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Preface to the Second Edition

One of the hallmarks of science is the continual quest to refine and expand one’s
understanding and vision of the universe, seeking not only new answers to old
questions, but also proactively searching out new avenues of inquiry based on
past experience. In much the same way, teachers of science (including textbook
authors) can and should explore the pedagogy of their disciplines in a scientific
way, maintaining and streamlining what has been documented to work, but also
improving, updating, and expanding their educational materials in response to
new knowledge in their fields, in basic, applied, and educational research. For that
reason, I am very pleased to have been given the opportunity to produce a Second
Edition of this textbook on quantum mechanics at the advanced undergraduate
level.

The First Edition of Quantum Mechanics had a number of novel features,
so it may be useful to first review some aspects of that work, in the context
of this Second Edition. The descriptive subtitle of the text, Classical Results,
Modern Systems, and Visualized Examples, was, and still is, intended to suggest a
number of the inter-related approaches to the teaching and learning of quantum
mechanics which have been adopted here.

® Many of the expected familiar topics and examples (the Classical Results)
found in standard quantum texts are indeed present in both editions, but we
also continue to focus extensively on the classical-quantum connection as one
of the best ways to help students learn the subject. Topics such as momentum-
space probability distributions, time-dependent wave packet solutions, and the
correspondence principle limit of large quantum numbers can all help students
use their existing intuition to make contact with new quantum ideas; classical
wave physics continues to be emphasized as well, with its own separate chapter,
for the same reason. Additional examples of quantum wave packet solutions
have been included in this new Edition, as well as a self-contained discussion
of the Wigner quasi-probability (phase-space) distribution, designed to help
make contact with related ideas in statistical mechanics, classical mechanics,
and even quantum optics.

® An even larger number of examples of the application of quantum mech-
anics to Modern Systems is provided, including discussions of experimental
realizations of quantum phenomena which have only appeared since the First
Edition. Advances in such areas as materials science and laser trapping/cooling



vi  PREFACE TO THE SECOND EDITION

have meant a large number of quantum systems which have historically been
only considered as “textbook” examples have become physically realizable. For
example, the “quantum bouncer”, once discussed only in pedagogical journ-
als, has been explored experimentally in the Quantum states of neutrons in
the Earth’s gravitational field." The production of atomic wave packets which
exhibit the classical periodicity of Keplerian orbits” is another example of a
Classical Result which has become a Modern System.

The ability to manipulate nature at the extremes of small distance (nano-
and even atomic-level) and low temperatures (as with Bose—FEinstein con-
densates) implies that a knowledge of quantum mechanics is increasingly
important in modern physical science, and a number of new discussions of
applications have been added to both the text and to the Problems, including
ones on such topics as expanding/interfering Bose—Einstein condensates, the
quantum Hall effect, and quantum wave packet revivals, all in the context of
familiar textbook level examples.

® We continue to emphasize the use of Visualized Examples (with 200 figures
included) to reinforce students’ conceptual understanding of the basic ideas
and to enhance their mathematical facility in solving problems. This includes
not only pictorial representations of stationary state wavefunctions and time-
dependent wave packets, but also real data. The graphical representation of
such information often provides the map of the meeting ground of the some-
times arcane formalism of a theorist, the observations of an experimentalist,
and the rest of the scientific community; the ability to “follow such maps” is
an important part of a physics education.

Motivated in this Edition (even more than before) by results appearing from
Physics Education Research (PER), we still stress concepts which PER stud-
ies have indicated can pose difficulties for many students, such as notions of
probability, reading potential energy diagrams, and the time-development of
eigenstates and wave packets.

As with any textbook revision, the opportunity to streamline the presentation
and pedagogy, based on feedback from actual classroom use, is one of the most
important aspects of a new Edition, and I have taken this opportunity to remove
some topics (moving them, however, to an accompanying Web site) and adding
new ones. New sections on The Wigner Quasi-Probability Distribution (and many
related problems), an Infinite Array of 8-functions: Periodic Potentials and the
Dirac Comb, Time-Dependent Perturbation Theory, and Timescales in Bound State

! The title of a paper by V. V. Nesvizhevsky et al. (2002). Nature 415, 297.
2 See Yeazell et al. (1989).
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Systems: Classical Period and Quantum Revival Times reflect suggestions from
various sources on (hopefully) useful new additions. A number of new in-text
Examples and end-of-chapter Problems have been added for similar reasons, as
well as an expanded set of Appendices, on dimensions and mathematical methods.

An exciting new feature of the Second Edition is the development of a Web
site” in support of the textbook, for use by both students and instructors, linked
from the Oxford University Press’ web page for this text. Students will find
many additional (extended) homework problems in the form of Worksheets on
both formal and applied topics, such as “slow light”, femtosecond chemistry, and
quantum wave packet revivals. Additional material in the form of Supplementary
Chapters on such topics as neutrino oscillations, quantum Monte Carlo approx-
imation methods, supersymmetry in quantum mechanics, periodic orbit theory
of quantum billiards, and quantum chaos are available.

For instructors, copies of a complete Solutions Manual for the textbook, as
well as Worksheet Solutions, will be provided on a more secure portion of the site,
in addition to copies of the Transparencies for the figures in the text. An 85-page
Guide to the Pedagogical Literature on Quantum Mechanics is also available there,
surveying articles from The American Journal of Physics, The European Journal
of Physics, and The Journal of Chemical Education from their earliest issues,
through the publication date of this text (with periodic updates planned.) In
addition, a quantum mechanics assessment test (the so-called Quantum Mech-
anics Visualization Instrument or QMVI) is available at the Instructors site, along
with detailed information on its development and sample results from earlier
educational studies. Given my long-term interest in the science, as well as the
pedagogy, of quantum mechanics, I trust that this site will continually grow in
both size and coverage as new and updated materials are added. Information on
accessing the Instructors area of the Web site is available through the publisher
at the Oxford University Press Web site describing this text.

I am very grateful to all those from whom I have had help in learning quantum
mechanics over the years, including faculty and fellow students in my under-
graduate, graduate, and postdoctoral days, current faculty colleagues (here at
Penn State and elsewhere), my own undergraduate students over the years, and
numerous authors of textbooks and both research and pedagogical articles, many
of whom I have never met, but to whom I owe much. I would like to thank all
those who helped very directly in the production of the Second Edition of this
text, specifically including those who provided useful suggestions for improve-
ment or who found corrections, namely, J. Banavar, A. Bernacchi, B. Chasan,

* See robinett.phys.psu.edu/qm
* See www.oup.co.uk
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J. Edmonds, M. Cole, C. Patton, and J. Yeazell. I have truly enjoyed recent col-
laborations with both M. Belloni and M. A. Doncheski on pedagogical issues
related to quantum theory, and some of our recent work has found its way into
the Second Edition (including the cover) and I thank them for their insights, and
patience.

No work done in a professional context can be separated from one’s personal
life (nor should it be) and so I want to thank my family for all of their help
and understanding over my entire career, including during the production of
this new Edition. The First Edition of this text was thoroughly proof-read by my
mother-in-law (Nancy Malone) who graciously tried to teach me the proper use
of the English language; her recent passing has saddened us all. My own mother
(Betty Robinett) has been, and continues to be, the single most important role
model in my life—both personal and professional—and I am deeply indebted
to her far more than I can ever convey. Finally, to my wife (Sarah) and children
(James and Katherine), I give thanks everyday for the richness and joy they bring
to my life.

Richard Robinett
December, 2005
State College, PA
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ONE

A First Look at Quantum
Physics

1.1 How This Book Approaches Quantum
Mechanics

It can easily be argued that a fully mature and complete knowledge of quantum
mechanics should include historical, axiomatic, formal mathematical, and even
philosophical background to the subject. However, for a student approaching
quantum theory for the first time in a serious way, it can be the case that an
approach utilizing his or her existing knowledge of, and intuition for, classical
physics (including mechanics, wave physics, and electricity and magnetism) as
well as emphasizing connections to experimental results can be the most pro-
ductive. That, at least, is the point of view adopted in this text and can be
illustrated by a focus on the following general topics:

(1) Theincorporation of a wave property description of matter into a consistent
wave equation, via the Schrodinger equation;

(2) The statistical interpretation of the Schrodinger wavefunction in terms of
a probability density (in both position- and momentum-space);

(3) The study of single-particle solutions of the Schrodinger equation, for both
time-independent energy eigenstates as well as time-dependent systems, for
many model systems, in a variety of spatial dimensions, and finally;

(4) The influence of both quantum mechanical effects and the constraints
arising from the indistinguishability of particles (and how that depends
on their spin) on the properties of multiparticle systems, and the resulting
implications for the structure of different forms of matter.

By way of example of our approach, we first note that Fig. 1.1 illustrates
an example of a precision measurement of the wave properties of ultracold
neutrons, exhibiting a Fresnel diffraction pattern arising from scattering from
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Figure 1.1. Fresnel diffraction pattern obtained from scattering at a sharp edge, obtained using ultracold
neutrons by Gahler and Zeilinger (1991).

a sharp edge, nicely explained by classical optical analogies. We devote Chapter 2
to a discussion of classical wave physics and Chapter 3 to the description of
such wave effects for material particles, via the Schrodinger equation. Figure 1.2
demonstrates an interference pattern using electron beams, built up “electron by
electron,” with the obvious fringes resulting only from a large number of indi-
vidual measurements. The important statistical aspect of quantum mechanics,
simply illustrated by this experiment, is discussed in Chapter 4 and beyond.

It can be argued that much of the early success of quantum theory can be traced
to the fact that many exactly soluble quantum models are surprisingly coincid-
ent with naturally occurring physical systems, such as the hydrogen atom and
the rotational/vibrational states of molecules and such systems are, of course,
discussed here. The standing wave patterns obtained from scanning tunnel-
ing microscopy of “electron waves” in a circular corral geometry constructed
from arrays of iron atoms on a copper surface, seen in Fig. 1.3, reminds us of
the continuing progress in such areas as materials science and atom trapping
in developing artificial systems (and devices) for which quantum mechanics
is applicable. In that context, many exemplary quantum mechanical models,
which have historically been considered as only textbook idealizations, have also
recently found experimental realizations. Examples include “designer” potential
wells approximating square and parabolic shapes made using molecular beam
techniques, as well as magnetic or optical traps. The solution of the Schrodinger
equation, in a wide variety of standard (and not-so-standard) one-, two-, and
three-dimensional applications, is therefore emphasized here, in Chapters 5, 8,9,
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Figure 1.2. Interference patterns obtained by using an electron microscope showing the fringes being
“built up” from an increasingly large number of measurements of individual events. From Merli, Missiroli,
and Pozzi (1976). (Photo reproduced by permission of the American Institute of Physics.)

and 15-17. In parallel to these examples, more formal aspects of quantum theory
are outlined in Chapters 7, 10, 12, 13, and 14.

The quantum in quantum mechanics is often associated with the discrete
energy levels observed in bound-state systems, most famously for atomic systems
such as the hydrogen atom, which we discuss in Chapter 17, emphasizing that this
is the quantum version of the classical Kepler problem. We also show, in Fig. 1.4,
experimental measurements leading to a map of the momentum-space probab-
ility density for the 1S state of hydrogen and the emphasis on momentum-space
methods suggested by this result is stressed throughout the text. The influence of
additional “real-life” effects, such as gravity and electromagnetism, on atomic and
other systems are then discussed in Chapter 18. We note that the data in Fig. 1.4



6 CHAPTER 1 A FIRST LOOK AT QUANTUM PHYSICS

Figure 1.3. Standing wave patterns obtained using scanning tunneling microscopy from a circular “corral”
of radius ~70 A, constructed from 48 iron atoms on a copper surface. (Photo courtesy of IBM Almaden.)

1.0 ko H(1s)
x 1200 eV

5 08F
% 0 O 800eV
§ A 400 eV
5 0.6 - q (1+q2)—4
(@] g
©
z
S 04F
ko)
=

021

| hH ¢X
0 0.2 0.4 0.5 0.8 1.0 1.2 1.4

Momentum g (a.u.)

Figure 1.4. Electron probability density obtained by scattering with three different energy probes, compared
with the theoretically calculated momentum-space probability density for the hydrogen-atom ground state,
from Lohmann and Weigold (1981). The data are plotted again the scaled momentum in atomic units (a.u.),

q = aop/h.

was obtained via scattering processes, and the importance of scattering methods
in quantum mechanics is emphasized in both one-dimension (Chapter 11) and
three-dimensions (Chapter 19). The fact that spin-1/2 particles must satisfy the
Pauli principle has profound implications for the way that matter can arrange
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Figure 1.5. Plots of the ionization energy (solid) and atomic polarizability (dashed) versus nuclear charge,
showing the shell structure characterized by the noble gas atoms, arising from the filling of atomic energy
levels as mandated by the Pauli principle for spin-1/2 electrons.

itself, as shown in the highly correlated values of physical parameters shown in
Fig. 1.5 for atoms of increasing size and complexity. While it is illustrated here in
a numerical way, this should also be reminiscent of the familiar periodic table of
the elements, and the Pauli principle has similar implications for nuclear struc-
ture. We discuss the role of spin in multiparticle systems described by quantum
mechanics in Chapters 7, 14, and 17.

We remind the reader that similar dramatic manifestations of quantum phe-
nomena (including all of the effects mentioned above) are still being discovered,
as illustrated in Fig. 1.6. In a justly famous experiment, two highly localized
and well-separated samples of sodium atoms are cooled to sufficiently low tem-
peratures so that they are in the ground states of their respective potential wells
(produced by laser trapping.) The trapping potential is removed and the res-
ulting coherent Bose—Einstein condensates are allowed to expand and overlap,
exhibiting the quantum interference shown in Fig. 1.6 (the solid curve, showing

! From the paper entitled Observation of interference between two Bose condensates by Andrews et al.
(1997).
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Figure 1.6. Data (from Andrews et al. (1997)) illustrating the interference of two Bose condensates as
they expand and overlap (solid curve), compared to a single expanding Bose condensate (dotted curve).

regular absorption variations across the central overlap region), while no such
interference is observed for a single expanding quantum sample (dotted data.)
Many of the salient features of this experiment can be understood using relatively
simple ideas outlined in Chapters 3, 4, and 9.

The ability to use the concepts and mathematical techniques of quantum
mechanics to confront the wide array of experimental realizations that have
come to characterize modern physical science will be one of the focuses of this
text. Before proceeding, however, we reserve the remainder of this chapter for
brief reviews of some of the essential aspects of both relativity and standard
results from quantum theory.

1.2 Essential Relativity

While we will consider nonrelativistic quantum mechanics almost exclusively,
it is useful to briefly review some of the rudiments of special relativity and the
fundamental role played by the speed of light, c.

For a free particle of rest mass m moving at speed v, the total energy (E),
momentum (p), and kinetic energy (7T') can be written in the relativistically
correct forms

E = ymc?, p=ymyv, and T=E—mc* = (y — )mc? (1.1)

2\ —1/2
! - (1 _ E—2> (1.2)

where

<
Il
—_
|
<
(38}
~
o
(38
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The nonrelativistic limit corresponds to v/c << 1, in which case we can use
the series expansion

n(n — 1)x3 n nn—1)(n — 2)x3

n_ ..
A+x)"=14nx+ o 3l + (1.3)
for x = v*/c* small to show that
12 1
p~mv and T = 1+—V—+---—1 me? ~ —mv? (1.4)
2 c? 2

which are the familiar nonrelativistic results for motion at speeds slow compared
to the speed of light.

In quantum mechanics the momentum is a more natural variable than v, and
a useful relation can be obtained from Eqn. (1.1), namely

E* = (pc)* + (mc?)? (1.5)

This form stresses the fact that E, pc, and mc? all have the same dimensions
(namely energy), and we will often use these forms when convenient. As an
example, the rest energies of various atomic particles will often be quoted in
energy units; for the electron and proton we have

mec® = 0511 MeV  and  myc* = 938.3 MeV (1.6)
Recall that the electron volt or eV is defined by

1 eV = the energy gained by a fundamental charge e
which has been accelerated through 1V
=(1.6x107°C)1V)=16x10""] (1.7)
Atomic “masses” are often quoted in unified atomic mass units (formerly amu)

which are given by 1 u = 931.5 MeV.
The nonrelativistic limit of Eqn. (1.5), where pc << mc

pc \2\? P pt
E:mc2<1+<—)> =mc?+ - — + - (1.8)

mc? 2m  8m3c?

2, is easily seen to be

Since the rest energy is “just along for the ride” in most of the problems we
consider, we will ignore its contribution to the total energy; thus a phrase such as
“...a2 eV electron ...” should be taken to mean that the electron has a kinetic
energy T = E — mc* ~ p? ~ ill oft i = T i

gy T = mc” ~ p*[2m ~ 2 eV. We will often write pc = /2(mc*) T in
this limit.
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At the other extreme, in the ultrarelativistic limit when E > mc? (or v < ¢),
we can write

1/2
Eepef1s (7 1. 1O (1.9)
=P pc 4 2 pc '

which is also seen to be consistent with the energy—momentum relation for truly
massless particles (such as photons), namely E = pc.
We list below several typical quantum mechanical systems and the order-of-

magnitudes of the energies involved:

¢ Electrons in atoms: For the inner shell electrons of an atom with nuclear
charge +Ze, the kinetic energy is of order T &~ Z? 13.6 eV. We can say,
somewhat arbitrarily, that relativistic effects become nonnegligible when T' >
0.05 mc? (i.e. a 5% effect). This condition is satisfied when Z > 43, implying
that the effects of relativity must certainly be considered for heavy atoms.

