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ABSTRACT 

Kriging is a construction method that is primarily built based on the structure of experimental semivariograms and 

the power of fitting. The two functions, i.e., classical and robust semivariograms, are used in the current study. The 

emivariograms are fitted using two approaches, namely, ordinary least squares and weighted least squares, whereas the 

spherical and exponential functions are utilized for the theoretical model. The estimation precision is calculated using the 

root mean square error. The error use of the root mean squares for predictions was tested using the mean absolute 

deviation. 
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INTRODUCTION 

Gold mining is an activity that can provide 

economical returns based on the amount of ore produced. 

Aside from promoting the macro-economic growth, this 

activity provides employment to people. However, mining 

plans that are improperly designed will adversely affect 

the natural environment and result in changes in the 

landscape. 

Initial studies on mining plans must be conducted 

to prevent the aforementioned adverse effects. Detailed 

and comprehensive studies must be carefully conducted. 

One aspect to consider is the amount of ore reserves that 

can be mined and the mineral distribution in an area. Thus, 

geological explorations require random samples at various 

points to conduct thorough analyses. 

Before conducting research, information about an 

area that may contain minerals must be obtained. The 

current study was conducted in Ciurug, Pongkor 

Indonesia, which belongs to PT. Aneka Tambang UBPE 

Pongkor is an area with a vein system. The existence of 

veins in this area was caused by the subduction of the 

Ocean Indo-Australian plate under the Eurasian Plate [1]. 

A vein is an area where ore minerals, which are naturally 

distributed in any location of deposition, settle in a rock 

fracture [2]. 128 data samples were randomly obtained in 

this area to predict the quantity of ore reserves. The 

information of the sample data was obtained by using 

assays from core-bore drilling. 

 

 
 

Figure-1. Geological map and vein system of Pongkor [1]. 

 

MATERIAL AND METHOD 

Primary gold is a mineral that is found 

throughout the earth. Locations where ore gold settles in 

rock fractures or soils are known as gold mineralization. 

The mineralization process begins from a magmatic 

solution, which occurs because of the impulse of heat 

energy that breaks through a host rock and emerges to the 

surface of the earth through rock fractures. The solution is 

gradually frozen and settles [2, 3]. This process causes a 

link to exist between minerals in one place to those in 

other locations. This linkage is an event in geostatistics 

called, “regionalization.” Therefore, the geostatistics 
method is used to obtain information about its content.  

Geostatistics involves a statistical–mathematical 

modeling of trends based on regionalized variables. 

Geostatistics is a hybrid discipline from engineering 

mining, geology, mathematics, and statistics. This model 

is widely used to examine gold mining precipitation in 

veins [4]. This model is utilized to build semivariograms 

and kriging. Semivariograms are the main structure 

underlying kriging prediction. The experimental 

semivariogram comprises functions, generally in discrete 
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forms, that are used to determine the behavior of spatial 

data with the precision of the parameters of the fitting 

result parameters. Nugget, sill, and range are the three 

parameters generated by fitting the semivariogram 

function. An estimation of the experimental 

semivariogram indicates the sample of the original data 

(original data) [5, 6]. 

Two experimental functions, namely, the models 

of Matheron [7] and the Cressie and Hawkins model [8], 

were used in the estimation of semivariograms. The fitting 

of semivariograms is calculated using spherical and 

exponential functions. However, weighted least squares 

(WLS) and ordinary least squares (OLS) are used as a 

model approach. Semivariograms are estimated and 

predicted in kriging execution using the open sources R 

package [9]. 

 

Semivariogram 

The locus of drill holes points in the region is 

signified by �. Grade quantity at point si, which is 

randomly obtained, is denoted by Z(si), i=1, 2, …, n. 

Suppose that Z(si) is omnidirectional and stationary [6], �[Zሺ�௜ሻ] = � and ܽݒ�[Zሺ�௜ሻ] = �ଶ for all i = 1, 2, ..., n. 

