitatively compare performance of various GAN models
trained on three image datasets. We provide code for all of our
experiments1.

I. INTRODUCTION

Generative adversarial networks (GANs) [13], [8] are a
class of generative model which are able to synthesise novel,
realistic looking images of faces, digits and street numbers
[13]. GANs involve two networks: a generator, G, and a
discriminator, D. The generator, G, is trained to generate
synthetic images, taking a random vector, z, drawn from a
prior distribution, P (Z), as input. The prior is often chosen
to be a normal or uniform distribution.

Radford et al. [13] demonstrated that generative adversarial
networks (GANs) learn a “rich linear structure”, meaning that
algebraic operations in Z-space often lead to semantically
meaningful synthetic samples in image space. Since images
represented in Z-space are often meaningful, direct access
to a z ∈ Z for a given image, x ∈ X may be useful
for discriminative tasks such as retrieval or classification.
Recently, it has also become desirable to be able to access
Z-space in order to manipulate original images [16]. Thus,
there are many reasons we may wish to invert the generator.

Typically, inversion is achieved by finding a vector z ∈ Z
which when passed through the generator produces an image
that is very similar to the target image. If no suitable z exists,
this may be an indicator that the generator is unable to model
either the whole image or certain attributes of the image. We
give a concrete example in Section VI-B. Therefore, inverting
the generator, additionally, provides interesting insights to
highlight what a trained GAN has learned.

e-mail: ac2211@ic.ac.uk.
1https://github.com/ToniCreswell/InvertingGAN

Mapping an image, from image space, X , to Z-space is non-
trivial, as it requires inversion of the generator, which is often
a many layered, non-linear model [13], [8], [3]. Dumoulin
et al. [7] (ALI) and Donahue et al. (BiGAN) [6] proposed
learning a third, decoder network alongside the generator
and discriminator to map image samples back to Z-space.
Collectively, they demonstrated results on MNIST, ImageNet,
CIFAR-10 and SVHN and CelebA. However, reconstructions
of inversions are often poor. Specifically, reconstructions of
inverted MNIST digits using methods of Donahue et al. [5],
often fail to preserve style and character class. Recently,
Li et al. [10] proposed method to improve reconstructions,
however drawbacks to these approaches [10], [6], [7] include
the need to train a third network which increases the number
of parameters that have to be learned, increasing the chances
of over-fitting. The need to train an extra network, along side
the GAN, also means that inversion cannot be performed on
pre-trained networks.

A more serious concern, when employing a decoder model
to perform inversion, is that its value as a diagnostic tool
for evaluating GANs is hindered. GANs suffer from several
pathologies including over-fitting, that we may be able to
detect using inversion. If an additional encoder model is
trained to perform inversion [10], [6], [7], [11], the encoder
itself may over-fit, thus not portraying the true nature of a
trained GAN. Since our approach does not involve training
an additional encoder model, we may use our approach for
“trouble shooting” and evaluating different pre-trained GAN
models.

In this paper, we make the following contributions:

• We propose a novel approach to invert the generator of
any pre-trained GAN, provided that the computational
graph for the generator network is available (Section II).

• We demonstrate that, we are able to infer a Z-space
representation for a target image, such that when passed
through the GAN, it produces a sample visually similar
to the target image (Section VI).

• We demonstrate several ways in which our proposed
inversion technique may be used to both qualitatively
(Section VI-B) and quantitatively compare GAN models
(Section VII).

• Additionally, we show that batches of z samples can be
inferred from batches of image samples, which improves
the efficiency of the inversion process by allowing mul-
tiple images to be inverted in parallel (Section II-A).

We begin, by describing our proposed inversion technique.

ar
X

iv
:1

80
2.

05
70

1v
1 

 [
cs

.C
V

] 
 1

5 
Fe

b 
20

18

https://github.com/ToniCreswell/InvertingGAN


2

II. METHOD: INVERTING THE GENERATOR

For a target image, x ∈ <m×m we want to infer the Z-space
representation, z ∈ Z, which when passed through the trained
generator produces an image very similar to x. We refer to
the process of inferring z from x as inversion. This can be
formulated as a minimisation problem:

z∗ = min
z
−Ex log[G(z)] (1)

Provided that the computational graph for G(z) is known,
z∗ can be calculated via gradient descent methods, taking the
gradient of G w.r.t. z. This is detailed in Algorithm 1.

