Graphs and transformations, Mixed Exercise 4

1 a $y=x^{2}(x-2)$
$0=x^{2}(x-2)$
So $x=0$ or $x=2$
The curve crosses the x-axis at $(2,0)$ and touches it at $(0,0)$.

$$
\begin{aligned}
& x \rightarrow \infty, y \rightarrow \infty \\
& x \rightarrow-\infty, y \rightarrow-\infty \\
& y=2 x-x^{2} \\
& \quad=x(2-x)
\end{aligned}
$$

As $a=-1$ is negative, the graph has a \bigcap shape and a maximum point.
$0=x(2-x)$
So $x=0$ or $x=2$
The curve crosses the x-axis at $(0,0)$ and $(2,0)$.

b $\quad x^{2}(x-2)=x(2-x)$
$x^{2}(x-2)-x(2-x)=0$
$x^{2}(x-2)+x(x-2)=0$

$$
x(x-2)(x+1)=0
$$

So $x=0, x=2$ or $x=-1$
Using $y=x(2-x)$:
when $x=0, y=0 \times 2=0$
when $x=2, y=2 \times 0=0$
when $x=0, y=(-1) \times 3=-3$
The points of intersection are $(0,0),(2,0)$ and $(-1,-3)$.

2 a $y=\frac{6}{x}$ is like $y=\frac{1}{x}$.
$y=1+x$ is a straight line.

2 b $\frac{6}{x}=1+x$
$6=x+x^{2}$
$0=x^{2}+x-6$
$0=(x+3)(x-2)$
So $x=2$ or $x=-3$
Using $y=1+x$:
when $x=2, y=1+2=3$
when $x=-3, y=1-3=-2$
So A is $(-3,-2)$ and B is $(2,3)$.
c Substituting the points A and B into
$y=x^{2}+p x+q:$
$A:-2=9-3 p+q$
B: $3=4+2 p+q$
(1) $-(2)$:

$$
\begin{align*}
-5 & =5-5 p \tag{2}\\
p & =2
\end{align*}
$$

Substituting in (1):

$$
\begin{aligned}
-2 & =9-6+q \\
q & =-5
\end{aligned}
$$

d $y=x^{2}+2 x-5$
As $a=1$ is positive, the graph has a V shape and a minimum point.
$y=(x+1)^{2}-6$
So the minimum is at $(-1,-6)$.

3 a $\mathrm{f}(2 x)$ is a stretch with scale factor $\frac{1}{2}$ in the x-direction.

$A^{\prime\left(\frac{3}{2}, 4\right)}, B^{\prime}(0,0)$
The asymptote is $y=2$.
b $\frac{1}{2} \mathrm{f}(x)$ is a stretch with scale factor $\frac{1}{2}$ in the y-direction.

3 b

$A^{\prime}(3,2), B^{\prime}(0,0)$
The asymptote is $y=1$.
c $\mathrm{f}(x)-2$ is a translation by $\binom{0}{-2}$, or two units down.

$A^{\prime}(3,2), B^{\prime}(0,-2)$
The asymptote is $y=0$.
d $\mathrm{f}(x+3)$ is a translation by $\binom{-3}{0}$, or three units to the left.

$A^{\prime}(0,4), B^{\prime}(-3,0)$
The asymptote is $y=2$.
e $\mathrm{f}(x-3)$ is a translation by $\binom{3}{0}$, or three units to the right.

e $A^{\prime}(6,4), B^{\prime}(3,0)$
The asymptote is $y=2$.
f $\mathrm{f}(x)+1$ is a translation by $\binom{0}{1}$, or one unit up.

$A^{\prime}(3,5), B^{\prime}(0,1)$
The asymptote is $y=3$.
4

$$
\begin{aligned}
2 & =5+2 x-x^{2} \\
x^{2}-2 x-3 & =0 \\
(x-3)(x+1) & =0 \\
\text { So } x=-1 \text { or } x & =3
\end{aligned}
$$

5 a $y=x^{2}(x-1)(x-3)$
$0=x^{2}(x-1)(x-3)$
So $x=0, x=1$ or $x=3$
The curve touches the x-axis at $(0,0)$ and crosses it at $(1,0)$ and $(3,0)$.
$x \rightarrow \infty, y \rightarrow \infty$
$x \rightarrow-\infty, y \rightarrow \infty$

b $y=2-x$ is a straight line.
It crosses the x-axis at $(2,0)$ and the y-axis at $(0,2)$.