Consider the value of minerals in any two locations, 

namely, Z(si) and Z(sj). The expectation is the squared 

difference  �[Zሺ�௜ሻ − Z(�௝)]ଶ = ʹ�ሺ|�௜ − �௝|ሻ. The 

function�ሺ|�௜ − �௝|ሻ, which is known as a semivariogram, 

is identical with ଵଶE[Zሺ�୧ሻ − Z(�୨)]ଶ = ͳʹ varሺZሺ�୧ሻ − Zሺ�୨ሻሻ = γሺ|�୧ − �୨|ሻ 
The expected value of Z (si) is zero. Thus, �[Zሺ�௜ሻ − Z(�௝)] is also equal to zero, and the estimated 

semivariogram ultimately depends on � [Zሺ�௜ሻ − Z(�௝)ଶ]. 
Matheron [7] presents the equation known as the classical 

model, which is shown below: 

 �̂ሺ�ሻ = ଵଶ|�ሺ�ሻ|∑ [ܼሺ�௜ሻ − ܼ(�௝)]ଶ�ሺ�ሻ                              (1) 

 

The semivariogram function by Cressie and 

Hawkins [8], which is known as the robust semivariogram 

function, is 

 γ̅ሺ�ሻ = ቌ ଵଶ|Nሺ�ሻ|∑ [Zሺ�୧ሻ − Z(�୨)]భమNሺ�ሻ
୧=ଵ ቍସ ቀͲ.Ͷͷ͹ + ଴.ସ9ସ|Nሺ�ሻ|ቁ⁄ .        (2) 

 

Fitting semivariogram 

The two mathematical equations that are 

represented as semivariogram lines in the current study are 

the spherical and exponential models. The spherical model 

can be given as [6, 10] 

 

  (3) 

 

The mathematical expression for the exponential 

function is as follows: 

 

             (4) 

 

Two rules are used to build three semivariogram 

parameters, i.e., nugget, sill, and range. Let �̂(�௝) be an 

estimate semivariogram in distance hj, �(�௝; θ) be the 

value of the semivariogram line that is equal with the 

distance, and parameter  be the value to be estimated. 

Cressie [6] provides the minimum of OLS method in 

generating parameter. 

 θ = minimum∑ [�̂(�௝) − �ሺ�௝; θሻ]ଶ.�௝=ଵ                       (5) 

 

The second approach is WLS method where N 

(hj) is the number of pair points in distance hj. This rule 

was chosen because the weight values for all couples of 

grade points at distance hj, which is as defined as 

 θ = minimum ∑ ( �̂(��)�(��;θ) − ͳ)ଶ�௝=ଵ �(�௝).                     (6) 

 

Ordinary kriging 

Various kriging methods were developed, but 

ordinary kriging was used in the current study. Kriging is a 

method of extrapolating data, which is believed to provide 

the best linear unbiased estimator and generate good 

minimum variance estimators. However, kringing only 

applies when environmental studies [11–13], particularly 

the ore or gold grade precipitates in veins, were chosen 

correctly [14, 15]. Let Z(si)∈ � (i=1, …, n) be n gold 

grade numbers of a value that exist in several locations of 

si (values si � in dimension 2). Points have properties as 

a regionalized variable. Thus, these points can be used as a 

basis to predict the Z(s0) value situated in an un-sampled 

point s0 (s0 �). If the predicted value is depicted as the 

objective function, Ẑሺ�଴ሻ [7]; this function can be written 

as 

 Ẑሺ�଴ሻ = ∑ ௜�௜=ଵݓ Zሺ�௜ሻ.                                                     (7) 

 

Variance as the minimum condition is  

 �ଶሺ�଴ሻ = �[Zሺ�଴ሻ − Ẑሺ�଴ሻ]ଶ.                                          (8) 

 

Eight parameters are used as the basic 

components of a prediction model, i.e., four models 

employ a classical approach, and the other four models use 

a robust approach. Models 1 and 2 are based on classical 

experiments where the theoretical semivariogram is a 

spherical function. These models employ both the WLS 

and OLS approaches. Models 3 and 4 are based on 

classical experiments modeled by exponential function 
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theory. These models follow the WLS and OLS 

approaches. Models 5, 6, 7, and 8 are all based on robust 

experimental semivariograms. Models 5 and 6 are based 

on spherical function theory, whereas Models 7 and 8 are 

based on the theoretical function of exponential 

semivariograms. These models employ both the WLS and 

OLS approaches. 