Algorithm 1: Algorithm for inferring z∗ ∈ <d, the latent
representation for an image x ∈ <m×m.

Result: Infer(x)
1 z∗ ∼ Pz(Z) ;
2 while NOT converged do
3 L← −(x log[G(z∗)] + (1− x) log[1−G(z∗)]);
4 z∗ ← z∗ − α∇zL;
5 end
6 return z∗ ;

Provided that the generator is deterministic, each z value
maps to a single image, x. A single z value cannot map
to multiple images. However, it is possible that a single x
value may map to several z representations, particularly if the
generator has collapsed [14]. This suggests that there may be
multiple possible z values to describe a single image. This
is very different to a discriminative model, where multiple
images, may often be described by the same representation
vector [12], particularly when a discriminative model learns
representations tolerant to variations.

The approach described in Algorithm 1 is similar in spirit
to that of Mahendran et al. [12], however instead of inverting
a representation to obtain the image that was responsible for
it, we invert an image to discover the latent representation that
generated it.

A. Inverting A Batch Of Samples

Algorithm 1 shows how we can invert a single data sample,
however it may not be efficient to invert single images at
a time, rather, a more practical approach is to invert many
images at once. We will now show that we are able to invert
batches of examples.

Let zb ∈ <B×n, zb = {z1, z2, ...zB} be a batch of B
samples of z. This will map to a batch of image samples
xb ∈ <B×m×m, xb = {x1, x2, ...xB}. For each pair (zi, xi),
i ∈ {1...B}, a loss Li, may be calculated. The update for zi
would then be zi ← zi − αdLi

dzi
If reconstruction loss is calculated over a batch, then the

batch reconstruction loss would be
∑

i={1,2...B} Li, and the
update would be:

∇zbL =
∂
∑

i∈{1,2,...B} Li

∂(zb)
(2)

=
∂(L1 + L2...+ Li)

∂(zb)
(3)

=
dL1

dz1
,
dL2

dz2
, ...

dLB

dzB
(4)

Each reconstruction loss depends only on G(zi), so Li

depends only on zi, which means ∂Li

∂zj
= 0, for all i 6= j.

This shows that zi is updated only by reconstruction loss Li,
and the other losses do not contribute to the update of zi,
meaning that it is valid to perform updates on batches.

B. Using Prior Knowledge Of P(Z)

A GAN is trained to generate samples from a z ∈ Z
where the distribution over Z is a chosen prior distribution,
P (Z). P (Z) is often a multivariate Gaussian or uniform
distribution. If P (Z) is a multivariate uniform distribution,
U [a, b], then after updating z∗, it can be clipped to be between
[a, b]. This ensures that z∗ lies in the probable regions of
Z. If P (Z) is a multivariate Gaussian Distribution, N [µ, σ2],
regularisation terms may be added to the cost function, penal-
ising samples that have statistics that are not consistent with
P (Z) = N [µ, σ2].

If z ∈ Z is a vector of length d and each of the d elements
in z ∈ <d are drawn independently and from identical distri-
butions, we may be able to add a regularisation term to the
loss function. For example, if P (Z) is a multivariate Gaussian
distribution, then elements in a single z are independent
and identically drawn from a Gaussian distribution. Therefore
we may calculate the likelihood of an encoding, z, under a
multivariate Gaussian distribution by evaluating:

logP (z) = logP (z1, ..., zd) =
1

d

d∑
i=0

logP(zi)

where zi is the ith element in a latent vector z and P is the
probability density function of a (univariate) Gaussian, which
may be calculated analytically. Our new loss function may be
given by:

L(z, x) = Ex log[G(z)]− β logP (z) (5)

by minimising this loss function (Equation 5), we encourage
z∗ to come from the same distribution as the prior.

III. RELATION TO PREVIOUS WORK

In this paper, we build on our own work2. We have
augmented the paper, by performing additional experiments
on a shoe dataset [11] and CelebA, as well as repeating
experiments on the Omniglot dataset using the DCGAN model
proposed by Radford et al. [13] rather than our own network
[4]. In addition to proposing a novel approach for mapping

2Creswell, Antonia, and Anil Anthony Bharath. ”Inverting The Generator
Of A Generative Adversarial Network.” arXiv preprint arXiv:1611.05644
(2016). This paper was previously accepted at the NIPS Workshop on
Adversarial Training, which was made available as a non archival pre-print
only

http://arxiv.org/abs/1611.05644


3

data samples to their corresponding latent representation, we
show how our approach may be used to quantitatively and
qualitatively compare models.

