Skip to main content
Log in

Structure and composition of Au/Co magneto-plasmonic nanoparticles

  • Research Letters
  • Published:
MRS Communications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The fabrication of bimetallic magnetic nanoparticles (NPs) smaller than the size of single magnetic domain is very challenging because of the agglomeration, non-uniform size, and possible complex chemistry at nanoscale. In this paper, we present an alloyed ferromagnetic 4 ± 1 nm thiolated Au/Co magnetic NPs with decahedral and icosahedral shape. The NPs were characterized by Cs-corrected scanning transmission electron microscopy (STEM) and weretheoretically studied by Grand Canonical Monte Carlo simulations. Comparison of Z-contrast imaging and energy dispersive x-ray spectroscopy used jointly with STEM simulated images from theoretical models uniquely showed an inhomogeneous alloying with minor segregation. The magnetic measurements obtained from superconducting quantum interference device magnetometer exhibited ferromagnetic behavior. This magnetic nanoalloy in the range of single domain is fully magnetized and carries significance as a promising candidate for magnetic data recording, permanent magnetization, and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. A.-H. Lu, W. Schmidt, N. Matoussevitch, H. Bönnemann, B. Spliethoff, B. Tesche, E. Bill, W. Kiefer, and F. Schüth: Nanoengineering of a magnetically separable hydrogenation catalyst. Angew. Chem., Int. Ed. 43, 4303 (2004).

    CAS  Google Scholar 

  2. G. Reiss and A. Hutten: Magnetic nanoparticles: applications beyond data storage. Nat. Mater. 4, 725 (2005).

    CAS  Google Scholar 

  3. B. Gleich and J. Weizenecker: Tomographic imaging using the nonlinear response of magnetic particles. Nature 435, 1214 (2005).

    CAS  Google Scholar 

  4. R.N. Grass, E.K. Athanassiou, and W.J. Stark: Covalently functionalized cobalt nanoparticles as a platform for magnetic separations in organic synthesis. Angew. Chem., Int. Ed. 46, 4909 (2007).

    CAS  Google Scholar 

  5. D.W. Elliott and W.X. Zhang: Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ. Sci. Technol. 35, 4922 (2001).

    CAS  Google Scholar 

  6. J. Dobson: Magnetic nanoparticles for drug delivery. Drug Dev. Res. 67, 55 (2006).

    CAS  Google Scholar 

  7. Y. Kobayashi, M. Horie, M. Konno, B. Rodríguez-González, and L.M. Liz-Marzán: Preparation and properties of silica-coated cobalt nanoparticles†. J. Phys. Chem. B 107, 7420 (2003).

    CAS  Google Scholar 

  8. J. Gao, H. Gu, and B. Xu: Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc. Chem. Res. 42, 1097 (2009).

    CAS  Google Scholar 

  9. Y. Bao and K.M. Krishnan: Preparation of functionalized and gold-coated cobalt nanocrystals for biomedical applications. J. Magn. Magn. Mater. 293, 15 (2005).

    CAS  Google Scholar 

  10. Q.A. Pankhurst, J. Connolly, S.K. Jones, and J. Dobson: Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 36, R167 (2003).

    CAS  Google Scholar 

  11. Z. Lu, M.D. Prouty, Z. Guo, V.O. Golub, C.S.S.R. Kumar, and Y.M. Lvov: Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co@Au nanoparticles. Langmuir 21, 2042 (2005).

    CAS  Google Scholar 

  12. A.H. Lu, E.e.L. Salabas, and F. Schüth: Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem., Int. Ed. 46, 1222 (2007).

    CAS  Google Scholar 

  13. T. Iwaki, Y. Kakihara, T. Toda, M. Abdullah, and K. Okuyama: Preparation of high coercivity magnetic FePt nanoparticles by liquid process. J. App. Phys. 94, 6807 (2003).

    CAS  Google Scholar 

  14. M. Chen, J. Kim, J.P. Liu, H. Fan, and S. Sun: Synthesis of FePt nanocubes and their oriented self-assembly. J. Am. Chem. Soc. 128, 7132 (2006).

    CAS  Google Scholar 

  15. S. Sun, C. Murray, D. Weller, L. Folks, and A. Moser: Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989 (2000).