® Deuteron: The simplest nuclear system is the bound state of a proton and
neutron where the typical kinetic energies are T~ 2 MeV; this is to be com-
pared with mpc2 A myc? A~ 939 MeV so that the deuteron can be considered
as a nonrelativistic system to first approximation.

® Quarks in the proton and pion: The constituent quark model of element-
ary particles postulates that three quarks of effective mass roughly m, i~
350 MeV form the proton; this implies binding energies and kinetic energies
of the order of 1 — 10 MeV which is consistent with “nonrelativity.” The pion,
on the other hand, is considered a bound state of two such quarks, but has
rest energy my,c? A~ 140 MeV, so that binding energies (and hence kinetic
energies) of order several hundred MeV are required and relativistic effects
dominate.”

* Compact objects in astrophysics: The electrons in white dwarf stars and neut-
rons in neutron stars have kinetic energies T, ~ 0.08 MeV and T, & 140 MeV
respectively, so these objects are “barely” nonrelativistic.

1.3 Quantum Physics: /. as a Fundamental Constant
Just as the speed of light, ¢, sets the scale for when relativistic effects are important,
quantum physics also has an associated fundamental, dimensionful parameter,

2 The pion is really a quark—antiquark system. Bound states of heavier quarks and antiquarks, which
are more slowly moving, can be more successfully described using nonrelativistic quantum mechanics.
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namely Planck’s constant. Its first applications came in the understanding of some
of the quantum aspects of the electromagnetic (EM) field and the particle nature
of EM radiation.

¢ In his investigations of the black body spectrum emitted from heated objects
(so-called cavity radiation), Planck found that he could only fit the observed
intensity distribution if he made the (then radical) assumption that the EM
energy of a given frequency f was quantized and given by

E,(f) = nhf where n=0,1,2,3... (1.10)

The constant of proportionality, /i, was derived from a “fit” to the experimental
data, and has been found to be

h=6.626x10"7].5 (1.11)

and is called Planck’s constant; we will far more often use the related form

h
h= = 1.054 x 10724 ] . s=6.582 x 107 1% eV . s =6.582 x 102> MeV - s
T
(1.12)

which is to be read as “h-bar”.

¢ Einstein assumed the energy quantization of Eqn. (1.10) was a more gen-
eral characteristic of light, and proposed that EM radiation was composed of
photons’ or “bundles” of discrete energy E, = hf.He used the photon concept
to explain the photoelectric effect, and predicted that the kinetic energy of elec-
trons emitted from the surface of metals after being irradiated should be given
by

Imvi =E, —W=hf —W (1.13)

where W is called the work function of the metal in question. Subsequent
experiments were able to confirm this relation, as well as providing another,
complementary measurement of h (P1.5) which agreed with the value
obtained by Planck.

¢ The relativistic connection between energy and momentum for a massless
particle such as the photon could be used to show that it has a momentum
given by
hc h

pyc=Ey=hf=T or py=z (1.14)

> We use the notation y (for gamma ray) to indicate a property corresponding to a photon of any
energy or frequency.
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Figure 1.7. Geometry for Compton scattering. The incident
photon scatters from an electron, initially at rest, at an angle 6,,.

where X is the wavelength. Arthur Compton noted that the scattering of X-
rays by free electrons at rest could be considered as a collision process where
the incident photon has an energy and momentum given by Eqn. (1.14), as
shown in Fig. 1.7. Conservation of energy and momentum (P1.6) can then be
applied to show that the wavelength of the scattered photon, A’, is given by the
Compton scattering formula

A—A=

(1 —cos(6))) (1.15)
Mec

where 6, is the angle between the incident and scattered photon directions;
X-ray scattering experiments confirmed the validity of Eqn. (1.15).

The connection of Planck’s constant to the properties of material particles, such
as electrons, came later:

¢ Using yet another experimental “fit” to spectroscopic data, in this case the
Balmer—Ritz formula for the frequencies in the spectrum for hydrogen, Bohr
used semiclassical arguments to deduce that the angular momentum of the
electron was quantized as

h
L=n—=nh withn=1,2,3... (1.16)
2w

® Motivated by the dual wave-particle nature exhibited by light, for example, in
Compton scattering, de Broglie suggested that matter, specifically electrons,
would exhibit wave properties. He postulated that the relation

gy = (1.17)
p
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apply to material particles as well as to photons, thereby defining the de Broglie
wavelength. He could show that Eqn. (1.17) reproduced the Bohr condition of
Eqn. (1.16), and thus explain the hydrogen atom spectrum.

Example 1.1. de Broglie Wavelength of a Truck?

Over the roughly 80 years since the Davisson—Germer experiment* directly demonstrated
the wave nature of electrons by the observation of the diffraction of electron beams from
nickel crystals, with a wavelength consistent® with Eqn. (1.17), the quantum mechanical
wave-particle duality of objects of increasing size and complexity has been observed.

Only 3 years after the prediction by de Broglie, Davisson and Germer accelerated electrons
through voltages of order Y ~ 50 V to speeds given by

1 ) | 2eV [ 100 eV
2mev ey — v mac? C 051 I\/IeVC 0.015¢ (1.18)

which is still nonrelativistic and gives a de Broglie wavelength of A = h/mv ~ 1.7 A, which
nicely matched the atomic spacings in their sample (already determined by X-ray scattering
experiments).

It is sometimes useful to compare the quantum mechanical wavelength of a particle to
other physical dimensions, including its own size. While many particles which play a crucial role
in determining the structure of matter have finite and measurable sizes, all ultrahigh energy
scattering experiments involving electrons (which therefore probe ultra-small distance scales)
are so far consistent with the electrons having no internal structure; various experiments can
be interpreted as putting upper limits on an electron “size” of order 10~ "9 A = 10> F or
roughly 50, 000 times smaller than a proton or neutron. This justifies the assumption of a
“point-like” electron.

Sixty years after the Davisson and Germer experiments with electrons, single- and double-
slit diffraction of slow neutrons was observed, giving the “ most precise realization hitherto for
matter waves."® In this case, the neutrons have a physical size measured (in other experiments)
to be of order 1 F = 10~ A and ultracold neutrons with A = 15 — 30 A were utilized,
so that the spatial extent of the particle is still orders-of-magnitude less than its quantum
mechanical wave length. In the last decade or so, however, advances in atom interferometry
have led to the observation of interference or diffraction phenomena for small atoms (helium,
He), larger atoms (atomic sodium, Na), diatomic molecules (sodium dimer or Nay), small
clusters of molecules (of H, He,, and D5), and most recently Cgo molecules (buckeyballs), all of
atomic dimensions, and with increasingly small de Broglie wavelengths. Representative data
(and references) are collected below.

4 See Davisson and Germer (1927).

> Their exact words are “The equivalent wave-lengths of the electron beams may be calculated from the
diffraction data in the usual way. These turn out to be in acceptable agreement with the values of h/mv of
the undulatory mechanics.”

6 Zeilinger et al. (1988).
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(Continued)

Particle Mass approx. size Agg  Reference
(atomic units)  (diameter)  (in A)

electron (™) 5x 10~4 <10~"9A  1-2  Davisson/Germer (1927)

neutron (n) 1 ~107> A  15-30 Zeilinger et al. (1988)
helium (He) 4 ~1A 0.5-3 Carnal et al. (1991)
sodium (Na) 23 ~4 A 0.16  Keith et al. (1991)
helium (He,) 8 ~50 A 1-2 Schollkopf et al. (1994)
sodium (Na;)  2-23=46 ~8A 0.1  Chapman et al. (1995)
buckeyballs (Cgo) 60-12 =720 7 A 0.025 Armndt et al. (1999)

It is clear that objects of an increasing classical nature (like Cgo, with a large number
of internal degrees of freedom involved in the many bonds) are seen to exhibit quantum
mechanical behavior. The possibility that the quantum mechanical wavelength of an object
can be much smaller than its physical size (hence the question in the title of this Example) has
been amply demonstrated.

The de Broglie relation contains the seeds of the position—momentum
uncertainty principle, namely

h
AxAp> (1.19)

where Ax and Ap are the uncertainties in a measurement of x and p respectively.
Equation (1.19) puts fundamental limitations on one’s ability to simultaneously
measure the position and momentum of a particle; it also leads to the notion
of zero-point energy, a minimum unavoidable energy of a particle confined to a
localized region of space.

The example of a particle in a one-dimensional box illustrates this most simply.
A particle of mass m confined to a one-dimensional box of length L will satisfy
the “standing wave” condition for de Broglie waves if n(i,/2) = L (compare
this to Eqn. (1.35) below and explain any differences) with n = 1,2,3... This
corresponds to quantized momenta p,, = nhm /L and energies given by

p: nthir?

5 = Sl wheren =1,2,3... (1.20)
m m

In contrast to the classical case, the particle cannot just “sit quietly in the box,”
but has a minimum energy. More generally, a particle localized to a region of
spatial extent Ax ~ L will have a corresponding uncertainty in momentum of
order pmin ~ Ap ~ h/L or minimum kinetic energy

Ey

o —— (1.21)
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While such “back-of-the-envelope” calculations should be used with care, they
can often provide insight into the ground state of a quantum system.

¢ Electrons in atoms? The electrons in atoms and molecules are confined
to a region of size Ax ~ 1A. The corresponding unavoidable spread in
momentum is therefore roughly

he  2000eV A
Apc~ pc~— =

~N —— x2keV 1.22
Ax 1A ¢ (1.22)

Since this is much smaller than the electron rest energy, mc? ~ 0.5 MeV, the
zero-point energy can be treated nonrelativistically and is roughly
p*  (po)* (2000 eV)?

()
EY ~ ~—— = ~ ~ 4eV 1.23
0 2m~ 2mc?  2(0.5 x 106 eV) (1:23)

which is, of course, exactly the order-of-magnitude for the hydrogen atom and
other atomic systems.

¢ Photons in atoms? On the other hand, the photons emitted in the radiative
decays of such atoms, cannot have been “stored” in the atom beforehand. To
see this, we note that a photon “bouncing around” in an atomic-sized box
will have the same Ap ~ p as in Eqn. (1.22). Because massless photons are
necessarily relativistic, the corresponding kinetic energy is then given by

B ~ pe ~ 2000 eV (1.24)

which is much larger than the 1-10 eV observed in typical transitions.

® Alpha particles in nuclei? Radioactive nuclei emit « particles (m, ~ 4my)
with kinetic energies of a few MeV. The minimum momentum in a heavy

nucleus of radius R &~ 5 F is roughly
_hc _200MeVF

pCN—N

~ 40 MeV (1.25)
R 5F

which corresponds to a (nonrelativistic) zero-point energy of

E@ A (po)? (40 MeV)?

(@) ~ ~ ~ 0.2 MeV (1.26)
2myc? 8 x 940 MeV

which is consistent with observations.

¢ Electrons from neutron 8 decay? Neutrons decay via the process n — pev,
where the electron (anti-)neutrino is often not directly detected, but the emit-
ted electron of a few MeV is easily observed. A “pre-existing” electron in the
neutron, “waiting around” to decay, would have a value of pc roughly five times
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larger than in Eqn. (1.25) (since the neutron is roughly five times smaller than
a heavy nucleus) implying relativistic electrons with kinetic energies of order
E(ge) ~ pc &~ 200 MeV; the decay electrons must therefore be created ex nihilo
at the time of decay. Arguments such as these were among the first pieces of
evidence used to predict that a new force beyond those known classically, the
so-called weak interaction, was required to explain such decays.

For single particles, it is often clear when wave mechanical effects are import-
ant. For example, in electron scattering from crystal planes, the Bragg condition
for constructive interference can be written in the form ni = D sin(¢) where D
is the interatomic spacing and ¢ is the scattering angle; clearly A must be com-
parable to the other spatial dimensions in the problem for the wave properties of
matter to be visible. Many problems have some other natural length scale against
which to compare the de Broglie wavelength.

Example 1.2. Systems of Particles: Classical or Quantum Mechanics?

At high temperatures and/or low densities, the behavior of a gas can be described by classical
statistical mechanics; the atoms, to a good approximation, move along classical trajectories.
At low temperatures and/or high densities, quantum effects become important. The classical
approximation will break down when the de Broglie wavelength of a typical particle becomes
comparable to the average interparticle distance; if the number density is n, this distance is
roughly d ~ n~'/3 which can then be compared to A = h/p. For a system in thermal
equilibrium, the thermal energy is £ = p?/2M = kgT /2 where kg is Boltzmann's constant
and T is the temperature; this gives

po 2wk (1.27)
P

v Mkgr
For air at typical room condition, one can estimate that M ~ 28 u (for diatomic nitrogen,
N,) and T ~ 300 K to find A ~ 0.45 A: at one atmosphere of pressure, one has Py ~
105 N/m? giving’ n ~ 2.4 x 10 m=3 ord = n="/3 ~ 35 A. Since d >> A the system
can be considered classically.

On the other hand, the conduction electrons in a metal (which for many purposes can be
considered as a gas) have a de Broglie wavelength which is ./M/me = 225 times largerthan
for gas atoms, so that Ae ~ 100 A. The larger densities of solid matter, however, imply much
smaller interparticle distances; with a few conduction electrons per atom, electron densities
of ne & (1-10) x 1028 m=3 are typical, so that d = ng /> ~ 2-5 A giving A >> d in this
case.

7 One uses the ideal gas law, P = nkpT.
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1.4 Semiclassical Model of the Hydrogen Atom

An essentially classical approach to the bound-state dynamics of the electron—
proton (hydrogen atom) system can be extended by using the wave mechanics
idea of de Broglie to derive many of the most important features of the hydrogen
spectrum, as in the Bohr model. We note that other systems can be usefully
described with the same techniques, including (i) multiply ionized atoms where
all but one electron has been removed and (ii) states where an outer valence
electron is in a highly excited state, and far from the ionic core so that it appears
hydrogenic, so-called Rydberg atom states.
The Coulomb force between the two particles can be written in the form
e? Ke?

1
F(r) = — —f=——ft 1.28
) dme r? r? (1.28)

where we will conventionally write (in the units used in this book) the funda-
mental constant of electrostatics in the form K = 1/4meq. This force can be
derived from the Coulomb potential, namely

2
Vi(r) = _KTe (1.29)

¢ Before proceeding, let us pause and make a few comments about the dimen-
sionful constants that appear in this and other atomic and nuclear physics
systems involving electromagnetism. The combination of constants which
determines the electrostatic force between two fundamental charges can be
written in the form
Ke? Ke? 1
Ke* = — | hc = ahic where o= — ~ — (1.30)
he he 137
and « is dimensionless and is called the fine-structure constant. The combina-
tion hc has dimensions and numerical values given by

fic &~ 1973 eV A &~ 197.3 MeV F ~ 0.1973 GeV F (1.31)

which are useful for atomic/molecular, nuclear, and elementary particle physics
problems, respectively. Together, these give

Ke? ~ 14.4eVA~ 1.44MeVF ~ 231 x 1072 ].m. (1.32)

Despite focusing on nonrelativistic systems, we will often manipulate factors
of ¢ to make use of these combinations. Now back to the hydrogen atom.
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“tie” ends together

Figure 1.8. Standing wave pattern in circular
orbits for deBroglie waves.

For circular orbits in which the electron (mass m) is assumed to orbit around
the (stationary and infinitely heavy) proton, Newton’s law implies that
V2 Ke?
m— = mac = F(r) = — (1.33)
r r
where we have used the appropriate centrifugal acceleration; this relation is
classically consistent with any value of r.
If we wish to incorporate the wave properties of the electron via the de Broglie
relation

h 27h
A= — = ——

p p

then we must presumably insist that the appropriate number of de Broglie
wavelengths “fit” into the circular orbit, as in Fig. 1.8, that is, that

(1.34)

nkh=2nR wheren=1,2,3.... (1.35)
When combined with Eqn. (1.34), this implies that
nh=pR=mvR=1L (1.36)

d la Bohr, and the orbital angular momentum must be quantized. This additional
constraint, along with Eqn. (1.33), gives

hZ
fp = ( ) n? = aonz (1.37)

mKe?

where we have defined the Bohr radius as

h? hc (197.3 eVA) (137)
ap = = I

A ~0.53 A 1.38
mKe?  mcla (0.511 x 100 eV) (1.38)

The corresponding speeds in the Bohr model are also quantized and given by

nh Ke*\ 1  «ac
Vy = =[—)-=—<<c¢ (1.39)
mry, h J n n

which reminds us that the electron orbital motion (in hydrogen at least) is non-
relativistic. The period (7) of the classical orbit and the corresponding frequency
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(f) are given by

1 . 1 Ke?)?\ 1 1 202\ 1
1= <m<h_§>>_ (M)z (1.40)

Ty :annzg n 2m h

which will prove useful for comparisons to other timescales in atomic systems.
For example, the periods can be written in the form

2P 27
T, = ton° wheretp= ————— = RPN 1.5 x 10710 g (1.41)
m(Ke?)? a ¢

Even more importantly, the bound-state energies are also quantized since

1, Kez__l m(Ke?)? 1
2", 2 R 2

1 1
= — —MCZ(XZ —
2 n?
_(051x10%V) /1 \* 1
2 137
—13.6 eV

By ~——— (1.42)
n

n2

While this has been derived assuming circular orbits, it can be shown that ellip-
tical orbits, when properly quantized, are also described by this relation. The
agreement of this simple result with experimental data on the hydrogen spectrum
was one of the early successes of quantum theory.