Our approach to inferring z from x is similar to the previous
work of Zhu et al. [16], however we make several additional
contributions.

Specifically, Zhu et al. [16] calculate reconstruction loss,
by comparing the features of x and G(z∗) extracted from
layers of AlexNet, a CNN trained on natural scenes. This
approach is likely to fail if generated samples are not of natural
scenes (e.g. Omniglot handwritten characters). Our approach
considers pixel-wise loss, providing an approach that is generic
to the dataset. Further, if our intention is to use the inversion
to better understand the GAN model, it is essential not to
incorporate information from other pre-trained networks in the
inversion process.

An alternative class of inversion methods involves training
a separate encoding network to learn a mapping from image
samples, x to latent samples z. Li et al [10], Donahue et al. [6]
and Dumoulin et al. [7] propose learning the encoder along
side the GAN. Unfortunately, training an additional encoder
network may encourage over-fitting, resulting in poor image
reconstruction. Further, this approach may not be applied to
pre-trained models.

On the other hand, Luo et al.3 [11], train an encoding
network after the GAN has been trained, which means that
their approach may be applied to pre-trained models. One
concern about the approach of Luo et al. [11], is that it may
not be an accurate reflection of what the GAN has learned,
since the learned decoder may over-fit to the examples it is
trained on. For this reason, the approach of Luo et al. [11]
may not be suitable for inverting image samples that come
from a different distribution to the training data. Evidence
of over-fitting may be found in Luo et al. [11]-Figure 2,
where “original” image samples being inverted are synthesised
samples, rather than samples from a test set data; in other
words Luo et al. [11] show results (Figure 2) for inverting
synthesised samples, rather than real image samples from a
test set.

In contrast to Luo et al. [11], we demonstrate our inversion
approach on data samples drawn from test sets of real data
samples. To make inversion more challenging, in the case of
the Omniglot dataset, we invert image samples that come from
a different distribution to the training data. We invert image
samples from the Omniglot handwritten characters dataset that
come from a different set of alphabets to the set used to
train the (Omniglot) GAN (Figure 4). Our results will show
that, using our approach, we are still able to recover a latent
encoding that captures most features of the test data samples.

Finally, previous inversion approaches that use learned
encoder models [10], [6], [7], [11] may not be suitable
for “trouble shooting”, as symptoms of the GAN may be
exaggerated by an encoder that over-fits. We discuss this in
more detail in Section VII.

3Luo et al. cite our pre-print

(a) Synthetic Omniglot Samples from a GAN.

(b) Synthetic Omniglot Samples from a WGAN.

Figure 1: Synthetic Omniglot samples: Shows samples syn-
thesised using a (a) GAN and (b) WGAN.

IV. “PRE-TRAINED” MODELS

In this section we discuss the training and architecture
details of several different GAN models, trained on 3 different
datasets, which we will use for our inversion experiments
detailed in Section V. We show results on total of 10 trained
models (Sections VI and VII).

A. Omniglot

The Omniglot dataset [9] consists of characters from 50
different alphabets, where each alphabet has at least 14 dif-
ferent characters. The Omniglot dataset has a background
dataset, used for training and a test dataset. The background set
consists of characters from 30 writing systems, while the test
dataset consists of characters from the other 20. Note, char-
acters in the training and testing dataset come from different
writing systems. We train both a DCGAN [13] and a WGAN
[2] using a latent representation of dimension, d = 100. The
WGAN [2] is a variant of the GAN that is easier to train
and less likely to suffer from mode collapse; mode collapse
is where synthesised samples look similar to each other. All
GANs are trained with additive noise whose standard deviation
decays during training [1]. Figure 1 shows Omniglot samples
synthesised using the trained models. Though it is clear from
Figure 1(a), that the GAN has collapsed, because the generator
is synthesising similar samples for different latent codes, it is
less clear to what extent the WGAN (Figure 1(b)) may have
collapsed or over-fit. It is also unclear from Figure 1(b) what
representative power, the (latent space of the) WGAN has.
Results in sections VI and VII will provide more insight into
the representations learned by these models.