5 b

c As there are two points of intersection, $x^{2}(x-1)(x-3)=2-x$ has two real solutions.
d $y=\mathrm{f}(x)+2$ is a translation by $\binom{0}{2}$, or
two units up.
So $y=\mathrm{f}(x)+2$ crosses the y-axis at $(0,2)$.
6 a $\mathrm{f}(-x)$ is a reflection in the y-axis.

b $-\mathrm{f}(x)$ is a reflection in the x-axis.

7 a Let $y=a(x-p)(x-q)$
Since $(1,0)$ and $(3,0)$ are on the curve then $p=1$ and $q=3$.
So $y=a(x-1)(x-3)$
Using (2, -1):
$-1=a(1)(-1)$
$a=1$
So $y=(x-1)(x-3)=x^{2}-4 x+3$
b i $\mathrm{f}(x+2)=(x+1)(x-1)$, or a translation by $\binom{-2}{0}$, or two units to the left.

ii $\mathrm{f}(2 x)=(2 x-1)(2 x-3)$, or a stretch with scale factor $\frac{1}{2}$ in the x-direction.

8 a $\mathrm{f}(x)=(x-1)(x-2)(x+1)$
When $x=0, y=(-1) \times(-2) \times 1=2$
So the curve crosses the y-axis at $(0,2)$.
b $y=a \mathrm{f}(x)$ is a stretch with scale factor a in the y-direction.
The y-coordinate has multiplied $\mathrm{b} y-2$, therefore $y=-2 \mathrm{f}(x)$.
$a=-2$

8 c $\mathrm{f}(x)=(x-1)(x-2)(x+1)$
$0=(x-1)(x-2)(x+1)$
So $x=1, x=2$ or $x=-1$
The curve crosses the x-axis at $(1,0),(2,0)$ and $(-1,0)$.
$y=\mathrm{f}(x+b)$ is a translation b units to the left.
For the point $(0,0)$ to lie on the translated curve, either the point $(1,0),(2,0)$ or $(-1,0)$ has translated to the point $(1,0)$.
For the coordinate $(1,0)$ to be translated to $(0,0), b=1$.
For the coordinate $(2,0)$ to be translated to $(0,0), b=2$.
For the coordinate $(-1,0)$ to be translated to $(0,0), b=-1$.
$b=-1, b=1$ or $b=2$

9 a i $y=\mathrm{f}(3 x)$ is a stretch with scale factor $\frac{1}{3}$ in the x-direction. Find $\frac{1}{3}$ of the
x-coordinate.
P is transformed to $\left(\frac{4}{3}, 3\right)$.
ii $\quad \frac{1}{2} y=\mathrm{f}(x)$
$y=2 \mathrm{f}(x)$, which is a stretch with scale factor 2 in the y-direction. P is transformed to $(4,6)$.
iii $y=\mathrm{f}(x-5)$ is a translation by $\binom{5}{0}$, or
five units to the right.
P is transformed to $(9,3)$.
iv $-y=\mathrm{f}(x)$
$y=-\mathrm{f}(x)$, which is a reflection of the curve in the x-axis.
$(4,-3)$
v $2(y+2)=\mathrm{f}(x)$ $y=\frac{1}{2} \mathrm{f}(x)-2$, which is a stretch with scale factor $\frac{1}{2}$ in the y-direction and then a translation by $\binom{0}{-2}$, or two
units down.
P is transformed to $\left(4,-\frac{1}{2}\right)$.

9 b $P(4,3)$ is transformed to $(2,3)$.
Either the x-coordinate has halved, which is a stretch with scale factor $\frac{1}{2}$ in the x-direction, or it has had 2 subtracted from $i t$, which is a translation by $\binom{-2}{0}$, or two units to the left.