 

RESULTS AND DISCUSSIONS 

The experimental semivariogram values 

generated using Equations (1) and (2) are presented in 

Table-1. At least 69 pair points are valid for the first lag 

with a distance of 17.306. Classical semivariograms 

produce an initial semivariogram value greater than that of 

robust semivariograms. 

 

Table-1. Classical and robust semivariogram estimation at h distance. 
 

Distance, h np �̂ሺhሻ �̅ሺhሻ 
17.298 68 4.617 2.529 

51.894 289 7.340 7.085 

86.490 385 8.806 8.203 

121.086 417 10.460 10.012 

155.683 451 10.741 10.227 

190.279 491 11.737 10.970 

224.876 437 11.733 10.722 

259.472 417 11.990 12.233 

294.068 358 11.720 12.264 

328.664 375 10.724 9.654 

363.260 347 11.132 10.037 

397.857 343 12.389 12.581 

432.453 318 10.921 11.147 

 

The equation model for continuous line of the 

semivariogram function is based on Equations (3)–(6) for 

each model, as shown in the second column of Table-2. 

The minimum number of pair points is 68, which meets 

the recommended number suggested by Journel and 

Huijbregts [5]. The theoretical semivariogram equation in 

the second column indicates the effect of nuggets from 

classical models, which are generally greater than the 

fitting produced by the semivariogram robust equation. 

The level of precision error in the WLS base is always 

smaller than that of the OLS base. The error prediction 

(RMSE and MAD) was obtained based on the parameters 

in Table-2, as shown in Table-3. 
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Table-2. Semivariogram fitting and RMSE for each model. 
 

Model Semivariogram function RMSE 

 

Model-1 {  
  Ͷ.Ͷͳʹ ;  � = ͲͶ.Ͷͳʹ + ͹.ͳͶͳ [ͳ.ͷ ቆ |�|ͳͺͻ.ͲͷͲቇ − Ͳ.ͷ ቆ |�|ͳͺͻ.ͲͷͲቇଷ] ;   Ͳ < |�| ≤ ͳͺͻ.ͲͷͲͳͳ.ͷͷ͵; |�| > ͳͺͻ.ͲͷͲ  

 

0.241 

 

Model-2 {  
  ͵.ͻͶͳ ;  � = Ͳ͵.ͻͶͳ + ͹.ͷ͸͹ [ͳ.ͷ ቆ |�|ͳͺʹ.ʹ͸ͻቇ − Ͳ.ͷ ቆ |�|ͳͺʹ.ʹ͸ͻቇଷ] ;  Ͳ < |�| ≤ ͳͺʹ.ʹ͸ͻͳͳ.ͷͲͺ; |�| > ͳͺʹ.ʹ͸ͻ  

 

 

0.215 

 

Model-3 {  
  ʹ.͵͸ͷ; |�| = Ͳʹ.͵͸ͷ + ͻ.͵͵ʹ [ͳ − exp ቆ− |�|͸͵.ʹͳͶቇ] ;  Ͳ < |�| ≤ ͳͺͻ.͵͹ʹͳͳ.͸ͻ͹; |�| > ͳͺͻ.͵͹ʹ  

 

0.216 

 

Model-4 {  
  ʹ.ʹ͹Ͷ; |�| = Ͳʹ.ʹ͹Ͷ + ͻ.͵Ͷͳ [ͳ − exp ቆ− |�|͸ͳ.ʹͲͲቇ] ; Ͳ ≤ |�| ≤ ͳͺ͵.͵ͶͲ ͳͳ.͸ͳ͸; |�| > ͳͺ͵.͵ͶͲ  

 

0.207 

 

Model-5 {  
  ͳ.ͶͲͺ ;  � = Ͳͳ.ͶͲͺ + ͻ.͸ͻͶ [ͳ.ͷ ቆ |�|ͳͶͻ.ͷͶ͵ቇ − Ͳ.ͷ ቆ |�|ͳͶͻ.ͷͶ͵ቇଷ] ;   Ͳ < |�| ≤ ͳͶͻ.ͷͶ͵ͳͳ.ͳͲʹ; |�| > ͳͶͻ.ͷͶ͵  

 

0.830 

 

