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 NOTES ON CONTINUOUS STOCHASTIC PHENOMENA

 BY P. A. P. MORAN, Institute of Stattstics, Oxford University

 The study of stochastic processes has naturally led to the consideration of stochastic pheno-

 mena which are distributed in space of two or more dimensions. Such investigations are, for

 instance, of practical interest in connexion with problems concerning the distribution of soil

 fertility over a field or the relations between the velocities at different points in a turbulent

 fluid. A review of such work with many references has recently been given by Ghosh (1949)

 (see also Matern, 1947). In the present note I consider two problems arising in the two- and

 three-dimensional cases.

 RELATIONS BETWEEN CONTINUOUS AND DISCONTINUOUS PROCESSES

 Stochastic variables defined for points on a plane may be considered as defined at a discrete

 set of points (for example, at all points with integral co-ordinates) or for a continuous domain

 of points. The latter is the natural approach when considering soil fertility, but in the study

 of the efficiency of experimental designs it is more natural to consider the fertility as varying

 discontinuously from plot to plot rather than within each plot. For this reason I begin by

 considering the relationship between continuous and discrete models of such phenomena.

 First consider stationary stochastic processes in one dimension defined by variates x(t),

 where t is 'time' and takes either integral or a continuous range of values. Continuous

 processes whose variate x(t) has a correlation function

 p(t) = exp[-AItI] (1)
 are known (Bartlett, 1947, p. 79) to exist and to have a spectral density given by

 W'(O) = A +2A (2)

 so that P() costOdW(O) = 2Afc2to2sO)d

 From such a continuous process, a discrete process can be derived in two ways. First we

 might consider the values of x(t) only at discrete values of t (= 0, ? 1, ... say). Such a process

 would have the serial correlation

 p8 =exp[-Aj81] (s=0,+1, ...),
 and could be regarded as being generated by a simple Markoff relation of the form

 XS= e-A XS_1 + 71S

 where {,8} is a stationary process which is not necessarily completely random but never-
 theless has all its serial correlations zero.

 In practice it is perhaps more realistic to consider discrete processes derived from con-

 tinuous ones in another way. Suppose we write

 rs+1
 X(s) f x(t) dt, (3)

 Biometrika 37 2
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 18 Notes on continuous stochastic phenomena

 where 8 takes values 0, + 1, ... and the integral is a 'stochastic integral'. A completely
 rigorous discussion of this definition would be neither short nor (in the present connexion)

 very illuminating, and we do not enter into such considerations here. (For a general dis-

 cussion of such questions see L6vy, 1948.) It is clear that p(t) is continuous at t = 0 and con-

 sequently x(t) is 'stochastically continuous' (Bartlett, 1947, p. 77). To discuss the correla-

 tional and spectral properties of X(s) we may therefore argue as follows. We approximate to

 ?8+1

 X(s) = f x(t) dt

 by a sum, and to find var X(s) and cov {X(s), X(s + k)}, we take the expectations of the sums

 and proceed to the limit. In this way we find

 varX(s) = E{X(s)}2 =jda dbexp[-A a-bI]

 -{A-1 +eA}

 Similarly, for k > 1

 E{X(s)X(s-k)} = E{X(s)X(s+k)} = f daf db exp[-A I k+b-a -]

 = A2 e-Ak (eA 1)(1e-A).
 A2

 Thus Pk (k >, 1), the serial correlation of X(s) and X(s + k), is given by

 e Ak (eA e1)(1 )=AeA,8y
 Pk = P-k = 2(~+ ) = A eAk, say. (4)

 Then as A -?0, Pk -* 1 and as A o> o0, Pk -?0 as we expect. Now, using the fact that

 sinhA= (eA-e-A)>A for A>0,

 it can be easily shown that

 (eA1) (I -e-A) >2(A - 1+e)

 and therefore A > 1.