B. Shoes

The shoes dataset [15] consists of c.50, 000 examples of
shoes in RGB colour, from 4 different categories and over
3000 different subcategories. The images are of dimensions
128 × 128. We leave 1000 samples out for testing and use
the rest for training. We train two GANs using the DCGAN
[13] architecture. We train one DCGAN with full sized images
and the second we train on 64 × 64 images. The networks
were trained according to the setup described by Radford et



4

(a) Synthetic Shoe Samples from a DCGAN 64× 64.

(b) Synthetic Shoe Samples from a DCGAN 128× 128.

(c) Synthetic Shoe Samples from a WGAN 64× 64.

Figure 2: Shoe samples synthesised using GANs: Shows
samples from DCGANs trained on (a) lower resolution (64×
64) images, (b) higher resolution images (128× 128) and (c)
samples from a WGAN.

al. [13], using a multivariate Gaussian prior. We also train
a WGAN [2] on full sized images. All GANs are trained
with additive noise whose standard deviation decays during
training [1]. Figure 3 shows samples randomly synthesised
using the DCGAN models trained on shoes. The samples look
quite realistic, but again, they do not tell us much about the
representations learned by the GANs.

C. CelebA

The CelebA dataset consists of 250, 000 celebrity faces, in
RGB colour. The images are of dimensions 64×64 pixels. We
leave 1000 samples out for testing and use the rest for training.
We train three models, a DCGAN and WGAN trained with
decaying noise [1] and a DCGAN trained without noise. The
networks are trained according to the setup described by Rad-
ford et al. [13]. Figure 3c shows examples of faces synthesised
with and without noise. It is clear from Figure 3c(a) that the
GAN trained without noise has collapsed, synthesising similar
examples for different latent codes. The WGAN produces the
sharpest and most varied samples. However, these samples
do not provide sufficient information about the representation
power of the models.

V. EXPERIMENTS

To obtain latent representations, z∗ for a given image x
we apply our proposed inversion technique to a batch of
randomly selected test images, x ∈ X . To invert a batch of
image samples, we minimised the cost function described by
Equation (5). In most of our experiments we use β = 0.01,
unless stated otherwise, and update candidate z∗ using an
RMSprop optimiser, with a learning of rate 0.01.

(a) Synthetic Face Samples from GAN trained with noise.

(b) Synthetic Face Samples from a GAN trained without noise.

(c) Synthetic Face Samples from a WGAN trained with noise.

Figure 3: Celebrity faces synthesised using GANs: Shows
samples from DCGANs trained (a) without noise and (b) with
noise, and (c) samples from a WGAN.

A valid inversion process should map a target image sample,
x ∈ X to a z∗ ∈ Z, such that when z∗ is passed through the
generative part of the GAN, it produces an image, G(z∗), that
is close to the target image, x. However, the quality of the
reconstruction, depends heavily on the latent representation
that the generative model has learned. In the case where a
generative model is only able to represent some attributes
of the target image, x, the reconstruction, G(z∗) may only
partially reconstruct x.

Thus, the purpose of our experiments is two fold:
1) To demonstrate qualitatively, through reconstruction,

(G(z∗)), that for most well trained GANs, our inversion
process is able to recover a latent code, z∗, that captures
most of the important features of a target image
(Section VI).

2) To demonstrate how our proposed inversion technique
may be used to both qualitatively (Section VI-B). and
quantitatively compare GAN models (Section VII).

VI. RECONSTRUCTION RESULTS

A. Omniglot

The Omniglot inversions are particularly challenging, as we
are trying to find a set of z∗’s for a set of characters, x, from
alphabets that were not in the training data. The inversion
process will involve finding representations for data samples
from alphabets that it has not seen before, using information
about alphabets that it has seen. The original and reconstructed
samples are shown in Figure 4.

In our previous work,4 we showed that given the “correct”
architecture, we are able to find latent representations that

4https://arxiv.org/abs/1611.05644



5

lead to excellent reconstructions. However, here we focus
on evaluating standard models [13] and we are particularly
interested in detecting (and quantifying) where models fail,
especially since visual inspection of synthesised samples may
not be sufficient to detect model failure.

It is clear from Figure 1 that the GAN has over-fit, however
it was less clear whether or not the WGAN has, since
samples appeared to be more varied. By attempting to perform
inversion, we can see that the WGAN has indeed over-fit, as it
is only able to partially reconstruct the target data samples. In
the next section (Section VII), we quantitatively compare the
extent to which the GAN and WGAN trained on the Omniglot
dataset have over-fit.