Model-6 {  
  ͳ.ͷ͹Ͷ ;  � = Ͳͳ.ͷ͹Ͷ + ͻ.ͷͳͺ [ͳ.ͷ ቆ |�|ͳ͸ͳ.ͷͶ͸ቇ − Ͳ.ͷ ቆ |�|ͳ͸ͳ.ͷͶ͸ቇଷ] ;  Ͳ < |�| ≤ ͳ͸ͳ.ͷͶ͸ͳͳ.Ͳͻʹ; |�| > ͳ͸ͳ.ͷͶ͸  

 

0.865 

 

Model-7 
{Ͳ.ͲͲͲ + ͳͳ.͵ͻͳ [ͳ − exp ቆ− |�|͸Ͳ.ͲͶ͹ቇ] ;  Ͳ ≤ |�| ≤ ͳ͹ͻ.ͺͺͷͳͳ.͵ͻͳ; |�| > ͳ͹ͻ.ͺͺͷ  

 

0.702 

 

Model-8 
{Ͳ.ͲͲͲ + ͳͳ.͵Ͳʹ [ͳ − exp ቆ− |�|ͷͻ.Ͷʹͻቇ] ; Ͳ ≤ |�| ≤ ͳ͹ͺ.Ͳ͵͵ ͳͳ.͵Ͳʹ; |�| > ͳ͹ͺ.Ͳ͵͵  

 

0.683 
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Table-3. RMSE and MAD based on cross validation (C.Val) and 10%, 20%, 30%, 40%, and 50% 

losing data prediction. 
 

Method Model Error C.Val 10% 20% 30% 40% 50% Rank 

Classical Model-1 RMSE 2.142 1.279 2.365 1.936 1.940 2.275 1 

  MAD 1.205 1.308 1.297 1.930 1.772 1.855  

 Model-2 RMSE 2.121 1.286 2.385 1.945 1.947 2.281 3 

  MAD 1.223 1.385 1.302 1.930 1.749 1.991  

 Model-3 RMSE 2.108 1.183 2.287 1.922 1.887 2.272 2 

  MAD 1.198 1.124 1.186 1.966 1.971 2.124  

 Model-4 RMSE 2.102 1.171 2.262 1.903 1.868 2.249 1 

  MAD 1.200 1.120 1.170 1.957 1.873 2.116  

Robust Model-5 RMSE 2.131 1.323 2.408 2.011 2.040 2.424 3 

  MAD 1.204 1.397 1.397 2.625 2.341 2.306  

 Model-6 RMSE 2.123 1.340 2.513 2.070 2.073 2.453 2 

  MAD 1.199 1.434 1.378 2.638 2.163 2.309  

 Model-7 RMSE 2.106 1.258 2.426 2.069 2.062 2.459 1 

  MAD 1.228 1.409 1.308 2.203 2.891 2.499  

 Model-8 RMSE 2.106 1.253 2.415 2.061 2.053 2.448 1 

  MAD 1.227 1.409 1.299 2.195 2.867 2.491  

 

One of the important values generated by OK is 

the mean kriging prediction. Column 4 of Table-3 

indicates the error (RMSE and MAD) of the mean kriging 

prediction based on cross validation. Columns 5 to 9 show 

the error of both RMSE and MAD of the losing data 

prediction. The removed data were used to predict the 

remaining data in the current study. Column 10 is the 

decision rank, which is calculated based on multi-criteria 

decision making rules of TOPSIS. Information can be 

obtained where the principle classical Models 1 and 4 

occupy the first position. The first order of the robust 

models is generated by predicting Models 7 and 8. 

 

CONCLUSIONS 

The following conclusions can be obtained based 

on the results of the current study. 

 

 The smallest RMSE value of classical fitting 

semivariogram groups was observed through OLS 

based on the exponential function, which is depicted 

as Model 4, namely, 0207. The robust models apply to 

Model 8, namely, 0683. 

 Model 4 also occupies the first rank based on TOPSIS 

model for jackknifing cross validation and kriging 

predictions using data reduction. This model 

prediction is based on classical parameters (in 

addition to Model 1). The robust parameter base 

applies to Model 8 (in addition to Model 7). 

 A relationship exists between the precision in fitting 

semivariogram and the “degree of precision” in the 
“ordinary kriging prediction.” 
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