 On the other hand, it is easily verified algebraically that Pi = A e-A < 1. Formula (4) is not
 the sort of correlation function which would be obtained for a process which is the solution

 of a simple stochastic difference equation of Markoff type because A > 1, but we may con-

 struct a simple mechanism which would generate a process having the above correlational

 properties. Write r = e-A. Then the serial correlation generating function of the process

 X(8) iS X X 0
 EPkz- 1 +A rkZk +A rkz-k
 -0 ~ ~1 1

 Arz Arz-1
 = 1 + 1 'z+ 1-rz 1-rz-1

 1+r2 -2Ar2 +(A- 1) rz + (A-i) rz-
 (1 -rz) (1-rz-1)

 w (a1+ Z) (ar+(Z-r)

 (1 -rz) (1 -rz-11)

 where a, , j= {(1 -r)2 + 2Ar(l- r)j* + j{(I + r)2 -2Ar(I + r)j*.
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 P. A. P. MoRA 19

 a and fi can be easily verified algebraically to be real. Then if {6} is a sequence of indepen-
 dent random variables with zero means and the same standard deviation, the process {Y.}

 generated by the relation Yn+i = ryn+4a?gn+n1,

 will have the same correlational properties as {Xn}.
 We now consider what happens when we generalize the above to 'processes' with more

 than one 'time'. As the idea of a continuing 'process' is now less applicable we shall call such
 a model a 'spatial stochastic system'. We consider such a system to be defined if for any set

 of points P1, ..., Pk in such a plane (or higher dimensional space) there is given a set of random

 variables xl, ..., 2 and a corresponding joint distribution function F(xl, . . ., xJ) which satisfies
 the customary consistency conditions that the joint distribution of any set of x's, xl, .. ., xp
 (p <k) is obtained from the joint distribution of x, ..., Xk by integrating out xp+, ... .,Xk.
 This condition corresponds to the Chapman-Kolmogoroff equation in the theory of processes

 with a single 'time'. If the distribution function F(xl, ...- ,Xk) is invariant under any trans-
 lation of the set of points P1, ..., Pk we call the system 'stationary', and if, in addition, it is
 invariant under any rotation we call it 'isotropic'. If we only know that the first- and second-

 order moments of x1, ..., X are invariant under such a translation (or rotation), we say the
 system is stationary (or isotropic) to the second order. In what follows we consider stationary

 processes, but the results obviously hold under the weaker condition also.

 Suppose the variates defined so that each has zero expectation and variance o-1. Con-
 sidering first systems in two dimensions we take two parameters t and u to correspond to the

 'times', and we then have a correlation function

 p(p, q) = correlation {x(t, u), x(t +p, u + q)}.

 It follows that p(p, q) = p(- p, -q),

 but it is not necessarily true that

 p(p,q)=p(p,-q) or p(-p,q).

 The latter relations would be true if the system were isotropic, but they are not a sufficient

 condition for isotropy.

 The natural generalization of processes with a correlational function (1) would be a system
 whose correlational function is

 p( p, q) = exp [A(p2 +q2)'].

 As will be seen later it is easy to show that such systems exist. Now suppose we derive
 from a continuous system having (5) as correlation function, a two-dimensional discrete

 system defined by a system of variables Xi,., where 1, m take integral values, and XIm is
 defined by 11 rm+1

 Xi,m = J x(t, u) dtdu.

 Following our previous argument we might expect that we should have a correlation
 function which generalizes (5), i.e. of the form (5) multiplied by a constant. That this is not

 true can be seen as follows. If the result were true, the covariance of Xim and Xi+p,m+q
 would be of the form

 where K is some constant and ,u is not necessarily equal to A. It would then follow that

 T = exp [ l(p' + q2)1] COV (XI, ,M Xi+p,m+q)
 2-2
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 20 Notes on continuous stochastic phenomena

 would be independent of p and q. Taking in particular the case q = 0, this is equal to

 T== dt1j dulf dt2f du2exp {,p - A[(p+ t2- tl)2 +(u2 -U)2]j

 Then a= dtif dulf dt2f du2exp {,tp - A[(p +t2 - tl)2 +(u2 - u1)2]i}

 X 'A(P +t2 -tl)
 \# (p + t2 -t1)2 + (U2 - 1)2}11

 If ,u > A the second factor is greater than zero over the whole range of integration with the

 possible exception of the points where u2 = u,, and so the whole integral is non-zero, which
 contradicts the hypothesis. On the other hand, if , < A we can choose p so large that over the

 whole range of integration the second factor is negative, again contradicting the hypothesis.
 Thus this generalization of the previous argument breaks down.