Example 1.3. “Sieve” for Rydberg Atoms

While for small values of n, the typical sizes of atoms, as exemplified by Eqn. (1.37), are
small, for large values of the quantum number (the Rydberg atom limit), the spatial extent
of the state can easily fall into the micron range or larger. The large sizes of such Rydberg
atoms make possible “slit” experiments in which the results do not depend on the quantum
mechanical wave properties of the system but, rather, on their classical physical size. In one
such experiment,® beams of Rydberg atoms (in this case highly excited sodium atoms) were
produced with specified quantum numbers in the range 23 < n < 65. These were allowed to
drift toward an array of rectangular, micrometer size slits in gold foil; the average slit size was
2 x 10 um. If one assumes that the Rydberg atoms have an effective classical radius given
by kagn?, where k is a dimensionless constant, one can argue from Fig. 1.9 that if the center
of the atom is more than d = //2 — kagn? from the center of the slit, the atom will not pass
through it (being ionized instead upon contact with the foil). The transmission probability, T,

8 See Fabre et al. (1983) for details.
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(Continued)
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Rydberg atom sieve

Figure 1.9. Geometry of the Rydberg “sieve” in Example 1.3.
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Figure 1.10. Transmission probability versus principal quantum number square, n?, for the Rydberg
"sieve”: the data are taken from Fabre et al. (1983).

is then determined solely by geometry, and is given by
201
d : s

T:—: — K—
172 ag n?

(1.43)
which predicts an A — B/n? dependence of the transmission and a “cut-off” size for the
atoms. The data are plotted in Fig. 1.10 where the crosses correspond to normal incidence
of the atomic beam (beam perpendicular to foil), while the diamonds are for incidence at an
angle such that the effective width of the slit, /, is reduced by a factor of two. The predictions
of the simple “hard-sphere” model described above are indicated by the straight lines for the
two cases.

An important limit is suggested by Eqn. (1.36) where we note that n >> 1 is
required to obtain macroscopically large values of the angular momentum; the
fact that quantum systems approach (in an average sense which we will discuss in
later chapters) their classical counterparts in this limit is called the correspondence
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principle, and was used heavily by Bohr in his analyses. For example, he noted
that the photons emitted in transitions between the quantized energy levels in
Eqn. (1.42) satisfy the Balmer formula, written here in the form

m(Ke?)? 1 1
27Thfy = hfy = Ey = En — En/ = z—hz (n/)z — E (144)
For transitions between neighboring states, that is of the form ' = n — 1, in
the large n limit the emitted radiation is of frequency
f n>1 m(KeZ)Z 1
= — e —_——
Y7 2mh 2nh3 nd
A classical particle undergoing circular acceleration would emit radiation at
its orbital frequency, f, which from Eqn. (1.40) is given by exactly the limit
above. The connections and interpolations between the quantum mechanical
and classical descriptions of the physical world are stressed in this book.

(En — En—1) (1.45)

It is interesting to note in this context the role that wave mechanics and
Coulomb’s law (via / and e) play in determining the densities of “ordinary”
solid matter.” The mass of atoms is due mostly to their nuclear constituents (the
protons and neutrons), while their size is determined by the quantum properties
of their electrons. For example, an order of magnitude estimate of the density of
atomic hydrogen can be obtained by assuming that there is one proton mass in
a cube of size 2ap ~ 1 A on a side; this gives a density of roughly

™~ 16x 10° kg/m> ~ 1.6 gr/cm’ (1.46)
(2a9)°
which is in the right “ball-park.”

A number of such useful results were derived using such early quantum
mechanical ideas, but in order to utilize the full predictive power of modern
quantum mechanics, we will incorporate important notions of classical wave
physics (Chapter 2) into the Schrodinger equation formulation (Chapter 3 and
beyond) of quantum physics.

~

1.5 Dimensional Analysis

Most problems in physics are ultimately to be related to measureable quantities
in the “real world”, and therefore have answers that carry dimensions. For purely

® The seemingly commonplace observation that “matter held together by Coulomb forces is stable” is
a remarkable and rather subtle consequence of many aspects of quantum theory; for a nice discussion,
see Lieb (1976). The corresponding classical “no-go” theorem of Earnshaw (see Jones 1980 for a brief
history) goes something like “No system of charged particles can be in stable static equilibrium.”
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mechanical problems, any constant or variable representing a physical property
(call it X') will have dimensions, which can be constructed from various powers
of fundamental units of mass (M), length (L), and time (T'). We can formalize
this statement by using the notation

[X] = dimensions of X = M*LYT¢ (1.47)

where a, b, ¢ are real, possibly fractional, exponents. Familiar examples such as
force (F), pressure (P), and density (p) correspond to

[F]=MLT™2, [Pl=ML'T™2, and [p]= ML (1.48)

Specific conventions giving the units of physical observables (such as the MKS or
meter-kilogram-second system) rely on this observation, but it is more general.
It can often be used to “solve” for the dependence of the physical quantity in
question on the dimensionful parameters of the problem.

Example 1.4. The Dimensions of the Quantum Harmonic Oscillator

The only dimensional inputs to the classic problem of a mass and spring system are the mass,
m, and spring constant, K, which have dimensions

[mM=M and [K]=MT? (1.49)

The period of the oscillatory motion, 7, should presumably depend on these parameters, plus
additional dimensionless constants; we therefore expect that 7 o« m*K#, so we write

T =[t] = [m*KP] = M*(MT 2P (1.50)

Comparing the powers of M, L, T on each side of the equation, we find

M:0=a+§8
L:0=0+0 (1.51)
T:1=0-28

which givesa = 1/2and 8 = —1/2 or
m
T X e (1.52)

The “exact” answer obtained from the solution of the equations of motion is, of course,

2 m
7= — 1.53
=T n‘/K (1.53)

This result is not atypical in that the dimensionless constant that is left unspecified by
dimensional analysis is often within 1-2 orders-of-magnitude (either bigger or smaller) of
unity.
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(Continued)

For the classical oscillator, there is no combination of m and K, which naturally gives a
length scale, or preferred amplitude. In the quantum version of this problem, however, we
have another dimensionful constant at our disposal, namely Planck’s constant or 4, which has
dimensions

[A] = ML2T! (1.54)

In contrast to the classical case, we can now also construct a fundamental length or amplitude
by writing A o« m*KP R and proceeding as above to find that y = 1/2 anda = g =

—1/4or
1/4
hZ
A — 1.55
«( %) (159
The energy of the oscillator should also have typical dimensions given by
2 K
[E] = [KA®] «x h - x hw (1.56)

For problems involving electricity and magnetism, an additional fundamental
dimensionful quantity is introduced, often the dimension of charge'® while ther-
modynamics problems require a temperature dimension, standardly taken as the
degree Kelvin when used as a unit. We discuss in Appendix A the dimensions of
many physical observables in an MKS-type system of units.

1.6 Questions and Problems

Q1.1. Everyone comes to any text with some idea of what they want to get out of it.
What one question about, or important aspect of, quantum mechanics interests
you the most? Look in the index, and see if that topic is covered in this book. If it
is, find the reference, and see what you will have to learn in order to understand
it. If it is not, do a library or web search (or ask someone) until you learn what
you really want to know.

Q1.2. Try to imagine a world "' in which the fundamental constants of relativity and
quantum mechanics were on a more “human scale,” namely ¢ = 10 m/s and
h = 0.17] - s. For example, how would the famous “twin paradox” of relativity

10 Recall that the MKSA system of units actually uses the Ampere, that is, current, as the defining unit
for EM.

! For an entertaining version of this “what-if exercise,” see Mr. Tompkins in Wonderland by George
Gamow (1946).
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Q1.3.

Q1.4.

Ql.5.

Ql.6.

P1.2.

work for a trip to the neighborhood store? What would the zero-point energy of
the keys in your pocket be? How about the probability that they could quantum
mechanically tunnel out of your pocket? Could you walk through a doorway
and be sure of which way you were going afterward (i.e. would you diffract?)

Discuss to what extent areas of physics other than special relativity and quantum
mechanics have a “fundamental dimensionful constant”; consider, for example,
gravitation (G?), statistical mechanics (kp?), electricity (e and/or €y?), and
magnetism (e and/or (1(?).

Compton scattering experiments were first carried out by scattering X-rays from
the valence electrons of carbon, which are bound. Why is the assumption of an
initially free electron at rest still used?

How would the densities of “ordinary” solid matter change if the value of & were
somehow suddenly doubled in magnitude? How about if the electron were 200
times heavier?

The probability density shown in Fig. 1.4 is plotted against “Momentum q (a.u.),”
where (a.u.) stands for atomic units. Given what we know about dimensions
for quantities in the hydrogen atom problem, what units do you think these
would be?

. Relativistic decay kinematics:

(a) A particle of mass M (at rest) decays into a lighter particle of mass m and
a massless photon, that is, M — m + y. Using conservation of energy and
momentum, find the magnitude of the momentum and the energy for both
final-state particles. Hint: Remember to use the relativistic formulae for E
and pc.

(b) Show that m moves off with a speed given by

v M? — m?

- — 1.57
c  M?24m? (1.57)

and comment on any obvious limiting cases.

(c) For the decay of an excited state of an atom, one has Mc?> = mc® + AE
where AE = E, is the energy of the photon emitted in the transition.
Estimate the recoil speed of the hydrogen atom when it emits a photon in
the n = 2 — n = 1 transition. Compare this to the speed of the electron
in the n = 1 state. Compare the recoil speed with the thermal speed of a
hydrogen atom at room temperature, using E = mv?/2 = kT /2.

Ultrahigh energy cosmic ray interactions with the cosmic microwave back-
ground: Ultrahigh energy protons (E, >> myc?) can interact with the indi-
vidual photons remaining from the “Big Bang”, namely the cosmic microwave
background (CMB) photons, which are characterized by a temperature of
Tcemp = 3 K. For protons of sufficiently high energy, the reaction p + ycmp —
p + 70 can produce pions (of mass m, ~ 140 MeV), which then reduces
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the energy of the incident proton kinetic energy. This type of process limits

the maximum energy of cosmic ray protons which should propagate through
12

space.

(a) One mechanism for this process is the resonant production of a A resonance
by p + ycmp — A — p + 7. The mass of the proton and A are given
by mpc? ~ 940 MeV and ma = 1230 MeV. Using conservation of energy
and momentum, show that the minimum incident proton energy for which
such a reaction is kinematically possible and is given by

(Mac?)? — (myc?)?
4EcmB

E(mm)

» (1.58)

and evaluate this energy numerically. Hint: Use the following assumptions:
(i) The most favorable kinematic situation is when the directions of the
incident proton and photon are opposite, (ii) assume that the energy of the
incident photon is Ecmp = kg Tcmp with T = 3 K.

(b) The average energy of a CMB photon is actually (Ecmp) ~ 2.7kpTcms,
while the minimum “effective mass” needed for pion production is actually
Mmnin = myp + my. What is the minimum proton energy needed for pion
production under these assumptions?

(c) What is the proton speed for the minimum energies derived in parts (a) and
(b)? What is the wavelength of the CMB photons used in parts (a) and (b)?

P1.3. “Stopping atoms with laser light”"’ or Doppler cooling: Laser light can be used
to exert a force on atoms, as shown in the schematic diagram in Fig. 1.11. Photons
which are absorbed to excite the atom will transfer a net momentum in the +z
direction, while the photons which are emitted in the subsequent decay are
radiated isotropically (no preferred direction), so that there is a net momentum
transfer.

Photons emitted in all directions

E/WVW\/%«OM

Absorbed photojff) l'xi&
Net momentum

Figure 1.11. Schematic diagram of absorption of Impar‘ted to atom
laser light by atom leading to net retarding force.

12 Giving an “End to the cosmic-ray spectrum,” as discussed by Griesen (1966).
13 This is the title of a paper by Prodan et al. (1985) which discusses this effect.
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(a) Recalling the Doppler effect, show that the photon E, energy required to
excite the atomic transition of energy E4 is E, = (1 —v/c)Es where v is the
speed of the atom.

(b) Show that each absorption results, on average, in a reduction in speed given
by Av = hk/M where M is the atom mass and k = 27 /.

(c) For a sodium atom (M = 23 amu) with initial speed vy ~ 600 m/s, how
many such absorptions, N, are required to bring it to rest if A = 5890 A?

(d) What is the approximate spread in longitudinal (i.e. perpendicular to the
laser beam) speed after this many absorptions? Hint: This is a statistical
process, so estimate the error in N in part (c) by assuming that AN = +/N.

(e) If the time between photon absorptions is limited by the radiative lifetime of
the atomic state to be At ~ 1078 s, estimate the average force on the atom
using F = Ap/At and compare it to the force of gravity.

P1.4. Laser trapping of atoms'* or “Optical Molasses.” Imagine an atom as shown in
Fig. 1.12, which is now irradiated by two equal intensity lasers with frequencies
just below a resonant frequency of the atom, namely E, < E4. The probability
of absorption of each beam has the so-called Lorentzian form, and is given by

1 1

(E)’ - EA)2 + (h/Z‘L’)2 - (AE)Z + (h/Z‘C)z (1.59)

where 7 is the lifetime of the stated excite at E4.

(a) Show that if the atom moves to the right, say, with speed v that there is a net
force on the atom proportional to

IAE| v
Faet &~ Xy (30 (Z) « —v (1.60)

(b) For what value of AE is this force maximized?

(c) A linear restoring force proportional to —x is like a spring, but one pro-
portional to —v is like a viscous damping force, hence the name “optical
molasses.” Solve the classical equation of motion for such an object with
initial conditions x(0) = 0 and v(0) = v.

Red-shifted Blue-shifted
lower frequency higher frequency
DN V_ o
s O— ===
Figure 1.12. Geometry of opposing laser beams Further from resonance Closer to resonance
leading to “optical molasses” or velocity-dependent absorbed less absorbed more

damping force giving atom trapping.

4 For a discussion, see Cohen-Tannoudji (1990).
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Photoelectric effect data analysis. Experiments measuring the photoelectric
effect often determine the stopping potential, Vj, required to bring the emitted
photoelectrons to rest; this implies the relation

h
evozhf—wzf—w (1.61)

The following data (taken from Millikan (1916)) give the stopping potential for
various wavelengths of incident light for a sodium—copper interface

2 (A) Vo (Volts)

5461 —2.05
4339 —1.48
4047 —1.30
3650 —0.92
3216 —0.38

(Note that the values of Vj are negative because of the effect of the additional
metal interface.) Use these values to test the Einstein relation, Eqn. (1.13), and
to extract a value for h. Try to estimate the errors for your value if you can.

Compton scattering:

(a) Derive Eqn. (1.15) by using conservation of energy and momentum for
the photon—electron collision in Fig. 1.5. Hint: Conservation of energy and
momentum in this case look like

momentum: p, = p), +p, (1.62)

energy: p,c+ mec® = Py e 4/ (pL0)? + (mec?)? (1.63)

since the electron is initially at rest.

(b) Evaluate the fractional change in wavelength, AA/A, for incident blue light
(A = 4500 A) and X-rays (A = 0.7 A).

Backscattered laser photons. Since the derivation in P1.6 is a staple of most
modern physics texts, here is a different version of a photon—electron collision
problem.15 At the Stanford Linear Accelerator Center (SLAC), laser light (i.e.
with visible wavelengths) has been backscattered (6, = 180°) from E, ~ 50 GeV
(and hence ultrarelativistic) electrons to obtain very high-energy photons, as in
Fig. 1.13. Using any approximations suggested by this description of the problem,

15 See Milburn (1963) for an early discussion.
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E, (before) Ee
W
—

E’ (after) E’

Figure 1.13. Geometry for light backscattered from electrons.

P1.8.

P1.9.

show that the energy of the backscattered photons is given by

232\ 1
m) (1.64)

E ~E, |1
Y e(+ EeEy

Evaluate this energy for a “blue” laser and the electron energy above.

Wave mechanical interference.

(a)

(b)

The interference patterns in Fig. 1.2 were obtained using electrons that had
been accelerated through a potential difference of 80 000 V and an “effective”
slit width of D ~ 6 pm. Calculate the de Broglie wavelength of the electrons
and estimate the lateral size of the diffraction pattern on a screen 10 cm from
the slit.

Consider the diffraction pattern, due to wave mechanics effects, of a ball
thrown through an open window. Using “everyday” values for all quantities,
show very roughly that the first minimum of the diffraction pattern would
be at a distance of one atomic radius from the central peak on a screen
located in a neighboring galaxy.