(a) Target Omniglot handwritten characters, x, from alphabets differ-
ent to those seen during training.

(b) Reconstructed data samples, G(z∗), using a GAN.

(c) Reconstructed data samples, G(z∗), using a WGAN.

(d) Reconstructed data samples, G(z∗), using a WGAN overlaid with
x.

Figure 4: Reconstruction of Omniglot handwritten charac-
ters.

B. Shoes

In Figure 5 we compare shoe reconstructions using a
DCGAN trained on low and high resolution images. By
comparing reconstructions in Figures 5 (b) and (c) (particularly
the blue shoe on the top row) we see that the lower resolution
model has failed to capture some structural details, while the
higher resolution model has not. This suggests that the model
trained on higher resolution images is able to capture more
structural details than the model trained on lower resolution
images. Using our inversion technique to make comparisons
between models is just one example of how inversion may

also be used to “trouble shoot” and identify which features of
a dataset our models are not capturing.

Additionally, we may observe that while the GAN trained
on higher resolution images preserves more structure than
the GAN trained on lower resolution images, it still misses
certain details. For example the reconstructed red shoes do
not have laces (top left Figure 5(b,c)) laces. This suggests that
the representation is not able to distinguish shoes with laces
from those without. This may be important when designing
representations for image retrieval, where a retrieval system
using this representation may be able to consistently retrieve
red shoes, but less consistently retrieve red shoes with laces.
This is another illustration of how a good inversion technique
may be used to better understand what representation is
learned by a GAN.

Figure 5(d) shows reconstructions using a WGAN trained on
low resolution images. We see that the WGAN is better able to
model the blue shoe, and some ability to model the ankle strap,
compared to the GAN trained on higher resolution images. It is
however, difficult to asses from reconstructions, which model
best represents the data. In the next Section (VII), we show
how our inversion approach may be used to quantitatively
compare these models, and determine which learns a better
(latent) representation for the data.

Finally, we found that while regularisation of the latent
space may not always improve reconstruction fidelity, it can be
helpful for ensuring that latent encodings, z∗, found through
inversion, correspond to images, G(z∗) that look more like
shoes. Our results in Figure 5 were achieved using β = 0.01.

C. CelebA

Figure 6 shows reconstructions using three different GAN
models. Training GANs can be very challenging, and so
various modifications may be made to their training to make
them easier to train. Two examples of modifications are (1)
adding corruption to the data samples during training [1] and
(2) a reformulation of the cost function to use the Wasserstein
distance. While these techniques are known to make training
more stable, and perhaps also prevent other pathologies found
in GANs for example, mode collapse, we are interested to
compare the (latent) representations learned by these models.

The most faithful reconstructions appear to be those from
the WGAN Figure 6 (b). This will be confirmed quantitatively
in the next section. By observing reconstruction results across
all models in Figure 6, it is apparent that all three models fail
to capture a particular mode of the data; all three models fail
to represent profile views of faces.

VII. QUANTITATIVELY COMPARING MODELS

Failing to represent a mode in the data is commonly referred
to a “mode dropping”, and is just one of three common
problems exhibited by GANs. For completeness, common
problems exhibited by trained GANs include the following:
(1) mode collapse, this is where similar image samples are
synthesised for different inputs, (2) mode dropping (more
precisely), this is where the GAN only captures certain regions



6

(a) Shoe data samples, x, from a test set

(b) Reconstructed data samples, G(z∗) using a GAN at resolution
128× 128

(c) Reconstructed data samples, G(z∗) using a GAN at resolution
64× 64

(d) Reconstructed data samples, G(z∗) using a WGAN at resolution
64× 64

Figure 5: Reconstruction of Shoes. By comparing reconstruc-
tions, particularly of the blue shoe, we see that the higher
resolution model (b) is able to capture some structural details,
specifically the shoe’s heel, that the lower resolution model
(c) does not. Further, the WGAN (d) is able to capture
additional detail, including the blue shoe’s strap. These results
demonstrate how inversion may be a useful tool for comparing
which features of a dataset each model is able to capture.

of high density in the data generating distribution and (3) train-
ing sample memorisation, this is where the GAN memorises
and reproduces samples seen in the training data. If a model
exhibits these symptoms, we say that it has over-fit, however
these symptoms are often difficult to detect.