 It follows that in cases where it is necessary to derive a discrete system from a continuous

 one, in the above manner, it would be more convenient, if perhaps occasionally less realistic,
 to consider systems with a correlation function

 p(p,q) = exp[-Ap I p |- I q] (6)
 It is easy to see that in this case the discrete process XI,,, has a correlation function

 Pki= A,A2exp[-AIlkI-,tI I],

 where Al = 2{A-1 + e-A)

 and A = (eI-1) (l1e-I)
 2 2{,t -l1+ e"'}

 when neither k nor 1 is equal to zero. When one is equal to zero the formula is modified.
 Cases where correlation functions of this kind can plausibly arise are those in which we

 might attempt to study the relative efficiencies of various experimental designs assuming
 that soil fertility is a random variable with a spatial correlation of the form (6).
 The existence of spatial stochastic systems with prescribed correlation functions follows

 from the two- (or more) dimensional analogue of Khintchine's theorem. This asserts that
 a necessary and sufficient condition for the existence of a spatial stochastic system with
 a correlation function p(p, q) is that there exist a function W(x, y), non-decreasing in x and y,
 such that co co

 p(p q) = c o eiP+xfly) dW(x, y)

 and f f dW(x,y)=1.

 The sufficiency of this condition is easily proved by a simple generalization of Khintchine 's
 method (1934) of constructing a stochastic process whose correlation function is the desired
 one, whilst the necessity follows from a theorem of H. Cram6r (1939) (see also Levy, 1948).
 W(x, y) can then be found in terms of p(p, q) by a Fourier inversion formula and in particular

 if the system is isotropic, Wxy(x, y), if it exists, will be a function of (X2 + y2) only.
 We can thus prove that exp [ - A(p2 + q2)1] is a possible correlation function (as proved in

 Mat6rn, 1947, p. 27). It is clearly sufficient to take A = 1. We then verify that W(x, y) can
 be taken as 1 {*x (v dudr

 2 -Jc -cJo (1 + u2+r)f
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 P. A. P. MORAN '21

 Consider co cof ei(Px+qY)dxdy
 2T-J coJ _ c (1 + X2 + y2)1

 Write x=tcoscz, y=tsina, p=acosf6, q=asinfl.

 The above is then equal to

 2 ita CON t,ac(a-fl

 + dtfd4 1 +el ) 27rJ0 Jo d (1 + tt2)

 1co 2 rn t eita coo a
 e2JdtJ dal2 -

 Now Jo(ta) =21 I eada
 (Whittaker and Watson, 1935, p. 364), and so the above integral is equal to

 To tJo(ta) dt.

 Now it is known that UXJo(ta) dt _aK(a)
 Jo(1 + t2) - 2tr(A)

 This formula can be obtained by putting v = 0, = i in formula (7.11.6) of Titchmarsh
 (1937, p. 201). But ff i

 Kt(z) = z

 and so the above integral equals e-a = exp [ (p2 + q2)1]. The above method of argument can

 be easily generalized to three dimensions and exp [- A(p2 + q2 + r2)i] can be shown to be
 a possible correlation function. This type of function gives a satisfactory representation of
 the correlation between velocities in certain cases of turbulence, and it may here be pointed

 out that the spectral theory of turbulence has recently been developed in a very elegant form

 by Batchelor (1949).
 By using an inversion formula we also see that in two or more dimensions, if the system is

 isotropic, W(x, y, ... ) will be a function of X2 + y2 + ... only, and by integrating first over all
 directions, we see that for isotropic processes the correlation function will always be repre-

 sentable as a Fourier-Bessel-Stieltjes integral of the type Jn(ut) tdF(t).

 TEST OF THE EXISTENCE OF TWO DIMENSIONAL STOCHASTIC SCHEMES

 Another problem arises in practice when we are given a set of variates XIj (i, j taking in-
 tegral values), and we wish to decide whether there is any evidence that these variates are

 spatially correlated. Such a case cati arise, for example, in uniformity trials in agricultural
 research. This is the two-dimensional analogue of the problem of testing the significance of
 serial correlation coefficients on which a great deal has been written (for references see
 Moran, 1948a). We give here a simple test for correlation between nearest neighbours which
 generalizes a method of a previous paper (Moran, 1948a).

 We suppose that we have mn independent variates xii (i = 1, .. ., m; j = 1, ...,n), and we
 define what seems to be a natural definition of a correlation coefficient between x's which are
 nearest neighbours. Write mn = zxi1 and Z=

 mn i. ad1, i
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 22 Note8 on continUOus stochastic phenomena

 m n-i nm-1 n

 and ( ) ? ? ~~~~~~~~~zii zi, J+1 + ? ? zii Zi+i, Jf
 and =(mn2,-) i =i i= ZJ= Zj

 11 2mn - m -n ?z2
 i,j

 mn L = 2mn-m-n)

 The initial factor is conventionally introduced because there are mn terms in the denom-

 inator and 2mn - m - n in the numerator. In large samples r1l could therefore be considered
 an appropriate estimator of a presumed correlation coefficient between nearest neighbours.