Discrete quantities in quantum physics. Quantized energies in bound-state
systems and quantized values of the angular momentum are common examples

of physical quantities, which have discrete values in quantum mechanics, but

there are a number of others.

(a)

(b)

Quantized circulation in low-temperature liquid helium. The circulation
(line integral of the velocity field about any closed curve) of a sample of
superfluid helium (mass My) at sufficiently low temperatures is known to
be quantized in the form

%v-dl: n<i> = nKk (1.65)
M,

Evaluate the quantum of circulation, «, in MKS units. For a sample of super-
fluid helium obeying this relation, confined to a narrow annular region of
average radius 3 cm, what would be the minimum angular velocity needed
to observe a nontrivial rotation of the fluid?"®

Quantum Hall effect. In the classical Hall effect, a magnetic field is applied
to sample, in a direction perpendicular to the direction of current flow. The

16 For related experiments, see Hess and Fairbank (1967).
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resulting voltage can be measured and the Hall resistance is measured as the
ratio of the induced voltage to the observed current. For two-dimensional
electron systems, at low temperature, von Klitzing (1980) observed that the
Hall resistance exhibited a series of incredibly well-defined (flat to one part
in 10%!) steps, given by R; = (1/i) R, corresponding to fractional values of
Rx = h/ 2. Calculate the value of this unit of resistance (in ohms or €2),
which is sometimes called the von-Klitzing constant.”’

(c) Flux quantum. In superconductors, the allowed magnetic flux through a
sample is quantized in units of ®p = h/(2e). Evaluate this flux in units of
Tesla- m?. If the earth’s magnetic field of roughly 0.5 gauss (where 1 gauss =
10~* Tesla) is perpendicular to a page of this book, estimate the magnetic
flux through this one page, in terms of fundamental flux quanta.

(d) Degeneracy of Landau levels. The energy levels (so-called Landau levels)
of a two-dimensional electron gas subject to an external magnetic field are
quantized, with energy eigenvalues proportional to

eB()

Er=h
L 2m,

(1.66)

while the number of states with the same energy level (the degeneracy, Ny)
is given by
By A
Ny = 20 (1.67)
wh

where A is the area of the two-dimensional sample. First, show that these

formulae are dimensionally correct. Then, evaluate Ej for an applied field
of By = 5T. The quantity N;/A is the maximum number of energy levels
per unit area which can be filled and this can be compared to the actual
two-dimensional density, n,. Evaluate N;/A for the same external field, and
compare it a typical two-dimensional electron density of 1, ~ 10?> cm™—2.

P1.10. Quantum version of Kepler’s Third Law. A standard exercise in introductory
mechanics is to show that a light planet (of mass m) orbiting a heavy star (mass
Ms > m) in a circular orbit satisfies Kepler’s Third Law, namely that the period,

7, and orbital radius, r (or more generally the semimajor axis) are related by
2
2_ AT

= r
GMg

(1.68)

For our solar system, if the periods are measured in years, 7, and the distances in
astronomical units (A.U.), 7, this reduces to the simple relation 72
a quantum version of Eqn. (1.68) for the Bohr model, and show that it also
simplifies to T2 = 7 if appropriate atomic units, as in Eqns (1.37) and (1.41),
are used.

= 73. Derive

17 This quantity now forms the basis for international standards of resistance.
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P1.11.

P1.12.

Simple-minded scaling laws. Rederive all of the results for the Bohr model of the
hydrogen atom (as in Section 1.4), where the potential is given by V(1) o< 1/r,
but here for the general power law radial potential and corresponding force

V(r) = Ar® giving F(r) oc Ar*™! (1.69)

For s = —1 and A = —Ke?, this gives the Coulomb potential, while for s =
+2 and A = K/2, it is represents a three-dimensional spring (or harmonic
oscillator) potential; you should also be able to show that for A = V;/L° and
s — 00 one obtains the three-dimensional infinite well of radius L. Use these
limits to check your general results against familiar special cases.

(a) Show that the period scales as

m W2p2\ Y62
Ty (E) < — ) (1.70)
(b) Show that the quantized energies scale as
) P AASE
E, o A < Y ) (1.71)

(c) Repeat the correspondence principle limit argument to show that the fre-
quency of the photons emitted in the n — n — 1 transition scales in the
same way as the classical rotation frequency when n >> 1.

Quantum numbers for macroscopic systems.

(a) Estimate the angular momentum quantum number n for the following
macroscopic rotating systems, assuming that L = nh: (i) a spinning compact
disc (which rotates at approximately 200—500 rev/s), (ii) a twirling ice skater
(who might rotate at 3 rev/s), (iii) the earth rotating about its axis, and (iv)
the earth rotating about the sun.

(b) The energies of a harmonic oscillator (i.e. mass and spring) are quantized via
E, = (n+1/2)how where o = /K /m s the natural frequency of oscillation.
If you sit down on the back end of a car, and then jump off, it springs back
and oscillates. Estimate the quantum number associated with this classical
motion.

(c) The earth (M,) and moon (M,,) system is similar to a hydrogen atom
with the electrostatic force (i.e. Ke?) replaced by the gravitational force
(GM,M,,) and with the moon playing the role of the electron. The earth—
moon system is then quantized as in Section 1.4, and you should first rederive
all of the relevant formulae for the energy, period, and orbital radius of the
system. Using, for example, the length of the month, estimate the value of
the quantum number #. (See also P1.10.)
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Quantum or classical systems.

(a) At one point, the “world’s coldest gas” was a sample of 13*>Cs atoms with a
number density N ~ 10!° cm™2 at a temperature of T ~ 700 nK. Is this
a quantum or classical system? There are hopes to go to T ~ 200 nK and
n ~ 10'* cm™3; how about that system? Hint: Use the ideas of Example 1.2.

(b) The electrons in a white dwarf star can be considered as a gas. There might be
roughly 2 x 10°7 of them in a volume about the size of the earth, with internal
temperatures of order 1057 K. Is this a quantum or classical system?

Zero-point energy using the uncertainty principle. Use the uncertainty principle
to estimate the ground state energy (zero-point energy) of a mass (1) and spring
(K) system. Hint: Write the energy in the form

2 2
p |
E=2 4k ~
2m + 2 2 mx2

1
+ Esz ~ E(x) (1.72)

where one approximates Ax Ap ~ xp ~ h; then find the minimum value of
E as a function of x. What is the smallest amplitude of motion that a mass and
spring system can have? Do your answers agree with the dimensional analysis
result of Example 1.4?

Repeat P1.14, but for a particle of mass m in a linear confining potential given
by V(x) = C|x|. Does your result agree with the general scaling expression in
P1.11, and with dimensional analysis arguments?

Correspondence principle and the classical period.

(a) Show that the correspondence principle arguments used in Eqns (1.44)
and (1.45) can be generalized to show that the classical periodicity, 7, of a
quantum system in the large n limit would be given by

2 h

= 5l (1.73)

Tn

(b) Using the expression for the quantized energies of a particle in a box of length

L from Eqn. (1.20), find the classical period 7, in state n and compare it to
your expectations based on the classical motion.

(c) The quantized energies for a mass-spring (harmonic oscillator) system are
given by E, = (n+ 1/2)hw where @ = /k/m. Find the classical period t,
using Eqn. (1.73) and compare it to the expected result.

Dimensional analysis for mechanics: Gravitational bound states of neutrons.
The physical problem of a particle bound to a horizontal surface by the (very
weak) force of gravity has been explored experimentally in “Quantum states
of neutrons in the Earth’s gravitational Field,” V. V. Nesvizhevsky et al., Nature
415, 297-299 (2002). For this problem, there are only three relevant physical
parameters, the mass of the neutron, m, the (very familiar) acceleration of gravity,



32 CHAPTER 1 A FIRST LOOK AT QUANTUM PHYSICS

P1.18.

P1.19.

g = 9.8 m/s%, and Planck’s constant, /. The mass of the neutron is only slightly
more than that of the proton, namely n1, &~ 940 MeV/c? or 1.7 x 10~%” kg.

(a) Usingonly dimensional analysis, find the product of powers of m, g, h which
give an energy, E. Namely, write E ~ m® gﬂ hY and solve for «, 8,y as in
Section 1.5. This would then be the order-of-magnitude of the ground state
energy of the system.

(b) Repeat part (a) to find those combinations that combine to describe the
appropriate length, time, and speed (/, t, v) scales for this problem.

(c) Evaluate the values of E, I, ¢, v you obtained numerically, using the phys-
ical values for m, g, h. About how far above the horizontal surface will the
particle be found? (Use your estimate of the length scale 1.)

(d) Compare your values (in tabular form) to the corresponding physical quant-
ities for the ground state of the hydrogen atom, as outlined in Section 1.4. For
example, the magnitude of the ground state energy of hydrogen is 13.6 eV,
the length scale is of order of the Bohr radius, ag ~ 0.5 A, and so forth.

Dimensions for EM and thermal quantities. Table A2 in Appendix A lists
dimensional equivalents for many standard quantities used in EM and thermal
problems, in terms of a basic set of MKS-type units, namely the kilogram (kg),
meter (m), second (s), and Coulomb (C). Reproduce as many of those as you can
by using simple relationships familiar from introductory physics. For example,
the connection between potential energy (U) and electric potential (V) for a
particle of charge g is U = gV, which implies that the dimensions are related by
[V]1=1[U/q] = J/C or Joule/Coulomb.

More dimensional analysis for electromagnetism. For charged particles, the
combination Ke? appears frequently in problems involving EM interactions, and
provides another natural dimensionful constant in addition to its mass, .

(a) Using these, as well as /2 and ¢, show that the most general combination of
these fundamental constants, which gives a length is

L=auo" (i> (1.74)
mc

where a = Ke?/hc is the fine-structure constant and # is any power. Hint:
Write

L= (Ke¥)"m™h" ™ (1.75)

and solve for ny, n3, 14 in terms of n = my

(b) Show that n = 0 corresponds to the Compton wavelength of the particle
while n = —1 gives the Bohr radius. Do the cases with n = +1 and n = —2
look familiar as well?
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(c) The lifetimes for the radiative decay of excited states of hydrogen atoms are
known to have the dimensionful form
2w he?

Tlife = W (1.76)

Show that this timescale can be written in the form Tj;f = Toor > where
79 is defined in Eqn. (1.41), evaluate it numerically and compare it to the
classical period timescale.

Quantum gravity?

(a) The natural length scale at which gravity, quantum mechanics, and relativ-
ity are all simultaneously important is called the Planck length, Lp. Using
dimensional analysis, find the combination of powers of G (Newton’s
constant of gravitation), i, and ¢, which make a length.

(b) Evaluate Lp numerically, and compare to a typical scale for nuclear or
particle physics, namely 1 F = 107> m.

(c) Repeat to find the Planck mass, Mp, evaluate it numerically, and compare to
a typical mass of a nuclear constituent, like the proton mass.

(d) Repeat to find the Planck time, Tp, evaluate it numerically, and compare it to
the light travel time across a nucleus, which is also a typical nuclear reaction
time. Note that these values are very different from those encountered in
P1.17!

Dimensions in particle physics.
Practitioners of elementary particle physics often become so accustomed to the
various factors of & and ¢ in their calculations that they use a shorthand nota-
tion in which they simply do not bother to write them down; this is sometimes
denoted by saying that “4 = ¢ = 1.” For example, the decay rate (1) and lifetime
(7) of the muon, calculated theoretically, are sometimes written in the form

1 Gl% mz

Ap=—= 1.77
YT, T 19203 (1.77)

where Gr = 1.166 x 107> GeV~2 (Fermi’s constant) and my, = 105.6 MeV/c?;
this is obviously dimensionally wrong as it stands. Supply enough factors of &
and c to make it dimensionally correct, evaluate t,, numerically, and compare it
to the experimental value of 7, = 2.2 us.



TWO
Classical Waves

2.1 The Classical Wave Equation

As we initially approach quantum physics through the introduction of wave
mechanics, it is useful to begin by recalling some of the standard results obtained
from the study of the classical wave equation. For example, using Newton’s laws,
one can derive the equation of motion for the transverse displacement of a small
piece of a stretched one-dimensional string; we obtain the equation

3%A(x, 1) 3%A(x, 1)
=T
a2 0x2
where T, p are the tension and linear mass density of the string, and A(x, t) is the

(2.1)

amplitude of the string at position x and time ¢. This can be written in the form

32A(x, 1) _ T 9Ax, 1) _ V282A(x, t)
0t2 o 0x? 9x2

(2.2)

where v = /T /p is the wave velocity; this is one version of the classical wave
equation.

In a similar way, Maxwell’s equations (in vacuum) can be combined to yield
the wave equation, this time in three dimensions, for the components of the
electric (or magnetic) field, giving, for example,

O°E(r,t) 1
a2 Jeoko

where the fundamental constants of electricity (¢p) and magnetism (1) com-

V2E(r, t) = *V2E(r, ) (2.3)

bine to yield the speed of light. (Because of the quantum connection between
classical electromagnetic waves and their corresponding particle-like quanta,
namely photons, we will be especially interested in this version.)

Both of these cases yield the classical wave equation which we will study in the
form

p(x, 1) _ 2 3% (x, 1)
at? ax2

(2.4)



2.1 THE CLASSICAL WAVE EQUATION 35

for the time- and space-dependent wave amplitude ¢ (x, f). The most familiar
solutions of Eqn. (2.4) are functions of the form

sin(kx £ wt) or cos(kx + wt) (2.5)

where the wave number, k, and angular frequency, w, are related to the familiar
wavelength and frequency/period via

2 2
k= ild and o =2rf = il (2.6)
A T

In order to solve Eqn. (2.4), w and k must be related via
w = vk (2.7)

Any such relation between the oscillation rates in space (k) and time (w) is
called a dispersion relation. The two choices of sign correspond respectively to
waves traveling at constant speed to the right (—) or left (4); this can be seen
by examining a point of constant phase, 8 = kx £ wt = 6y, implying that
the same point on the wave satisfies x(t) = Fvt + 6p/k. A linear relationship
(dispersion relation) between w and k is then a signal of constant speed wave
motion.

While perhaps not as familiar, these traveling wave solutions can also be written
compactly in complex notation; for right-moving waves one has

e+i(kx—a)t) and e—i(kx—a)t) (28)
where we have used the fact that
et = cos(z) % isin(z) (2.9)

(See Appendix C for a review of complex numbers and functions.)

One of the most important features of Eqn. (2.4) is that it is a linear differential
equation, defined by the property that if ¢; (x, t) and ¢, (x, t) are both solutions,
then the linear combination

D(x,t) = a1p1(x, t) + arr(x, t) (2.10)

is also a solution. This notion can be generalized to show that infinite (discrete)
sums

Q(x, 1) = ) antu(x, 1) (2.11)
n=0
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and infinite (continuous) sums (i.e. integrals)

+00
D(x,t) = / a(k)oy(x, t)dk (2.12)

—00
of solutions are also solutions. This is the principle of superposition.
For wave problems with boundaries (and hence boundary conditions which
must be satisfied), it is often more useful to consider linear combinations of
plane waves traveling in opposite directions, for example,

Asin(kx — wt) + Asin(kx + wt) = 2A sin(kx) cos(wt) (2.13)

which gives rise to standing waves. For problems with no boundaries, say infin-
itely long strings or regions of space with no conductors present (on which the
electric field would have to vanish), all values of k (and hence w) are allowed,
and one has a continuous “spectrum.”

If, however, one has to impose boundary conditions, there are additional
constraints on the allowed solutions of the wave equations; these often require
that the wave amplitude must vanish at the “edges.” For a finite length string,
fixed at both ends, say at x = 0 and x = L, with a standing wave solution of the
form A(x, t) = Asin(kx) cos(wt) we require that

A(0,t) =0=A(L,t) forallt (2.14)

Thisimplies that sin(k, L) = O orequivalentlyk, = nw/Lforn = 1,2,....Thus,
the imposition of boundary conditions on solutions of the wave equation can
give rise to quantized values of the wave number k, and hence for the frequency
w. These quantization effects are a property of solutions to the wave equation and
will necessarily appear in quantum mechanics as well, where the origin of quant-
ized quantities can typically be traced to the imposition of boundary conditions.

2.2 Wave Packets and Periodic Solutions

2.2.1 General Wave Packet Solutions

Plane wave solutions, characterized by a well-defined wave number and fre-
quency, are useful constructs for analyzing the wave properties of a system. They
are, however, far from the most general solution of the classical wave equation
so we will have to extend our analysis for several reasons:

® Because plane wave solutions imply a nonzero amplitude over all space, they
can only be idealizations corresponding to wave pulses or wave trains of
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very long but finite duration. As we will see, this implies that any realizable
waveform will have a finite spread in wavelength or wave number.

® The most general solution of the wave equation (e.g. see P2.1) can be shown
to be given by any (suitably differentiable) function of the form ¢ (x,t) =
f (x & vr) since it satisfies

P (x, 1) 2 %P (x, 1)
at? 9x?