Table I: Comparing Models Using Our Inversion Approach
MSE is reported across all test samples for each model trained
with each dataset. A smaller MSE suggests that the model is
better able to represent test data samples.

Model CelebA Shoes Omniglot

GAN [13] 0.118 0.059 0.588
GAN+noise [1] 0.109 0.029 0.305

WGAN [2] 0.042 0.020 0.082
High Res. - 0.016 -

If a GAN is trained well and exhibits none of the above
three problems, it should be possible to preform inversion to
find suitable representations for most test samples using our

(a) CelebA faces, x, from a test set

(b) Reconstructed data samples, G(z∗), using a WGAN

(c) Reconstructed data samples, G(z∗), using a GAN+noise

(d) Reconstructed data samples, G(z∗), using a GAN

Figure 6: Reconstruction of celebrity faces

technique.
However, if a GAN does exhibit any of the three problems

listed above, inversion becomes challenging, since certain
regions of high density in the data generating distribution may
not be represented by the GAN. Thus, we may compare GAN
models, by evaluating reconstruction error using our proposed
inversion process. A high reconstruction error, in this case
mean squared error (MSE), suggests that a model has possibly
over-fit, and is not able to represent data samples well. By
comparing MSE between models, we can compare the extent
to which one model has over-fit compared to another.

Table I shoes how our inversion approach may be used to
quantitatively compare 3 models (4 in the case of the shoes
dataset) across three datasets, CelebA, shoes and Omniglot.
The Table shows mean squared reconstruction error on a large
5 batch of test samples.

From Table I we may observe the following:
1) CelebA: The (latent) representation learned by the

WGAN generalises to test samples, better than either the GAN
or the GAN trained with noise. Results also suggests that
training a GAN with noise helps to prevent over-fitting. These
conclusions are consistent with both empirical and theoretical
results found in previous work [2], [1], suggesting that this
approach for quantitatively comparing models is valid.

2) Shoes: Using inversion to quantify the quality of a rep-
resentation allows us to make fine grain comparisons between

5CelebA:100 samples, Shoes and Omniglot:500 samples



7

models. We see that training a model using higher resolution
images reduces reconstruction error by almost a factor of
two, in the case of the GAN+noise, compared to a similar
model trained at a lower resolution. We know from earlier
observations (Figure VI-B), that this is because the model
trained at higher resolution, captures finer grain details, that
the model trained on lower resolution images.

Comparing models using our proposed inversion approach,
in addition to classifier based measures [14], helps to detect
fine grain differences between models, that may not be de-
tected using classification based measures alone. A “good”
discriminative model learns many features that help to make
decisions about which class an object belongs to. However,
any information in an image that does not aid classification is
likely to be ignored (e.g. when classifying cars and trucks, the
colour of a car is not important 6). Yet, we may want to com-
pare representations that encode information that a classifier
ignores (e.g. colour of the car). For this reason, using only a
classification based measure [14] to compare representations
learned by different models may not be enough, or may require
very fine grain classifiers to detect differences.

3) Omniglot: From Figure 4, it was clear that both models
trained on the Omniglot dataset had over-fit, but not to the
same extent. Here, we are able to quantify the degree to which
each model has over-fit. We see that the WGAN has over-fit
to a lesser extent compared to the GAN trained with noise,
since the WGAN has a smaller MSE. Quantifying over-fitting
can be useful when developing new architectures, and training
scheme, to objective compare models.

In this section we have demonstrated how our inversion ap-
proach may be used to quantitatively compare representations
learned by GANs. We intend this approach to provide a useful,
quantitative approach for evaluating and developing new GAN
models and architectures for representation learning.

Finally, we emphasise that while there are other techniques
that provide inversion, ours is the only one that is both (a)
immune to over-fitting, in other words we do not train an
encoder network that may itself over-fit, and (b) can be applied
to any pre-trained GAN model provided that the computational
graph is available.

VIII. CONCLUSION

The generator of a GAN learns the mapping G : Z → X . It
has been shown that z values that are close in Z-space produce
images that are visually similar in image space, X [13]. We
propose an approach to map data, x samples back to their
latent representation, z∗ (Section II).