    CAS  Google Scholar 

  16. D. Weller and A. Moser: Thermal effect limits in ultrahigh-density magnetic recording. IEEE Trans. Magn. 35, 4423 (1999).

    CAS  Google Scholar 

  17. A. Rapallo, J. Olmos-Asar, O. Oviedo, M. Ludueña, R. Ferrando, and M. Mariscal: Thermal properties of Co/Au nanoalloys and comparison of different computer simulation techniques. J. Phys. Chem. C 116, 17210 (2012).

    CAS  Google Scholar 

  18. O. Oviedo, E. Leiva, and M. Mariscal: Diffusion mechanisms taking place at the early stages of cobalt deposition on Au (111). J. Phys.: Condens. Matter. 20, 265010 (2008).

    CAS  Google Scholar 

  19. A. Mayoral, S. Mejia-Rosales, M.M. Mariscal, E. Perez-Tijerina, and M. Jose-Yacaman: The Co-Au interface in bimetallic nanoparticles: a high resolution STEM study. Nanoscale 2, 2647 (2010).

    CAS  Google Scholar 

  20. F. Bao, J.-F. Li, B. Ren, Jian-Lin Yao R.-A. Guand Z.-Q. Tian: Synthesis and characterization of Au@ Co and Au@ Ni core-shell nanoparticles and their applications in surface-enhanced Raman Spectroscopy. J. Phys. Chem. C 112, 345 (2008).

    CAS  Google Scholar 

  21. Y. Bao, H. Calderon, and K.M. Krishnan: Synthesis and characterization of magnetic-optical Co-Au core-shell nanoparticles. J. Phys. Chem. C 111, 1941 (2007).

    CAS  Google Scholar 

  22. D. Wang and Y. Li: One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process. J. Am. Chem. Soc. 132, 6280 (2010).

    CAS  Google Scholar 

  23. B.J. Auten, B.P. Hahn, G. Vijayaraghavan, K.J. Stevenson and B.D. Chandler: Preperation and Characterization of 3 nm Magnetic NiAu Nanoparticles. J. Phys. Chem. C 112, 5365 (2008).

    CAS  Google Scholar 

  24. M. Mariscal, J. Olmos-Asar, C. Gutierrez-Wing, A. Mayoral, and M. Yacaman: On the atomic structure of thiol-protected gold nanoparticles: a combined experimental and theoretical study. Phys. Chem. Chem. Phys. 12, 11785 (2010).

    CAS  Google Scholar 

  25. A. Frenkel, S. Nemzer, I. Pister, L. Soussan, T. Harris, Y. Sun, and M. Rafailovich: Size-controlled synthesis and characterization of thiol-stabilized gold nanoparticles. J. Chem. Phys. 123, 184701 (2005).

    CAS  Google Scholar 

  26. M. Brust, D.J. Schiffrin, D. Bethell, and C.J. Kiely: Novel gold-dithiol nano-networks with non-metallic electronic properties. Adv. Mater. 7, 795 (1995).

    CAS  Google Scholar 

  27. N. Bhattarai, G. Casillas, S. Khanal, J.J.V. Salazar, A. Ponce, and M. Jose-Yacaman: Origin and shape evolution of core–shell nanoparticles in Au–Pd: from few atoms to high Miller index facets. J. Nanopart. Res. 15, 1 (2013).

    Google Scholar 

  28. D. Bahena, N. Bhattarai, U. Santiago, A. Tlahuice, A. Ponce, S.B.H. Bach, B. Yoon, R.L. Whetten, U. Landman, and M. Jose-Yacaman: STEM electron diffraction and high-resolution images used in the determination of the crystal structure of the Au144(SR)60 cluster. J. Phys. Chem. Lett. 4, 975 (2013).

    CAS  Google Scholar 

  29. S. Pennycook: Z-contrast STEM for materials science. Ultramicroscopy 30, 58 (1989).

    Google Scholar 

  30. M.M. Mariscal, J.J. Velázquez-Salazar, and M.J. Yacaman: Growth mechanism of nanoparticles: theoretical calculations and experimental results. CrystEngComm 14, 544 (2012).