This implies that any appropriate initial waveform, f (x), can be turned into a

solution of Eqn. (2.4), f (x £ vt), which propagates to the right (—) or left (+)

with no change in shape, as in Fig. 2.1. Such a solution can be called a wave

packet.

EN " (x £ vt) = V' (x£vt)  (2.15)

® While such wave packets are useful for describing the space-time evolution of
localized wave phenomena (wave pulses traveling down a string, thunderclaps,
laser pulses, etc.), they do not make the “wave content” (k or @ dependence)
obvious.

To understand how to extract the wave number dependence of a given wave
packet solution of the wave equation, it is instructive to ask the question in
reverse and see how to construct localized wave packets using familiar plane
wave solutions. Three effects will make this possible:

(1) Thelinearity of the wave equation ensures that one can add as many solutions
as desired and still have a solution;

(2) The possibility of constructive and destructive interference allows us to
imagine building up a localized solution;

(3) The fact that all plane wave components have the same common velocity
guarantees that the entire wave packet will not disperse as it travels, consistent
with the general solution of Fig. 2.1.

Itis sufficient to study the problem of obtaining localized spatial waveforms, f (x),
as the complete time-dependent solution will then simply be given by f (x — vt).

f(x—vt)

/\ YA\

\/ A \/ A\
Figure 2.1. Left- and right-moving wave packet
solutions to the classical wave equation. fix+vi)
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Constructive
interference

g

Destructive i Destructive
interference interference

' '

Figure 2.2. Interference of sinusoidal solutions -
giving "beats.” Ax

The simplest example that demonstrates the use of linearity and interference
ideas is the phenomenon of beats, which is familiar from acoustics. We write the
sum of two plane wave solutions as

f(x) = Acos(k x) + A cos(kyx)

= 2A cos |:(k1 —;kZ)x] cos |:(k1 —2k2)xi| (2.16)

which is illustrated in Fig. 2.2. For k; = k; ~ k the resulting waveform is
a plane wave, cos(kx), modulated by the “beat envelope”, 2A cos(Akx), where
Ak = (k; — ky)/2. This factor gives complete destructive interference when
x = (2n + 1) /2Ak; this implies that successive interference (“beat”) minima
will be separated by Ax = w/Ak or AxAk ~ w > O(1). This is our first
example of a quite general feature, namely that

® The degree of localization of a wave packet in space (Ax) making use of
interference effects is inversely correlated with the spread in available k
values (Ak).

2.2.2 Fourier Series

A more complex waveform, generated by selective constructive and destructive
interference effects, can be obtained by the use of a Fourier series expansion.'
Any (appropriately smooth) periodic function, satisfying f(x) = f(x + 2L) or,
equivalently, f(x — L) = f(x + L), can be expanded in a linear combination of

! See any standard reference on mathematical physics for more details, for example, Butkov (1968)
or Mathews and Walker (1970).
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wave solutions via
o0
f(x) = % + ; [an cos (?) + by, sin <?>] (2.17)

This solution will then contain varying contributions (given by the ay, b,) from
plane wave solutions with wave numbers k, = nm/L. The expansion coef-
ficients a,, b, can be obtained by multiplying both sides of Eqn. (2.17) by
cos(mmx/L),sin(mmx/L) respectively and integrating over one cycle. Making

use of the relations
+L
nwx mmx
/ cos <—> cos ( ) dx = Loy m
L L L

Lo nmxN . ymux
/ sin ( ) sin < ) dx = Loy m
L

_ L L
[ cos (MY sin (M) ax = 218)
we find that
a, = % OZLf(x) cos (?) dx = % iLf(x) cos (?) dx
by = % 02L £(x) sin (?) dx = % j £ sin (?) de (2.19)

The a, (b,) thus measure the “overlap” of the desired waveform with one of the
basic cosine or sine solutions.

Example 2.1. Square waveform

As an example, consider the periodic square waveform, defined for one cycle (—L, +L), by

A f L/2
(square wave) f(x) = + orixi <L/ (2.20)
—A for|x| > L/2
The Fourier coefficients a, and by, can be easily obtained, and we find
(square wave) b, =0, ap=0, and a,=14A sm(rr;—n/Z) (2.21)
T

where n = 1,2,... and so forth. In this case, the odd sin(Nwx/L) terms cannot contribute
to an even function, so that the b, vanish for symmetry reasons. We plot the partial Fourier
sums

N
Fu0) = 3 ancos (””TX) (2.22)
n=1
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(Continued)

== — = =
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Figure 2.3. Fourier series approximations, Fp/(X), to a square wave pulse for N = 1,3, 5, 21.

. a— F5x)

n=1

Figure 2.4. Partial Fourier sum, F5(x), for square wave and component terms.

for increasing values of N in Fig. 2.3; then, in Fig. 2.4 we show how the component waves
contribute to a particular partial sum (N = 5). The Fourier series does seem to converge
pointwise to the corresponding function where it should, that is, at points where the function
is appropriately smooth.2 One useful measure of the overall convergence can be defined via

o0 = Ao’ o
S Teo] o

2 The “overshoots” at the discontinuities persist even in the complete sum. These “Gibbs peaks” are
discussed in many textbooks on mathematical physics, for example, Mathews and Walker (1970).

(2.23)
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(Continued)
where Fy(x) is the Nth partial sum; this measures the overall deviation of the N'th partial
sum from the function. For the square wave, one can show that it is given by

N 2
8 sin(nm/2
(square wave) Ay =1-— = Z % (2.24)
n=1
If we use the fact that
1T 1 > 1 m?
+32+52+ §(Zk—1)2 8 (225)

(discussed in Appendix C under the topic “Zeta functions”), we see that Ay — 0asN — oo;
we can more and more closely approach the desired waveform except at isolated points.

Example 2.2. Triangle waveform

For comparison, we also consider a (slightly) better-behaved function, namely, a periodic
triangle waveform, defined via

(triangle wave) f(x) =A(L—|x]) for —L<x <L (2.26)

over one cycle. This function is at least continuous at all points. We leave it as an exercise
(P2.4) to show that the nonvanishing Fourier coefficients are given by

2AL i )\
(triangle wave) an = (1 — 0s(nm)) —— = 4AL <M) (2.27)
n’x nm
while the corresponding measure of the overall convergence is given by
N 2
96 11—
(triangle wave) Ay =1-— — M (2.28)

t n4
n=1
This example implies that the convergence is faster (as a function of ) for smoother functions;
this is clear from the form of the Fourier coefficients since a, — 1/n% (1/n) for the triangle
(square) wave which is continuous (discontinuous).

We see that with Fourier series, we can produce any desired periodic waveform
and extract its wave number content (via the a, and b,). But even though we
have used an infinite number of plane wave components, we still evidently do
not have enough “degrees of freedom” to produce a truly localized wave packet.
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The combination of large numbers of different wave numbers can, however, be
accomplished in other ways.

For example, consider the linear combination of cosine solutions with wave
numbers,

ks =nK/N where n=—-N,—(N—-1),...,(N—-1),N (2.29)

We can consider these to be wave numbers sampled uniformly (i.e. each with
identical weight 1/N) from the interval (—K, K); we will eventually consider the
limiting case with increasingly fine spacing, that is, letting N — oo.

We then have the solution

1 noAN nKx 1 N nKx
YN (x) = N Z cos (T) =N (1 + 2;@5 (T)) (2.30)

n=—N

This summation can actually be obtained in closed form (P2.9) giving

(2.31)

Un(x) = % (1 4 2cos(Rox/201 + 1/N>>sin<1<x/2>)

sin(Kx/2N)
This function is also periodic in x, but now with period 27 N /K (see also P2.9);

this implies that it can be localized by letting N — oo. We plot this summation
for increasing N in Fig. 2.5, and we note that:

® The periodic “recurrences” are indeed pushed further away from the origin as
N increases, giving a truly localized waveform in that limit.

® The wave packet still has an intrinsic width, even when N — 00, due to the
finite range of k values used. This can also be seen analytically by noting that

2 cos(Kx/2(1 + 1/N)) sin(Kx/2)
N sin(Kx/2N)

V(x) = ngnoo Un(x) = leloo
2 sin(Kx)

e (2.32)

This limiting form is instructive as it clearly shows that ¢ (x) — 0as |x| — oo.

¢ In order to accomplish the subtle destructive interference between plane wave
components for arbitrarily large values of |x|, it seems that we must use an
uncountably (continuous) large set of wave numbers.
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N=2 N=4
N=28 N =16
AN JAWN
V\/ UV

Figure 2.5. Linear superposition solution, yrp (), from Eqn. (2.31) for N = 2, 4, 8, 16 showing increasing
localization as N — oo.

2.3 Fourier Transforms

This limit of a continuous summation over wave numbers, as well as the exten-
sion to include more general plane wave solutions, is formalized in the so-called
Fourier integral or Fourier transform

fx) = dk A(k)e™* (2.33)

Y
2 /—oo
The A(k) gives the amplitude of each plane wave contribution to the resulting
wave packet and is the continuous analog of the discrete Fourier coefficients,
an, by. The seemingly arbitrary normalization factor (1/+/27) will be discussed
in Section 2.4. As always, the final solution of the wave equation is obtained by
letting f (x) — f(x % vt).

Example 2.3. Fourier transform with “flat” k values

The Fourier integral representation corresponding to the example at the end of Section 2.2.2
can be written by considering

0 fork > |K|

A(k) =
0 1/V2K  fork < |K|

(2.34)
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(Continued)
which has the resulting waveform

f(x) = 1 /+K e*x dk
RN/ T

+K

1 e/kX

AKX

_\/?sin(l(x)
“Vro Kx

—K

(2.35)

We plot both A(k) and f(x) in Fig. 2.6 for two different values of K and note that the widths
of the k and x distributions are inversely correlated. This arises because an increasingly large
sample of wave numbers (larger Ak) can be more efficient in the destructive interference
necessary to produce a smaller, more localized (smaller Ax) wave packet. In fact, if we make
the identification of Ak ~ 2K and estimate the spread in position by the location of the first
set of nodes of (x), thatis, Ax ~ 27 /K, we find that Ak Ax ~ 4z or once again that

Ak Ax > O(1)

independent of K.

(2.36)

N~/

—7/K —m/2K

~7

72K @K

Figure 2.6. “Square” A(k) and its Fourier transform f (x) from Example 2.3 for two values of K.

Example 2.4. Fourier transform of exponential

Another example of a Fourier transform pair is obtained by considering

1
AK) = —— e~ kI/K
) \/Ee

(2.37)
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(Continued)
which gives
1 +00 )
f(x) = / e~ IkI/K gfkx gk
ZJTK —00
! O ko [T k(1 /K—ix)
_ dk ek(1/K-+ix +/ dk ek (1/K=ix
\/27ZK /;oo 0
2K 1
=,/ — [——— 2.38
T <1 +(Kx)2) (238)

both of which we plot in Fig. 2.7; we see that the widths also satisfy Eqn. (2.36).

A(K) f(x)

3K 2K -K K 2K 3K  -3/K -2/K -1/K 1K 2/K  3/K

Figure 2.7. Exponential A(k) and its Fourier transform f (x) from Example 2.4 for two values of K.

This unavoidable constraint on the spatial extent and wave number content
of a localized wave packet, AkAx > 1, is a fundamental limitation on physical
systems. It restricts one’s ability to make measurements or to produce physical
phenomena in the same way as, for example, do the laws of thermodynamics or
the limiting value of the speed of light.

Consider, for example, a laser pulse of finite duration (in both space and time)
with the wave number distribution (A(k)) shown in Fig. 2.8(a); a long wave
train with a correspondingly narrow k distribution has a relatively well-defined
wavelength and so could resolve the two emission/absorption lines shown as
dashed lines; if one wished to gain more “real time” information on the system
by exciting it with laser pulses of very short duration (Fig.2.8(b)), the corres-
ponding wave number distribution would accordingly broaden, making it no
longer possible to resolve various spectral features.

Recognizing the importance of this result, we can make an immediate con-
nection to quantum mechanics by using the de Broglie relation p = h/A = hk
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(@) fix) (b) f(x)

Figure 2.8. Schematic plot of wave amplitude for laser pulse, (x) versus x, for (a) long and (b) short
pulses. The corresponding wave number amplitudes, A(k) versus k, are shown and the dashed lines indicate
two possible spectral lines.

to argue that any wave description of matter will necessarily satisfy
AxAp ~ Ax(hAk) 2 h (2.39)

which is the content of the Heisenberg uncertainty principle. This limit on the
ability to measure simultaneously the position and momentum of a quantum
mechanical particle can thus be traced (in this language at least) to a wave
description of mechanics.

2.4 Inverting the Fourier transform: the Dirac
d-function

We have seen that a truly localized wave packet can be constructed from plane
wave solutions via the Fourier transform, that is,

fx) = A(k) e* dk (2.40)

Y
NSz /_oo
If, however, we are given a spatial waveform, f (x), we would also like to be able
to extract the wave number or wavelength “components” by somehow inverting
Eqn. (2.40) to obtain A(k). Knowledge of A(k) allows one to determine the
behavior of a wave packet in, say, a diffraction or interference experiment, where
one has simple rules for the behavior of each individual wavelength component.
We devote this section to the question of how such an inversion is obtained, at
the same time developing the mathematical properties of a new function which
will be of continuing use, the so-called Dirac §-function.
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The final result we will obtain is quite simple, namely that

1 +00 i
Ak) = — (x) e ™ dx (2.41)
RV, 27T —00 f
This can be taken to mean that A(k) and f(x) are, in a sense, inverses of each
other under the Fourier transform, and the similarity in form argues for the
conventional use of the common 1/4/27 factors.
In order to derive Eqn. (2.41) we multiply both sides of Eqn. (2.40) by
exp(—ik’x)/+/2m and integrate over x. Doing this, we obtain

1 /+00f( ) —ik/xd 1 /+00d /+OOA(k) ikx _ik/xdk

— x)e x = — x ee
V21 J—co 21 J o —00

400 1 +oo ,

/ dk A(k) [— f el(k_k)xdxi|

oo 21 J_oo

+00
:/ dk A(k) 8 (k — k')

—00

L AWK (2.42)

where we have implicitly defined a new function called the Dirac §-function via

1 [T v
S(k—k)= e f e k=% gy, (2.43)
—00

Thus, if Eqn. (2.41) is to be true, we must have
+00
/ A(k)S(k — K)dk = A(K) (2.44)
—0
that is, 8(k — k) must “pick” out the value of A(k) only at k = k' from the

continuous integral. In this regard, it is similar in function (and name) to the
discrete or Kronecker §-function defined as

0 if
Snm = 1 nm (2.45)
1 ifn=m
which has the property that
+00
D Akbur= Ay (2.46)

k=—00

namely, that it picks out a specific term in a discrete summation.
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To study the properties of the Dirac §-function, it suffices to consider the
special case where k' = 0, that is,

1 +00 e
8(k) = —/ e™dx (2.47)
2

—00

We can then argue (not necessarily prove) that

%f_t;oldx:oo fork=0

8(k) =
" L [F2(cos(kx) + isin(kx)) dx =0 for k # 0

(2.48)
where the vanishing of the integrals of the sin(kx) and cos(kx) functions occurs
because of their oscillatory behavior, leading to cancellations. This heuristic
definition of 8 (k), namely, that it vanishes everywhere except at k = 0, where it
is infinite, shows that it is is an extremely poorly behaved function’ and has to
be handled carefully.

We can study it a bit more rigorously by considering the family of auxiliary

functions
1 [T , 1 [n
S (k) = 2—/ e ke gy — Ve oK /4e (2.49)
T J_oo TV e

lim 8¢ (k) = 8(k) (2.50)

so that

(We have simply included a convergence factor so that the integral can be
performed in closed form using results in Appendix D.1.) Using this limiting
representation, it is easier to argue that

1/4/€ — oo fork=0
e_kz/ze/ﬁ — 0 fork#0

as € — 0; we can also visualize the approach to the singular limit in Fig. 2.9.

e (k) o { (2.51)

This form also allows us to investigate the degree of “infiniteness” at k = 0 by
considering

+00 1 T +00 2 1 +o00 )
/ Se(k) dk = — —/ ek /4 gr — —/ e Tdg=1 (2.52)
oo 27V e J_ o NVZI 3 NS

so that the total area under the §-function family of curves is always normalized
to unity. Thus we also take

“+00 —+00
/ 8 (k) dk = lim / Sc (k) dk = 1 (2.53)
—co e—>0 J_~

3 It is in the class of mathematical objects called distributions or generalized functions for which
the standardly cited reference is Lighthill (1958) in which he discusses, for example, Good functions and
fairly good functions.
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1

Figure 2.9. Limiting behavior of 8¢ (k) in
Eqn. (2.49); the dashed (solid, dotted) curves
correspond to € = 0.1(0.01,0.001) respectively.
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in much the same way that

+00
Z dij=1 (2.54)

i=—00

(One can (very loosely) say that §(k = 0) = 1/dk where dk is the infinitesimal
unit of measure.) We can also derive results such as

+00 +0o0
/ k8 (k) dk = lim kéc(k)dk =0 (2.55)
e—0

—o0 —0o0
and related ones involving higher powers of k. Using these results we can now
argue that

+00
/ A(k) 8(k — k') dk

+00
= / A(g+ k) 8(q) dq
+00 qz
= / <A(k/) + gA'(K') + 7A”(k/) + - ) 8(q)dq
+o00 +00
= A(K) [/ 5(q) dq] + A'(k) [/ q8(q) dqi| + -
= A(k) (2.56)

where we have changed variables to ¢ = k — k’ and expanded A(k) in a Taylor
expansion around k = k’. This is the desired property of the Dirac §-function
and shows that A(k) and f (x) are indeed related by Eqns (2.40) and (2.41).