For a generative model, in this case a GAN, that is trained
well and given target image, x, we should be able to find
a representation, z∗, that when passed through the generator,
produces an image, G(z∗), that is similar to the target image.
However, it is often the case that GANs are difficult to
train, and there only exists a latent representation, z∗, that
captures some of the features in the target image. When z∗

only captures some of the features, this results in, G(z∗),

6Bottom left of Figure 10 [12], shows that the 1st layer of a discriminatively
trained CNN ignores the colours of the input image.

being a partial reconstruction, with certain features of the
image missing. Thus, our inversion technique provides a tool,
to provide qualitative information about what features are
captured by in the (latent) representation of a GAN. We
showed several visual examples of this in Section VI.

Often, we want to compare models quantitatively. In ad-
dition to providing a qualitative way to compare models,
we show how we may use mean squared reconstruction
error between a target image, x and G(z∗), to quantitatively
compare models. In our experiments, in Section VII, we use
our inversion approach to quantitatively compare 3 models
trained on 3 datasets. Our quantitative results support claims
from previous work that suggests, that certain modified GANs
are less likely to over-fit.

We expect that our proposed inversion approach may be
used as a tool to asses and compare various proposed modifi-
cations to generative models, and aid the development of new
generative approaches to representation learning.

ACKNOWLEDGEMENTS

We like to acknowledge the Engineering and Physical
Sciences Research Council for funding through a Doctoral
Training studentship.

REFERENCES

[1] M. Arjovsky and L. Bottou. Towards principled methods for training
generative adversarial networks. arXiv preprint arXiv:1701.04862, 2017.

[2] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

[3] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and
P. Abbeel. Infogan: Interpretable representation learning by informa-
tion maximizing generative adversarial nets. In Advances in Neural
Information Processing Systems, 2016.

[4] A. Creswell and A. A. Bharath. Task specific adversarial cost function.
arXiv preprint arXiv:1609.08661, 2016.

[5] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell. Long-term recurrent convolutional
networks for visual recognition and description. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
2625–2634, 2015.

[6] J. Donahue, P. Krähenbühl, and T. Darrell. Adversarial feature learning.
arXiv preprint arXiv:1605.09782, 2016.

[7] V. Dumoulin, I. Belghazi, B. Poole, A. Lamb, M. Arjovsky, O. Mastropi-
etro, and A. Courville. Adversarially learned inference. arXiv preprint
arXiv:1606.00704, 2016.

[8] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In
Advances in Neural Information Processing Systems, pages 2672–2680,
2014.

[9] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level
concept learning through probabilistic program induction. Science,
350(6266):1332–1338, 2015.

[10] C. Li, H. Liu, C. Chen, Y. Pu, L. Chen, R. Henao, and L. Carin.
Alice: Towards understanding adversarial learning for joint distribution
matching. In Advances in Neural Information Processing Systems, pages
5501–5509, 2017.

[11] J. Luo, Y. Xu, C. Tang, and J. Lv. Learning inverse mapping by autoen-
coder based generative adversarial nets. In International Conference on
Neural Information Processing, pages 207–216. Springer, 2017.

[12] A. Mahendran and A. Vedaldi. Understanding deep image representa-
tions by inverting them. In 2015 IEEE conference on computer vision
and pattern recognition (CVPR), pages 5188–5196. IEEE, 2015.

[13] A. Radford, L. Metz, and S. Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. In
Proceedings of the 5th International Conference on Learning Represen-
tations (ICLR) - workshop track, 2016.



8

[14] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen. Improved techniques for training gans. In Advances in Neural
Information Processing Systems (to appear), 2016.

[15] A. Yu and K. Grauman. Fine-grained visual comparisons with local
learning. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 192–199, 2014.

[16] J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros. Generative
visual manipulation on the natural image manifold. In European
Conference on Computer Vision, pages 597–613. Springer, 2016.


	I Introduction
	II Method: Inverting The Generator
	II-A Inverting A Batch Of Samples
	II-B Using Prior Knowledge Of P(Z)

	III Relation to Previous Work
	IV ``Pre-trained'' Models
	IV-A Omniglot
	IV-B Shoes
	IV-C CelebA

	V Experiments
	VI Reconstruction Results
	VI-A Omniglot
	VI-B Shoes
	VI-C CelebA

	VII Quantitatively Comparing Models
	VII-1 CelebA
	VII-2 Shoes
	VII-3 Omniglot


	VIII Conclusion
	References