So the transformation is $y=\mathrm{f}(2 x)$ or $y=\mathrm{f}(x+2)$.
c i $\quad P(4,3)$ is translated to the point $(8,6)$. The x-coordinate of P has 4 added to it and the y-coordinate has 3 added to it. $y=\mathrm{f}(x-4)+3$
ii $P(4,3)$ is stretched to the point $(8,6)$. The x-coordinate of P has doubled and the y-coordinate has doubled.

$$
y=2 f\left(\frac{1}{2} x\right)
$$

10 a $y=-\frac{a}{x^{2}}$ is a $y=\frac{k}{x^{2}}$ graph with $k<0$. x^{2} is always positive and $k<0$, so the y-values are all negative.
$y=x^{2}(3 x+b)$
$0=x^{2}(3 x+b)$
So $x=0$ or $x=-\frac{b}{3}$
The curve crosses the x-axis at $\left(-\frac{b}{3}, 0\right)$ and touches it at $(0,0)$.
$x \rightarrow \infty, y \rightarrow \infty$
$x \rightarrow-\infty, y \rightarrow-\infty$

$\mathbf{1 0} \mathbf{b}$ From the sketch, there is only one point of intersection of the curves. This means there is only one value of x where

$$
\begin{aligned}
-\frac{a}{x^{2}} & =x^{2}(3 x+b) \\
-a & =x^{4}(3 x+b) \\
x^{4}(3 x+b)+a & =0
\end{aligned}
$$

So this equation has one real solution.
11 a $x^{3}-6 x^{2}+9 x$
$=x\left(x^{2}-6 x+9\right)$
$=x(x-3)^{2}$
b $y=x(x-3)^{2}$
$0=x(x-3)^{2}$
So $x=0$ or $x=3$
The curve crosses the x-axis at $(0,0)$ and touches it at $(3,0)$.

$$
\begin{aligned}
& x \rightarrow \infty, y \rightarrow \infty \\
& x \rightarrow-\infty, y \rightarrow-\infty
\end{aligned}
$$

c $y=(x-k)^{3}-6(x-k)^{2}+9(x-k)$ is a translation of the curve $y=x^{3}-6 x^{2}+9 x$ by $\binom{k}{0}$, or k units to the right.

For the point $(-4,0)$ to lie on the translated curve, either the point $(0,0)$ or $(3,0)$ has translated to the point $(-4,0)$.
For the coordinate $(0,0)$ to be translated to $(-4,0), k=-4$.
For the coordinate $(3,0)$ to be translated to $(-4,0), k=-7$.
$k=-4$ or $k=-7$

12a $y=x(x-2)^{2}$
$0=x(x-2)^{2}$
So $x=0$ or $x=2$
The curve crosses the x-axis at $(0,0)$ and touches it at $(2,0)$.
$x \rightarrow \infty, y \rightarrow \infty$
$x \rightarrow-\infty, y \rightarrow-\infty$

b $y=\mathrm{f}(x+3)$ is a translation by vector $\binom{-3}{0}$
of $y=\mathrm{f}(x)$, or three units to the left.
So the curve crosses the x-axis at $(-3,0)$
and touches it at $(-1,0)$.
When $x=3, \mathrm{f}(x)=3(3-2)^{2}$ $=3$
So $\mathrm{f}(x+3)$ crosses the y-axis at $(0,3)$.

13 a $y=\mathrm{f}(x)-2$ is a translation by $\binom{0}{-2}$, or two units down.

13 a The horizontal asymptote is $y=-2$.
The vertical asymptote is $x=0$.
b From the sketch, the curve crosses the x-axis.
$y=\mathrm{f}(x)-2$
$=\frac{1}{x}-2$
$0=\frac{1}{x}-2$
$x=\frac{1}{2}$
So the curve cuts the x-axis at $\left(\frac{1}{2}, 0\right)$.
c $y=\mathrm{f}(x+3)$ is a translation by $\binom{-3}{0}$, or three units to the left.

d The horizontal asymptote is $y=0$.
The vertical asymptote is $x=-3$.

$$
\begin{aligned}
y & =\mathrm{f}(x+3) \\
& =\frac{1}{x+3}
\end{aligned}
$$

When $x=0, y=\frac{1}{3}$
So the curve cuts the y-axis at $\left(0, \frac{1}{3}\right)$.

Challenge

$R(6,-4)$
$y=\mathrm{f}(x+c)-d$ is a translation by $\binom{-c}{0}$, or c units to the left and a translation by $\binom{0}{-d}$, or d units down.
So R is transformed to $(6-c,-4-d)$.