The similarity of a spatial waveform and its Fourier transform in terms of
their information content can be seen in other ways. Since we often consider
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complex waveforms, we will find useful the fact that

+o00 +00
/ If (x)]* dx = F ) f () dx

—00 —

+Ood * ! +00Ak ikx gk
-/ xf(x)(ﬁfw (e )

+OoAkdk ! T ke g
—/_OO *) <E_oof(x)e x)

e K dk (L e kx g '
= A S -
/_oo (k) ( 5= ) f(x)e x)

+00
= / A(k) A* (k) dk

—0o0

+00 +00
/ If ()] dx = f |A(k)|* dk (2.57)

This result is sometimes called Parseval’s theorem. We note that both examples
considered in Section 2.3 were chosen so that they satisfied fj;o |A(K)|> dk =1
(check this in P2.15) so that the corresponding spatial waveforms are guaranteed
to yield [ _Jr;o If (x)|? dx = 1 as well. A similar relation can also be proved for the
overlap of two different waveforms, namely

+00 +00
£ f(x)dx = f A¥ (k) Ay (k) dk (2.58)

—00
While the Dirac §-function is used here as a tool in proving the import-
ant physical connection between A(k) and f (x), its usefulness in mathematical
physics will become more obvious, and we make some additional comments
here; some of its other properties are discussed in Appendix E.8 to which we will
refer the interested reader from time to time.

® The arguments of §(k — k') are arbitrary, as we could equally well have
considered the integral definition

8( N 1 oo ik(x—x")
x—x) = P e dk (2.59)

T J—00

® The dimensions of the §-function thus depend on its argument: namely,
[6(2)] = 1/[z], where [z] gives the dimensions of z. This can be inferred
from the dimensionlessness of the integral fj;o §(z)dz = 1.

¢ The definite integral of the §-function, defined via

0(x) = /x 8(x)dx’ (2.60)

—0
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Figure 2.10. The Heaviside or step function 6 (x) (solid curve) and 2 — 36(1—x) (dashed curve) versus x.

is easily seen to satisfy

0 forx <0
0(x) = (2.61)
1 forx>0
depending on whether the range of integration includes the singular point or
not. This function (often called the step function or Heaviside function) can
describe the instantaneous (and hence idealized) “turn-on” ( or “turn-off” if
one uses 1 — 0(x)) of some phenomenon or function, as shown in Fig. 2.10.

2.5 Dispersion and Tunneling

2.5.1 Velocities for Wave Packets

We have seen that wave packets constructed from plane waves satisfying the
simple dispersion relation

w=w(k) = kv (2.62)

propagate with no change in shape due to the constant speed, v, of each compon-
ent. Many classical physical systems are characterized by dispersion relations for
which this is not true and which exhibit a variety of new phenomena that have
analogs in quantum mechanics, specifically dispersion and tunneling; we review
these aspects of classical wave physics in this section using one model system as
an example.

An important system in which both of these phenomena occur arises in
the study of the propagation of electromagnetic (hereafter EM) radiation in a
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region of ionized gas (i.e. a plasma). The self-consistent application of Maxwell’s
equations (for the EM waves) and Newton’s laws (for the motion of the charged
particles, in this case the electrons) implies that the dispersion relation is

w® = (keo)> + a)f) (2.63)
Here wp, is the plasma frequency,
2
w? = ¢ (2.64)
P €M,

and 7, is the number density of electrons. The plasma frequency is the natural
frequency of oscillation of the plasma system, arising, for example, when the
positive ions and negative electrons are separated slightly and oscillate around
their equilibrium neutral configuration.

This dispersion relation can be rewritten in the form

w(k) = ——— k = vsk (2.65)
1— a)f,/a)2

where we have defined a phase velocity, vy = w(k)/k. If we restrict ourselves
to the case where @ > wy, it is clear that vy, > ¢ and this velocity exceeds the
speed of light in vacuum. This is not, however, in conflict with the tenets of
special relativity, as the phase velocity measures a property of one single plane
wave component, which, by definition, has a trivial, sinusoidal space- and time-
dependence. We have already argued that such a waveform is an abstraction; it
is, on average, uniform over all space and time and so can lead to no transfer of
information. Any changes in the wavefield, which might carry a signal, will be
described by modulations in the plane wave signals, and such disturbances will
propagate at speeds less than c.

To see this, consider again a linear combination of two traveling waves (as
done for beats) of differing wavenumbers and frequencies, governed by a general
dispersion relation, = w (k). In this case,

¢(x,t) = A cos(kjx — wi1t) + A cos(kyx — wyt)
o4 ((kl —k)x (o1 — wz)t) ((kl +k)x (o1 + a)z)t>
= 2A cos — cos -

2 2 2
= Aegr(x, t) cos(kx — @t) (2.66)
where
F=h er “ and @= w (2.67)

4 See, for example, Kittel (1971) for a derivation.
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are something like the “average” wave numbers and frequencies. We have defined
an effective amplitude

Aesr(x, 1) = 2A cos(Akx — Aw't) (2.68)

with

ki =k W) — w)

Ak = and Aw= 5

(2.69)

If ki ~ ky, we can consider Eqn. (2.66) to be a plane wave, cos(zx — ot),
modulated by the amplitude A.g(x, t); information will be carried along the
modulation wave crest, at a rate given by the condition

Oeff = Ak x — Awt = constant (2.70)

that is, examining a point of constant phase. This implies that the speed of
information propagation is

dx Aw dw
— =— — — (2.71)
dt information Ak dk
We are thus led to define the group velocity,
dw (k)
= —" 2.72
Vg (w) T (2.72)

and note that information contained in modulated waveforms or wave packets,
as well as the rate of flow of energy density in a wave, are all governed by the
group velocity. As an example, for EM waves in vacuum we have
dw
Vo — — =
£ dk

as expected. For the case of propagation in plasma, however, we find

dow (k
Vg = % =c,/1— a)lz,/a)2 <c (2.74)

consistent with relativity. Note that if w/w, >> 1, the background plasma
cannot “keep up” with the wave, and the radiation propagates at the same rate as
in vacuum; as w/w, — 1 the effective speed can become arbitrarily small, and

w(k) = k¢ so that c (2.73)

can even become imaginary when the ratio is less than unity.

2.5.2 Dispersion

For the dispersion relation in Eqn. (2.63), v, clearly depends on frequency; this
reflects the fact that different plane wave components of a wave packet will travel



54 CHAPTER 2 CLASSICAL WAVES

at different speeds due to different phase velocities. Any initially localized wave
packet will necessarily contain a range of wavenumbers k (and hence frequencies
w); since the faster components will outpace the slower ones, the wave will
necessarily spread or disperse as it propagates. Using Eqn. (2.74) as an example,
a spread in frequencies, Aw, implies a range in group velocities

2 2

Avg =c (1 — a)lz,/a)z) 2 w—I;Aa) ~ cw—gAa) (2.75)
1) a)

assuming that @ >> w,; note that higher frequencies travel faster. If an initial

pulse travels a fixed distance D, one should observe a difference in arrival times

due to this effect, the two being related by Av, = —c?At/D (since higher-

velocity components arrive earlier). This implies that the higher-frequency

components of the pulse will arrive earlier, satisfying the relation

3
Aw=———5At (2.76)

D wlz,

One of the most famous examples of this phenomenon is evident in the
observed dispersion of pulses of microwave radiation emitted by the Crab Nebula
which must travel through a region of ionized space. Figure 2.11 illustrates one
experimental realization of this effect’; clearly the higher frequencies do arrive
earliest. From this data, the plasma frequency (and average electron density) can
be estimated (P2.22).

This phenomenon of dispersion can be examined in more mathematical detail
by constructing wave packets consisting of a superposition of plane wave solu-
tions, each satisfying Eqn. (2.63); these would be the analogs of the Fourier
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Figure 2.11. Plot of the frequency (MHz) versus M a
arrival time (sec) for radio pulses from the Crab a #
Nebula showing dispersion; the highest frequencies R{o) ENNEEERNEE FEEE W NS VA
arrive earliest. The figure uses the original data of 1125 15 175 2225 25
Staelin and Reifenstein (1968). Arrival time (s)

5 Data take from Staelin and Reifenstein (1968).
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——— Without dispersion
777777 With dispersion

Al
Figure 2.12. Electromagnetic wave packet in ’,/I / \ [\
vacuum (solid) and in plasma (dashed) showing
decrease in speed and spreading due to the /7 \
dispersion relation in Eqn. (2.63). - Nees

integral solutions of Eqn. (2.40). For example, we can write

L (e (R)1)
—_— dk A(k) "™« (2.77)
V21 /—oo
Even if we can calculate the Fourier transform explicitly at + = 0 to obtain
f(x,0), we can no longer assume that f(x,t) = f(x — ct) unless w = ck. For
a general dispersion relation, the integral must usually be done numerically at

f(x> t) =

each desired time. We show in Fig. 2.12 the results of such a calculation; the
dashed curve corresponds to a wave packet propagating with @, # 0, and we
compare it to a wave packet with the same initial shape but which propagates in
vacuum (where @, = 0); the increasing spread and the slower speed (v, < ¢)
are both evident.

If we choose A(k) to be peaked around k = ky, then the wave packet

L i oc—eo (K)1)
— dk Ak — ko) "% (2.78)
2T /—oo
will contain wavenumbers centered around ky, with some spread Ak. If we
change variables to g = k — ko, it is natural to expand the exponent around ko
to obtain

f(x> t) =

kx—a)t:(kox—a)(ko)t)-i-q(x—Z—(;:(ko)f)+16] (ko)t‘i‘

27 dk?
= (kox — wot) + q(x — vet) + @Bt + - (2.79)

where B = d?w/dk*/2. For EM waves in vacuum where @ = k¢, 8 = 0, the
wave packet can be written as

f(x) t) — 1(k0x wot) dq A(Q) eiq(x—vgt)

el

= citox—otn e _y 1) (2.80)

so that |f(x, t)|? = |f(x — Vg t)|? as expected.
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For a general dispersion relation, 8 # 0, and § measures the spread or range
in propagation speeds; we can see this by writing

qx = vgt) + Bt 4+ = q(x — vgt — gB) + -+~ = q(x — (vg — qB)t + - -
(2.81)

We know that the integral over q will be dominated by values in the range
(—Ak, Ak), so we associate

d*w

QB ~ :i:AkW ~ E£Av, (2.82)
as the spread in velocities, implying a dispersive wave.

The rate at which the wave packet spreads can be studied by noting that the
peak of the packet is dominated by parts of the Fourier integral where x—v, t ~ 0,

so that as long as the next term in the expansion satisfies

qzﬂt% AK*Bt << 1 (2.83)
the wave packet will not spread significantly. This condition can be rephrased in
terms of a spreading time, defined by

1
= BAK2

and noting that when t 2 £ the spreading will become important.

to (2.84)

2.5.3 Tunneling

So far we have assumed that @ > w), but we can see that when » < w), we can

1 1
k::l:; a)z—a)lz,—wc::tz,/ f,—w2 (2.85)

and the plane wave solutions now have the forms

write

bi(x, 1) = e XTIt (2.86)

Instead of oscillatory behavior, these solutions exhibit exponential decay (or
growth).

If, for example, an EM wave with w < @, propagating to the right encountered
a semi-infinite wall of plasma at x = 0 the possible solutions for x > 0 are shown
in Fig. 2.13. Clearly the exponentially growing solution is unacceptable if the
plasma extends forever to the right and must be discarded; this leaves only the
solution e™**¢~®! In this case we do not have propagation, but rather exponen-

tial damping or attenuation of the wave amplitude, ¢ (x, t). The corresponding



2.6 QUESTIONS AND PROBLEMS 57
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Figure 2.13. Electromagnetic wave in vacuum (on the el
left) impinging on a region of plasma (on the right);
exponentially growing (dash) and decaying solutions
(dotted) are allowed in the plasma.

energy density, which goes like |¢ (x, t)|?, will penetrate into the plasma with a
spatial dependence e~ 2% = ¢=¥/4

For static/time-independent (w = 0 or DC) or very slowly varying fields
(for which we can assume that @ << ), the penetration depth is set by
the distance scale d = c¢/2w,. An example is the plasma in fusion reactors
where 1, ~ 102 — 10'° electrons/cm? giving w, ~ 6 x 10" — 6 x 10'?s7! or
d ~ 2mm — 20 pum; electric and magnetic fields are effectively expelled from
such plasmas. Similar exponential damping occurs for EM waves in conductors
(P2.25) where the fields in the nonpropagating region are sometimes called
“evanescent” waves.

In this context, it is interesting to note that such waves, although exponentially
attenuated, can yield a finite wave amplitude if allowed to propagate through a
finite thickness of plasma or conductor.” This is the classical wave analog of
quantum mechanical tunneling, which is discussed in Chapters 8 and 11.

2.6 Questions and Problems

Q2.1. Suppose you had waves satisfying Eqn. (2.4) for x < 0, but which are reflected
from an infinite wall located at x = 0. At the infinite wall, the wave amplitude
must satisfy ¢(x,t) = 0 for all values of t. If an initial highly localized wave
form, given by f(x), is located far to the left of the wall, moving to the right,
show that an appropriate solution ¢ (x;, t) is given by

(2.87)

$x1) = J;(x— v)) = f(—x —vt) forx <0

for0 < x

Discuss the form of the reflected wave and compare to discussions in introduct-
ory textbooks on the behavior of wave pulses on “ropes with tied ends.” What

S For a description of Microwave experiments on electromagnetic evanescent waves and tunneling effect,
see Albiol et al. (1993).
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Q2.2.

Q2.3.

Q2.4.
Q2.5.

Q2.6.

Q2.7.

Q2.8.

P2.1.

P2.2.

would be the appropriate boundary condition on ¢ (x, ) if the infinite wall at
x = 0 were replaced by a “free end,” say a rope tied to a ring free to move up and
down a pole. What would the solution corresponding to Eqn. (2.87) above be?

Suppose you have a function, f (x), which has a Fourier series as in Eqn. (2.17).
What would the Fourier transform of f (x) look like?

In Examples 2.1 and 2.2, one can see that a, = 0 for even values of n (except
possibly for n = 0). Can you sketch (either literally or figuratively) a proof of
why this should be so?

Is there any kind of “uncertainty principle” for Fourier series?

Show that the time and frequency variables t and w = 2nf form a Fourier
transform pair, that is, f(t) <— A(w). What is the corresponding classical
uncertainty condition? How about its quantum analog? In this context, why
would the Fourier transform pairs of Example 2.3 have anything to do with
“ringing”? Why would the ap component of a Fourier series for f(t) be called
the DC component?

Why do functions with “sharp edges” have Fourier transforms which have “lots
of wiggles™?

How would the experimental data shown in Fig. 2.11 change if the plasma density
between us and the Crab Nebula were doubled? If the distance between us were
doubled?

Assume an EM wave in vacuum is incident from the right on a semi-infinite
region of plasma at x = 0. What is the appropriate amplitude for x < 0? If the
wave is incident from the right on a finite thickness of plasma, what is the most
general solution in that region?

Factoring the wave equation. Show that the wave equation in one-dimension,
Eqn. (2.4), can be written in the factored form

92 02 A a A a

0= (-5 —7v=5)x0)=DiD ¢(x,t) =D_Dip(x,1)  (2.88)
012 9x?

where Dy = 3/9t £ vd/dx. Use this to show that D¢ (x, 1) = 0 gives the most

general solutions in Section 2.2.1. Factorization methods are discussed in more

detail in Chapter 13.

Reflection and transmission on a string. Consider an infinitely long string with
constant tension T which has linear mass density p; for x < 0 and p; for
x > 0.

(a) Assume a solution of the form

Jeitkix—wit) 4 peil=kix—o1t)  for x ~ 0

Al t) = Teitkex—w2t) forx >0

(2.89)
which represents an incident and reflected wave for x < 0 and a transmitted
wave for x > 0. Use the fact that the string amplitude should be continuous
at x = 0 to show that w; = wp and that [ + R=T.
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P2.4.

P2.5.

P2.6.

P2.7.

P2.8.

P2.9.
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(b) If the tension in both halves of the string is the same, there will be no “kink”
at x = 0, that is, the slope dA(x, t)/dx, will also be continuous. Show that
this implies that k; (I — R) = kT

(c) Solve for R and T in terms of I and p1,». Does your solution make sense for
the cases p1 = p? for py >> p1? for p, << p1?

Verify Eqns (2.21) and (2.24) for the Fourier series of the square waveform in
Example 2.1.

Verify Eqns (2.27) and (2.28) for the Fourier series of the triangular waveform
in Example 2.2.