    CAS  Google Scholar 

  31. M. Mariscal, O. Oviedo, and E. Leiva: On the selection of facets in metallic nanoparticles. J. Mater. Res. 27, 1777 (2012).

    CAS  Google Scholar 

  32. F. Cleri and V. Rosato: Tight-binding potentials for transition metals and alloys. Phy. Rev. B 48, 22 (1993).

    CAS  Google Scholar 

  33. D. Frankel and B. Smith: Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, San Diego, CA, 1996).

    Google Scholar 

  34. D.R. Lide: CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data (CRC Press, Boca Raton, FL, 1999).

    Google Scholar 

  35. M.P. Punkkinen, Q.-M. Hu, S.K. Kwon, B. Johansson, J. Kollár, and L. Vitos: Surface properties of 3d transition metals. Philos. Mag. 91, 3627 (2011).

    CAS  Google Scholar 

  36. V. Zólyomi, L. Vitos, S. Kwon, and J. Kollár: Surface relaxation and stress for 5d transition metals. J. Phys.: Condens. Matter. 21, 095007 (2009).

    Google Scholar 

  37. W. Lorenz and G. Staikov: 2D and 3D thin film formation and growth mechanisms in metal electrocrystallization—an atomistic view by in situ STM. Surf. Sci. 335, 32 (1995).

    CAS  Google Scholar 

  38. H. Guo, J. Li and B. Liu: Atomistic modeling and thermodynamic interpretation of the bridging phenomenon observed in the Co-Au system. Phy. Rev. B 70, 195434 (2004).

    Google Scholar 

  39. D. Bochicchio and R. Ferrando: Morphological instability of core-shell metallic nanoparticles. Phy. Rev. B 87, 165435 (2013).

    Google Scholar 

  40. K. Ishizuka: A practical approach for STEM image simulation based on the FFT multislice method. Ultramicroscopy 90, 71 (2002).

    CAS  Google Scholar 

  41. J.A. Olmos-Asar, A. Rapallo, and M.M. Mariscal: Development of a semiempirical potential for simulations of thiol–gold interfaces. Application to thiol-protected gold nanoparticles. Phys. Chem. Chem. Phys. 13, 6500 (2011).

    CAS  Google Scholar 

  42. A. Caruso, L. Wang, S. Jaswal, E.Y. Tsymbal, and P.A. Dowben: The interface electronic structure of thiol terminated molecules on cobalt and gold surfaces. J. Mater. Sci. 41, 6198 (2006).

    CAS  Google Scholar 

  43. D. Kechrakos and K.N. Trohidou: Magnetic properties of dipolar interacting single-domain particles. Phy. Rev. B 58, 12169 (1998).

    CAS  Google Scholar 

  44. J.L. Dormann, D. Fiorani, and E. Tronc: Magnetic relaxation in fine-particle systems. Adv. Chem. Phys. 283 (2007).

Download references

Acknowledgments

This project was supported by grants from the National Center for Research Resources (5 G12RR013646-12) and the National Institute on Minority Health and Health Disparities (G12MD007591) from the National Institutes of Health. The authors would like to acknowledge the NSF for support with grants DMR-1103730, “Alloys at the Nanoscale: The Case of Nanoparticles Second Phase and PREM: NSF PREM Grant # DMR 0934218; “Oxide and Metal Nanoparticles- The Interface Between Life Sciences and Physical Sciences”.NB acknowledges G. Ajithkumar for discussion about magnetic behavior. Support from the Mexican Council for Science and Technology (CONACYT, Mexico), through project CIAM 148967, is also acknowledged. MMM wish to thank CONICET, SeCyT UNC, ANPCyT Program BID (PICT 2010-123), and PIP: 112-200801-000983 “Nanotechnology in-silico” for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Jose-Yacaman.

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit {rs|http://dx.doi.org/10.1557/mrc.2013.30|url|}

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattarai, N., Casillas, G., Khanal, S. et al. Structure and composition of Au/Co magneto-plasmonic nanoparticles. MRS Communications 3, 177–183 (2013). https://doi.org/10.1557/mrc.2013.30

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2013.30

Navigation