 As we are here only concerned with a test for randomness it is sufficient to consider a test

 using I alone. If the xii are independently distributed in the same distribution, the z4 are
 all on an equal footing, and if their distribution had a finite second moment, the correlation

 between any two z's would be (mn - 1)-1. Without assuming, however, that any moments

 exist, we have m n-i m-1 n

 E E zZii Zi,,?+1 + E Zt Zi+i.J
 E(l) =E lils1slj

 =(2mn-m-n)E( zjZ2i}

 =2mn-m-n)E ((2zi)

 mn(mn - l) z2

 2mn-m-n

 mn(mn-- )

 because Zi = 0. (The ? symbol without suffixes is used above to indicate summation over
 all values of i andj.)

 To evaluate the second moment of I we have to assume further that all the xii are dis-
 tributed normally. There is then no real restriction in taking the variance of xij to be unity.
 The denominator of I is then distributed as x2 with mn-I degrees of freedom, and since
 I is the ratio of a quadratic form in the zi to a quantity SZZ distributed as x2 it follows that
 I is itself distributed independently of Z2. We then have for any positive integer p

 E(IP) = E(numerator of I)P

 But from the properties of the X2 distribution we have

 E(EzZ2)2 = (mn ) (mn+1).
 We now have to find the expectation of

 m n-I m-1 n 2

 i, Zzo,1iji,J+l+ +il ?z1 zii+l,J

 On multiplying this out we find terms of three different kinds.
 (1) Terms of the form z2z22. The number of such terms is clearly equal to the number of

 joins of nearest neighbours on the lattice, i.e. to (2mn - m - n). Moreover, by considering
 the characteristic function of the joint distribution of the z's we see that

 E(z2 z12) - (1 + 2p2) a4,

 where p is the correlation coefficient (mn - 1)-1 between any two z's and

 0J2 = var (z) = (mn-1 )/mn.
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 P. A. P. MORAN 23

 The contribution of terms of this kind to the expectation of the numerator is therefore

 (2mn-m-n) (1 + 2(mn- 1)-2) C4

 (2mn-rm-n) (m2n2- 2mn + 3) c

 (mnn- 1)2

 (2) The second type of term is of the form z11z212z13, and it is easy to see (Moran, 1947,
 p. 323) that the number of such terms occurring in the square of the numerator is

 2{m(n-2) + n(m-2) + 4(m-1) (n-l1)} = 4{3mn-3m-3rn + 2}.

 Moreover, the expectation of such a term is (p + 2p2) 0c4, and so the total contribution is

 4(3mn- 3m- 3n+ 2) (mn-3)

 (mn- 1)2

 (3) The third type of term is of the form typified by ZLLz12z33z34 and corresponds to two
 joins on the lattice without common points. The number of such terms in the expansion of

 the numerator is (Moran, 1947, p.. 323)

 4m2n2 - 4m2n- 4mn2 + m2 Jr n2 - 12mn + 13m + 13n- 8,

 and the expectation is 3p2o 4 so that the total contribution is

 3 {4m2n2 - 4m2n- 4mn2 + m2 + n2 - 12mn + 13m + 13n- 8} 4.

 Adding the above contributions and dividing by (mn-1) (mn + 1), we find

 2m3n3 - m3n2 - m2n3 - 4m2n2 + 2m2n + 2mn2 - 2mn + 3m2 + 3n2
 E I2 = ___

 m2n2(mn -1) (mn + 1)

 and var I is best found from the formula

 var (I) = E(12) - [E(I)]2.

 Higher moments of the distribution of I could be calculated in the same way using the
 frequencies of various combinations of joins given in Moran (1948 b), but this would be very

 arduous. If, however, the mean of the distribution of the x's is known exactly, and rl1 and I
 defined using deviations from this mean, the formulae are considerably simpler. In both

 cases it is easy to show that the distribution of I tends to normality as m and n increase.

 It should also be noticed that a test, based on rearrangements, for randomness in an array
 of this kind has been given by M. N. Ghosh (1948).
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