(a) Find the Fourier series for the waveform defined in the interval (—L, +L) by
—A for—L<x<0

X) = 2.90
f +A for0<x < +L ( )

(b) Compare the coefficients to those obtained for Example 2.1.
(c) Calculate the Ay for this series and show that Ay — 1as N — oo.

Find the Fourier series for the periodic waveform defined in the interval

f(x) = A(L* — xH)2 (2.91)

This function is continuous at x = £L and has a continuous derivative there
as well. Compare the convergence (perhaps by calculating the A y) for this case,
and compare to that found in Examples 2.1 and 2.2.

Derive an expression for the Ax of a Fourier series in terms of its expansion
coefficients, a, and b,,.

Derivatives of Fourier series. (a) If one periodic function is the derivative of
another, how are their Fourier coefficients related?

(b) Using the definitions of the two functions in Examples 2.1 and 2.2, show that
they satisfy

/ L
f;riangle (X) = fsquare <x + 5) . (2.92)

Differentiate the Fourier series for fijangle (x) and show that it also satisfies this
relation.

(a) Consider the summation in Eqn. (2.30) and show that

SN = Z cos (HKX> Re (Z e’”Kx/N) = Re (Z(E’KX/N ) = Re(Tn)
(2.93)

where Re(z) denotes the real part of z.
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(b) Show that
Z( "= %;” (2.94)
and use this to show that
Ty = ¢Kx(1+1/N)/2 (e(de(j;ﬁ — e—izil)v) (2.95)
so that taking the real part gives
= cos(Kx(1+ 1/N)/2) sin(Kx/2) (2.96)

sin(Kx/2N)

P2.10. Show that ¥n(x) in Eqn. (2.30) is periodic with period 27 K/N and verify the
limit in Eqn. (2.32).

P2.11. Show that the waveform defined by

YN (x) = L {N nkx (2.97)
x nsin .
N N N
can also be evaluated in closed form. Hint: Show that
1 9yN(x)
- __ 2.98
YN (x) = X g (2.98)

Find and then sketch the limiting waveform as N — oo and verify that it is also
localized. Is there an uncertainty relation of the form Ak Ax > O(1)?

P2.12. Consider a Gaussian wavenumber distribution given by

Alk) = K;\/_ KK (2.99)
T
(a) Show that
+o00
/ |A(K)|>dk = 1 (2.100)
—00

(b) Find the Fourier transform f(x) and confirm that it is normalized in the
same way, that is

+o00
/ If (x)2dx =1 (2.101)

(c) Estimate the widths of the two distributions, Ak and Ax and show that they
obey the x — k uncertainty principle.
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Consider the localized triangle waveform defined by

fx) = {(I)\f(a —|x|) for|x| <a (2.102)

for |x| > a
(a) Find N such that fj;o If (x)2dx = 1.
(b) Find the Fourier transform A(k) and confirm explicitly that it is normalized
as well.

(c) Make estimates of Ax and Ak and show that the x — k uncertainty principle
holds.

The integral in Example 2.3 was performed using complex exponential notation.
Obtain the same result by writing e’** in terms cosines and sines and perform

two “standard” integrals.

Verify that the Fourier transform pairs in Examples 2.3 and 2.4 satisfy Parseval’s
theorem, namely
+oo “+o0
/ dx |f (x)|? =f dk |A(k)? (2.103)
—o0 oo

Properties of Fourier transform pairs. If A(k) and f(x) are related by
Eqns. (2.40) and (2.41), verify the following relations. Note that we must
generally assume that f (x) and A(k) are complex.

(a) If A(k) isreal, then f(—x) = f*(x). Show that this implies that |f (x)] is an
even function

(b) If A(k) is imaginary, then f(—x) = —f*(—x)

(c) If A(k) is even, then f(—x) = f(x) i.e. f(x) is even

(d) If A(k) is odd, then f(—x) = —f(x) i.e. f(x) is odd

(e) If A(k) and f(x) are transform pairs, then so are A(ak) and |f(x/a)/|x|;
this “scaling” relation is sometimes useful

(f) If f (x) and A(k) are transform pairs, then so are f (x + a) and ek A (k).

(g) Show that the Fourier transform of f'(x) is ikA(k).

(h) What are the statements corresponding to cases (a) - (g) above, if any, about
Fourier series?

Consider the class of functions defined via

5 (x) 0 for |x| > € (2.104)
X) = .
‘ 1/2¢ for|x| <€

(a) Show that this is an appropriate family of functions whose limit is a Dirac
§-function.

(b) Calculatef(x) = [ > o O¢ (%) dx and show that it approaches a step-function.
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P2.18.

P2.19.

P2.20.

P2.21.

P2.22.

Consider the class of functions defined via

-2
5o (x) = 5 sin }E;c/e)

(2.105)

Show that 8.(x) has all of the desired properties of a Dirac §-function as
e — 0.

Overlap integrals. If we define
1
Ak K) = —— e IKI/K (2.106)
VK

so that its Fourier partner is

2K 1
fsK) = \ 7m (2.107)

show that the overlap integrals satisfy

+o0 +oo
/ dk A(k; K1) A(ks Kp) = / dx f(x; K1) f(x; K3) (2.108)

—0Q0 —0oQ
consistent with Eqn. (2.57). Confirm that the overlap is maximized at the value
1 when K; = K; as it should.

It is sometimes useful to use a finite well potential, defined as

{0 for |x| > a
Vix) = (2.109)

—Vy forlx| < a

(a) Write V(x) in terms of 6 functions.
(b) Calculate the corresponding force via F(x) = —dV (x)/dx and discuss its

physical significance.

The dispersion relation for gravitational water waves (ignoring surface tension
effects) in a fluid of depth h is

(1- e—Zkh)
(14 e72h)
Calculate the phase and group velocities for both deep water (defined via

h >> )) and shallow water (h << A) waves. In which limit are the waves
nondispersive?

w? = gk (2.110)

Dispersion data from the Crab Nebula. (a) Use the data in Fig. 2.11 to estim-
ate Aw and At; recall that @ = 27 f. Assume that the distance to the Crab
Nebula is roughly 2 kpc (where 1kpc is one kiloparsec with a conversion given
by 1 pc & 3.1 x 10'® m.) Use these values to show that the plasma frequency is
approximately wp = 9 x 10% rad/s. As a cross-check, compare this to the frequen-
cies of the radio pulses detected in the experiment to confirm that @ >> w, so
that the approximations leading to Eqn. (2.75) are appropriate.



P2.23.

P2.24.

P2.25.

2.6 QUESTIONS AND PROBLEMS 63

(b) Show that the data for these experiments only give information on the
product #.D. Assuming that the electrons density is uniform, and using the
value of D above (obtained from other measurements), estimate the average
electron density in interstellar space; if most of the ionized gas is near the source,
the interstellar electron density is even less than this.

(a) Commercial radio stations broadcast signals in both the AM band (f =
500 — 1500kHz) and in the FM band (88-108 MHz). Compare the corres-
ponding frequencies, w, to the plasma frequency of the ionosphere, using
the fact that daytime plasma densities in the ionosphere are of the order
n, ~ 102 — 10" electrons/m>. Will either band of frequencies propagate
through the ionosphere or reflect from it?

(b) At night, one can often hear radio stations which one does not hear during
the day. Why? (There are both physics and non-physics reasons!)

(b) How far would DC ( f = 0) electric and magnetic fields penetrate into the
ionosphere?

Electromagnetic waveguides. A standard problem in the study of EM waves is
the propagation of EM waves in long metallic tubes or waveguides. For such
a waveguide with a rectangular cross-section of a x b, the dispersion relation
between frequency and wavenumber is

o = (ko) + (c)? [(%)2 + (g)z} (2.111)

where m,n =0, 1,2,3,...and at least one of m, n > 0.
(a) What is the longest wavelength which can propagate freely in such a
waveguide? (Assume that a > b for definiteness.)

(b) If you drive your car into a tunnel (or parking structure), from which radio
stations would you likely lose reception first, AM (f = 540 — 1650kHz) or
FM (f = 88 — 108 MHz)?

Electromagnetic waves in conductors. The dispersion relation for the propaga-
tion of EM waves in a conducting medium is

wg

o = (ke)®> — i? (2.112)

where g is the electrical conductivity.

(a) Find the wave number k as a function of @ and show that it corresponds to
exponentially damped waves.

(b) In thelimit of good conduction, thatis, g >> €w, show that the attenuation
factor (for the field amplitude) reduces to the form
wgu 1
28
The value of § = 1/ is often called the “skin-depth.”

e P* = e Where g = (2.113)
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(c) Calculate the frequency and wavelength of an EM wave in water for which
the “skin-depth” is 1 meter. Use the values

L2

N 1
w=po=4r x 1077 and =43 —— (2.114)
C? g Q-m

This problem has some relevance to the problem of communicating with
submerged submarines’.

P2.26. “Culvert whistlers.” Sound waves can be sent down a long tube (say of length L,

assumed to be much greater than the effective width W, such as a culvert) where
they are reflected. The sound heard upon reflection has been nicely described as
follows:

Simply clap your hands at one end of the culvert and listen. You will hear a sharp echo of
the hand clap at the expected delay time fp = 2L/c, where L is the length of the tube and
¢ = 340m/s is the velocity of sound in air. But, surprisingly, the sharp echo is followed
immediately by a ‘whistler; a sound that starts at a very high pitch and then descends
swiftly to a long lingering final note at frequency fnin = 1/ Tmax, where Timax = 2W/cis
the time it takes sound to travel directly back and forth across the tube of effective width
W. (Crawford (1988))

(a) Assuming that the sound waves satisfy the dispersion relation
2 _ 12 o2 _Tc_
w” = (ke)* + wiy  where wp = W 27 fo (2.115)

evaluate the group velocity vy = dw(k)/dk, and then the time it takes for
one echo, t = 2L/v,. Show that the frequency heard as a function of time is
given by

Jo
V1—(t/1)?

and discuss how your results describe the experimentally observed situation.

1) = (2.116)

7 See, for example, Reitz, Milford, and Christy (1993)
8 See the similarly titled article by Crawford (1971).
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The Schrodinger Wave
Equation

3.1 The Schrodinger Equation

Just as it is impossible to derive Newton’s equations of motion in classical
mechanics or Maxwell’s equations for electricity and magnetism (EM) from first
principles, neither can we demonstrate the validity of the Schrédinger equation
approach (or any other equivalent one) to quantum mechanics a priori. We
can, however, make use of early quantum ideas and the connection between the
classical wave equation and the photon concept to help in understanding its
structure.

Let us consider one component (in one space dimension) of the classical EM
wave equation, namely

P (x, 1) ,0¢(x,1)

52 =52 (3.1)
with a plane wave solution of the form
¢ (x, 1) = Ae'—en (3.2)

We can use the photon concept by identifying the photon energy with its
frequency (a la Einstein), namely

E=hv=ho (3.3)
and its momentum with its wavelength (as de Broglie did for material particles)

h_h2n

P=5="

The plane wave solutions then take the form

= hk (3.4)

b (x, 1) = Ae'P—ED/R (3.5)
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which satisfies the original wave equation, Eqn. (3.1), provided
E*p(x,t) = (pc)°p(x, 1) or E* = (pc)? (3.6)

We recognize this condition as the energy—momentum relation appropriate for
a massless particle (namely, the photon). We can formalize this “wave—particle
connection,” not only for the solutions, but at the deeper level of the wave
equation itself, provided we make the identifications

p—)ﬁ:zi and E—)E:ihi (3.7)

10x at

In doing so, we have introduced two new differential operators, p and E, repres-
enting the classical momentum and energy observables, p and E. (We will often
distinguish quantum mechanical operators, O, from their classical counterparts,
O, by the use of this notation; O can then be read as Oh-hat.) When acting on
plane wave solutions, these operators have a simple effect,

po(x,t) = ho [e“Px—E”/"L] =po(x,t)
10x

Bp(x, 1) = ih% [e"@x—’fﬂ/ﬁ] — Ed(x, 1) (3.8)

namely, they return the classical numerical values. Using this formalism, we can
write

%P (x, 1) C282¢
3

(x, 1)
3t2 - 2

o= o= (Po)’p(x,t) (3.9

which is a new operator version of the classical wave equation.
We might then be tempted to generalize this result to material particles (i.e.
particles with mass) by associating

E? = (po)* + (mc?)? = E*¢(x, 1) = (p)’p(x, 1) + (mcH)?¢(x, 1) (3.10)

or

(3.11)

320 (x, 1) b, t) [ mc2\°
oy _( h ) (%1

to obtain a (relativistically correct) wave equation for massive particles. This
procedure yields the so-called Klein—Gordon equation which is, in fact, a useful
dynamical equation for a certain class of particles. A problem arises, however, in
the probabilistic interpretation of its solutions as representing a single particle.
Very loosely speaking, the difficulty comes from the two possible signs of the
square root operation when we write E = =+./(pc)? + (mc?)?; this can be
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shown to give rise to antiparticles which must be included for self-consistency.
(See Chapter 4 and especially P4.11 for more details.)

As we are more interested in generating a wave equation based on the nonre-
lativistic connection between E and p for particles, we are led instead to write
(for free particles)

p? 82

E=2 by =L vy (3.12)
2m 2m

or
S W3’y (x 1)
ih——— =
ot 2m  9x?
This is the time-dependent Schrodinger equation for a free particle. We note that:

(3.13)

* Aswe will see, the free particle Schrodinger equation, along with its solutions,
gives the quantum mechanical analog of Newton’s first law of motion.

e It is a linear wave equation and so supports superposition and interference
effects. This will allow us to construct localized wave packet solutions.

To allow for the possibility of interactions, we assume that any force, F(x, t),
felt by the particle is derivable from a potential energy function, V (x, t), given by
oVi(x,t
Flx 1) = — /0D (3.14)
ox

in which case we generalize E = p*/2m + V(x, t) to write
L0V (%, 1) h* 029 (x, 1)
ih—— = ———

ot 2m  9x?

Equation (3.15) is the time-dependent Schrédinger equation for an interacting

+ V(x, Y (x, 1). (3.15)

particle; it is the basic dynamical equation of quantum mechanics which gener-
alizes Newton’s second law, F = ma. Unlike Newton’s law, which has two time
derivatives in the acceleration term, Eqn. (3.15) is linear in the time-derivative;
this implies that knowledge of a solution at ¢ = 0, that is, ¥ (x, 0), is sufficient to
determine the wavefunction v (x, t) at all later times.

3.2 Plane Waves and Wave Packet Solutions

3.2.1 Plane Waves and Wave Packets

It is easy to find plane wave solutions of the free particle Schrodinger equation,
as one can show that

Yp(x, 1) = ¥ t/2m/h (3.16)
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»

satisfies Eqn. (3.13). If we want solutions which can represent “particle-like
states, we can construct localized wave packets using linearity, superposition,
and interference ideas as before.

Because the momentum label p is more natural than the wave-number k for a
particle state, we choose to write the general linear combination solution in the
form

Y(x, t) = dp ¢ (p) Yp(x,t)

1 +00
=l
1 oo ; 2
VT /_ _ o) el Prpt/m/h (3.17)
where the normalization factor (1/+/27 1) is discussed below.

Before studying an explicit example of such a wave packet, we make the
following observations:

¢ Each component wave, Vp(x, 1), is weighted by a different “momentum amp-
litude”, ¢ (p); this function will eventually provide us with information on the
momentum content of the solution, just as A(k) encoded knowledge about
the wave number dependence of a wave packet.

® Because each plane wave solution labeled by p now corresponds to a differ-
ent classical velocity, v = p/m, the wave packet will be dispersive and will
necessarily spread as it propagates. If these packets are meant to represent
particle-like solutions in the macroscopic limit, we will have to make sure this
spreading is consistent with our classical intuition and observations.

® A free, classical particle undergoes uniform, constant velocity motion, and a
wave packet description should presumably yield this in the macroscopic limit
as well.

For the case of a free particle wave packet, we can also write

+o0 _ ,
/ dp  (p) /PP t/2m)/h
—00

+o0 - .
/ dp [¢(p)e—zp t/2mh] elpx/h
—00

1

N 2mh

1

N2mh

1

V2mh

W(X, t) =

+00
Yot = / dp (p, 1) P/ (3.18)

where

¢ (p, 1) = (p)e P’ H/2mh (3.19)
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Noting the analogy with Fourier transforms, we can invert this to obtain ¢ (p, t)
as usual by writing

1 400 'p/ Ih +o00 1 +o00 o p/) Ih
—ip'x/h __ i(p—p'x
\/ﬁ/_w dxy(x,t) e = /_oo dpp(p,t) |:_2nh/_oo e dx:|

+o00o
=/ dpp(p, ) 8(p —p)

—o0

=¢(p',1) (3.20)

where we have extended the definition of the Dirac §-function. This important
relation implies that

® Y (x,t) and ¢ (p, t) are Fourier transforms of each other and motivates the
common 1/+/27 ki normalization factor.

If an initial wave packet, ¥ (x, 0), is given, one can obtain the corresponding
momentum distribution, ¢ (p) = ¢ (p, 0), required to produce it via Eqn. (3.20);
the subsequent time-dependence of the spatial wavefunction, v (x, t), is then
given through Eqn. (3.18). This is one method of solving the initial value problem
defined by the one-dimensional Schrodinger equation.

On the other hand, if ¥ (x, t) is somehow known, one can translate this
information into knowledge of the momentum amplitude at any time ¢ via
Eqn. (3.20). For the case of a free particle only, the momentum amplitude has a
trivial time-dependence which implies that

16, > = [P (p)e 122 = |6(p, 0)] (3.21)

and the momentum distribution does not change in time. This is consistent with
Newtonian mechanics where a particle feeling no force would have a constant
momentum (since F = dp/dt = 0).

This Fourier transform connection (and Eqns (2.57) and (2.58)) immediately
implies that many integrals involving v (x, t) and ¢ (p, t) are related, that is,

+o0 +o0
/ dx |y (x, )|* = f dp |¢(p, t)|* (3.22)

—0o0 —0

+o0 +o0
/ dx ™ (x, ) (x,0) = / dp ¢* (p, )¢ (p, 0) (3.23)

—00 —00

+00 +00
/ dx i (e, Y2 (x, 1) = / dp ¢1(p, )$2(p> 1) (3.24)

—o0 —00

all of which will prove useful later.
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3.2.2 The Gaussian Wave Packet

For most forms of ¢ (p) the integral in Eqn. (3.18) must be done numerically,
and we will present some examples of such calculations in Section 3.4. In the

case of a Gaussian p distribution, however, defined here by

_ | % —aP(p—po)?)2
o (p) = /ﬁe

(3.25)

the integrals can be done in closed form, giving an easy-to-analyze, analytic result.
This distribution selects positive momentum components with values centered
around po; this would correspond to a classical particle with speed vy = po/m,
but there is a spread in momentum components of roughly Ap =~ 1/«. We can

then write

Yx, t) = « /+oo dp e—a2(p—po)2/2 ei(px—pzt/Zm)/h
’ 2nhym J-oo
=\ I using p = po = )

400
o / g e~ T 2Hit/2mh) gigGepot/m)/h

—o0

The integral is of the form

+00
—ax?— T 2
/ e bx _ [ eb /4a
—o0 V a

where

5 .
% + o and b= —i(x— pot/m)/h

. 2mh

which can be evaluated using the results in Appendix D.1. We find that

Y t) = L ipox—pdt/2m)/h —Cepot/m)? /20> h2F

ahF/m

where we define

it
le—i-t— with #y = mho?
0

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)
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To better analyze this complex waveform, we evaluate its modulus squared
and find

[ (x, ) = ¥*(x, Y (x, 1)

_ 1 1 o~ (e—pot/m)? /2212
Vrah (1 +it/ty) (1 — it /1)

_ 1 o= (= pot/m)? [ R (142 13)
ahy/T /14 t2/13)

1 1
(e + =7

1
hb(x) t)|2 = m e—(x—pot/m)z/ﬁtz (3‘31)

t

where

Br = ahy/1+t2/t2 (3.32)

This result illustrates several notable features:

The central value of the wave packet (interpreted by looking at |1/ (x, t)|?) is
located at x — pgt/m = 0, so that the peak moves at constant speed py/m,
consistent with a particle of fixed momentum py and mass m. One can also
show quite generally (P3.2) that if we let

¢() — et (3.33)
the corresponding Schrédinger wavefunction satisfies
vt —  Yx—X,1) (3.34)

so that we can change the initial central position, and the peak location is given
by x = x0 + pot/m. This is the equivalent of fixing all of the initial conditions
for a free particle. The most general, free-particle time-dependent Gaussian
wave packet solution of this type is then given by

1 .
VG (x,t) = —th e (Pox—x0)=pgt/2m) [l p=(x—o=pot/m)* /20*R°F (3 35
o T

with momentum-—space counterpart

b (p, 1) = /% e~ (=02 p=ipxo/h p=ip®t/2mh (3.36)
T

and we will frequently make use of both expressions as tractable analytic
examples.

The width of the wave packet, which is roughly given by B;, does increase with
time due to the variation in speed of the component plane waves. The timescale
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for dispersion is set by the “spreading time,” defined as ty = mha?. For long
times (defined as t >> ty), the spread in position goes as

Ax; ~ By —> ah (£> = o (3.37)

o mo
Using mAv = Ap = 1/a as the spread in velocity components in the wave

packet, we see that

1
Ax; — Avi~ <—) t (3.38)
mo

which provides a very intuitive (classical) explanation for the spreading
behavior.

¢ The initial spread of the position wave packet is given by
Axo ~ By = ah (3.39)
so the spreading time can be estimated as

mh m(Axp)?

th = mha? ~ A~
o= (Ap)? h

(3.40)

These relations make clear the correlations (or anti-correlations) between

— the small (or large) initial spatial extent of the wave packet,

— thelarge (or small) spread in momentum required to achieve the necessary
destructive interference to form the packet,

— the large (or small) spread in speed of the component plane waves, and

— the short (or long) time to exhibit the dispersion.

® We see that spatially small wave packets spread faster than those with larger
initial widths and we visualize this effect in Fig. 3.1.

* We note the subtle time-dependence of both the real (Re) and imaginary
(Im) parts of v (x, t), which is required to maintain the Gaussian shape of
the wave packet (if not its width) as it moves. This is shown in Fig. 3.2
where we plot Re(y(x, 1)), Im(yr(x, t)) as well as [ (x, t)|. We stress that
only for the Gaussian wave packet does the wave packet remain in the same
“family” of shapes for later times, and other examples are considered in
Section 3.4.

® We will come to associate the “wiggliness” (or rate of spatial variation) of the
wavefunction with the local kinetic energy (see Section 4.3.3); Fig. 3.2 then
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(X0 vs. x

Initially narrow
- - - - Initially wide

Figure 3.1. Spreading Gaussian wave packets illustrated by plots of |y (x, t)|2 versus x at two different
times. Note that the initially narrower packet (the solid curve) spreads faster.

Figure 3.2. The real part (dotted), imaginary part (dashed), and modulus or absolute value (solid) of a
spreading Gaussian wave packet: note how the “wiggliness” is concentrated in the leading edge.

shows that the “leading edge” of the wave packet has a larger “local kinetic
energy” (it’s wigglier) than the “trailing edge”; compare this behavior to the
spreading wave pulse discussed in Section 2.5.2 where the faster components
outpace the slower ones.

To verify that this wave packet spreading arises from a (quantum) wave
mechanics description we also note that:

® In the spirit of Section 1.3, we find for a fixed initial spread or uncertainty
in position, Axy, that {y — 0o as i — 0, so that spreading effects would be
unobservable, consistent with its being a purely quantum effect.
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® The spreads (or uncertainties) in x and p satisfy

1
Ax; Ap; ~ (ahyJ1+ £2/12) - (5) > h (3.41)

as expected from the uncertainty principle. The detailed definitions of Ax and
Ap will be presented in the next chapter.

Example 3.1. Spreading wave packets

To see if the spreading of such wave packets has any observable consequences, we can make
some numerical estimates of the spreading time in various cases. For a typical macroscopic
particle with m = 1 kg and an initial uncertainty in position of, say, Axy ~ 0.1 mm, using
Eqn. (3.40) we find that ty &~ 10% s ~ 3 x 100 years, which is roughly a million times the
age of the universe. Once again, the smallness of 2 on a macroscopic scale can make quantum
effects unobservably small.

On the other hand, we can consider an electron in a circular Bohr orbit in a hydrogen atom,
with quantum number n, as described in Section 1.4. (This is not a perfectly valid comparison
as we have dealt here only with straight line motion, but it makes the point.) The classical
period, T, is given by Egn. (1.41) and can be written in the form
ann (27180

T, = = —> n’ ~ (1.5 x 107 %5)n? (3.42)
Vn Ca

If we were to imagine an electron wave packet localized to within one quadrant of its
classical orbit (with radius r, = agn? as in Eqn. (1.37), that is, with a spatial uncertainty of
Axén) = (27trp)/4), the spreading time implied by Eqn. (3.40) would be

(M2 252
m . MAX )" (rimag\ 4 —17 oy
th ~ h = an n" = (®6x 107" 9n (3.43)
The ratio of the classical period to the spreading time in a Bohr orbit is then roughly
8
SUNPONLE (3.44)
té”) n

In order for classical behavior to be observable over many periods, we require that té”) >>
7, Which, in turn, requires that n >> 1 in Egn. (3.44); this is another example of the
correspondence principle. Experiments using Rydberg electron wave packets with high n
(40-70) states have observed 20 or more orbital periods.’

! For example, see Yeazell et al. (1990) and Wals et al. (1994).
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3.3 “Bouncing” Wave Packets

Another case of a quasi-free particle whose quantum mechanical solution can
be easily obtained is that corresponding to a free particle, incident from the
left, which hits an impenetrable wall at x = 0. We can argue that the quantum
mechanical particle is subject to a potential of the form

0 forx<O
oo forx>0

To solve this problem, we can look for plane wave solutions of the Schrodinger
equation for x < 0in the usual way, but then also enforce the boundary condition
that

Y(x,t) =0 forx > 0forallt (3.46)

The complex exponential solutions exp(£ipx/h) no longer satisfy the boundary
condition at the origin, but the linear combination

(eipx/h — e_ipx/h) o sin(px/h) (3.47)

does. The relevant plane wave solutions, 1/~/(x, t), are now proportional to

1} 5. 9) (eipx/h _ e—ipx/h) e—ip2t/2mh forx <0 (3 48)
X, 1) = .
b 0 forx >0
We therefore have to evaluate the integral
- 1 +oo .
0= [ a0 (3.49)

to obtain the resulting wave packet. The integrals over p can be done in exactly
the same way as in the free-particle case, which allows us to write the solution of
the “bouncing” wave packet as

~ Y t) =Y (—xt) forx<0
Vi = {0 forx >0

(3.50)
One can also derive these solutions by noting that if ¥ (x, t) is a solution of the
time-dependent free-particle Schrodinger equation, then so is ¥ (—x, t), because
the second derivative operator “brings down two minus signs”; then any linear
combination of the two is as well, and this antisymmetric “difference” solution
also satisfies the boundary condition at x = 0. Such a solution has been called
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= T
[W(x, 0% versus x [0 (p,)? versus p

t=-10

x<0 x>0 P =-Pg p=*pg

Figure 3.3. "Bouncing’ wave packet before and after a collision with an impenetrable wall at x = 0. The
left sides shows |4 (x, t)|2 versus x, while the right side illustrates |¢(p, t)|2 versus p.

a “mirror” solution” and its use here is akin to the method of images techniques
used in electrostatics to satisfy similar boundary conditions, which, in turn, are
inspired by tricks from optics involving multiple mirrors. Because of the lack of
symmetry imposed by the boundary conditions, the momentum-—space partner
of & (x, t) cannot be evaluated using standard Gaussian integral tricks, and must
be evaluated numerically.

As an example of the more complex dynamical behavior possible in this sys-
tem, we show in Fig. 3.3(a) plots of | (x, t)|* versus x and the corresponding
|$(p, t)|? versus p for times before and after the classical “bounce” at the infin-
ite wall where we use the general free-particle Gaussian solution V(g)(x, t)
in Eqn. (3.35) with xp < 0 and py > 0 corresponding to a classical particle
impinging on the wall from the left. The classical reversal of direction, accom-
panied by the quantum mechanical spreading is apparent in the position-space
plots, while the the change in momentum (from +pg to —py values) before and
after the impulsive collision with the wall is also apparent in the |¢(p, t)|? plots.
In Fig. 3.4(b), we show similar images for times closer to the classical collision.

2 See, for example, Andrews (1998) or Doncheski and Robinett (1999) or Belloni et al. (2005).



3.4 NUMERICAL CALCULATION OF WAVE PACKETS 77
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Figure 3.4. Same as Fig. 3.3, except for times closer to the ‘impact’; note that the momentum distribution
changes only over the duration of the impulsive collision. The vertical dashed lines correspond to the central
value of the wave packet momentum, £pg.

These illustrate the interference effects between the ¥ (x, t) and ¥ (—x, t) terms
in Eqn. (3.50) near the wall, close to the classical collision time.

3.4 Numerical Calculation of Wave Packets

While it is possible to evaluate the wave packet integral of Eqn. (3.18) in
closed form for only a few special cases, one can always perform the p integral
numerically at each point of x, t. A conceptually simple method is to approximate

Y(x, t) = dp ¢ (p) e/ PxP’t/2m/h (3.51)

1 +00
Al
;=N
Z Ap & (pu) el (Pnx—pyt/2m) /R
wh

~

Nori:

where p, = nAp is evaluated on a set of discretized values ranging from pmax =
NAp t0 pmin = —NAp. (We make no claims that this method is the most
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computationally efficient way of calculating the time-dependence of a wave
packet.”)

In order to examine the generality of the results inferred from the analytic
Gaussian example, we choose two initial wave packets given by

for |x| > a

0
(a) Y1(x,0) = { (3.52)

1/4/2a for|x| < a
that is, a square wave pulse, and
(b) Ya(x,0) = e %/ /a (3.53)

These waveforms can be used in Eqn. (3.20) to calculate the initial momentum
amplitude, ¢ (p), required to reproduce them, namely

_|a sin(ap/h)
é1(p) = o [—ap/h ]

_ 2a 1 (3.55)
$2(p) = \V =h [W} .

Once the initial momentum amplitudes are known, the resulting time-dependent

(3.54)

and

wavefunctions can be obtained through Eqn. (3.18). The corresponding values
of |/ (x, t)|? are plotted in Fig. 3.5(a) and (b) for illustration. In each case, we
use ¢ (p — po) so that the packets translate to the right. In addition, a Gaussian
wave packet (dashed curve) is also plotted for comparison, and the values of a
in each case are chosen to give the same initial “spread.” We note that:

¢ Each wave packet spreads in a way similar to the analytically obtained Gaussian
wave packet.

® The subtle interplay (constructive and destructive interference) between the
component plane waves required to form the particular initial waveforms
(e.g. the square bump) are rapidly altered due to the dispersive propagation;
this results in rapid oscillations and changes in shape with time.

¢ The relative phases between the various components tend to “randomize” in
some sense so that the long-term shape of the waveform seemingly approaches
a Gaussian shape.

It seems that the Schrodinger wave equation prescription discussed in this
chapter does incorporate wave mechanical effects into a dynamical equation

3 See, for example, Press et al. (2002) for a comprehensive discussion of numerical Fourier transform
methods.
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[w(x,0)|? versus x

t=+1

t=+2

Figure 3.5. Spreading wave packets given by [ (x, t)|2 versus x at increasing times for non-Gaussian
momentum amplitudes: (a) is for an initial “square” wavepulse, ¥ (x, 0) and (b) is for an initial “exponential
wavepulse, ¥ (x, 0). In each case, the dashed curve is a Gaussian wave packet of the same initial width.

consistent with Newton’s first law. Information on the desired “wave-like” and
“particle-like” phenomena appear to be contained in both ¥ (x, ¢) and ¢ (p, t);
we have not discussed, however, the precise physical interpretation of either
wave amplitude. Because both |1/ (x, t)|* and |¢(p, t)|* will be interpreted as
probability densities, we begin the next chapter with a short review of probability
concepts.

3.5 Questions and Problems

Q3.1. Discuss why the de Broglie relation (Eqn. (3.4)) is consistent with the statement
in Section 3.2.2 that the spatial “wiggliness” of the Schrodinger wavefunction
provides information on the kinetic energy of the associated particle.

Q3.2. Compare the expression for the spreading time, ), in Eqn. (3.40), for the special
case of the Gaussian wave packet, to the expression given in Eqn. (2.84) for a
general dispersive wave packet. What are the analogous quantities in each case?
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Q3.3.

Q3.4.

Q3.5.

P3.1.

P3.2.

P3.3.

P3.4.

How can the wavefunction 1/~/p(x, t) in Eqn. (3.48) contain information on the
particle first moving to the right and then to the left after the bounce? Can you
argue why this wave packet construction makes it clear that the wave packet
will continue to spread after the collision in the same way it would have in the
absence of the wall?

Could you construct wave packet solutions to the problem of a particle confined
between two infinite walls (the familiar problem of the infinite well) by using
“mirror solutions” as in Section 3.3? (See Kleber 1994 for a discussion.)

In Fig. 3.3 the dotted lines in the |¢~>(p, 1)]? plot correspond to the values of py
used in the calculation, and the momentum-space wavefunctions are indeed
peaked near +py. In Fig. 3.4, however, during the collision, the peaks are clearly
“off-center” from those central values. Why would this be so?

Free-particle Schrédinger equation solutions.

(a) Verify explicitly that the wave packet solution of Eqn. (3.29) satisfies the
free-particle Schrédinger equation, and then repeat for the more general
case in Eqn. (3.35).

(b) The “phase” piece of the solution disappears when we evaluate |/ (x, t)|%.
Show that ¥ (x, t) without this term is not a solution of the Schrodinger
equation in each case from part (a).

(a) Show generally that if one lets
$(p) — p(p) e P/ (3.56)
in Eqn. (3.17), then
V(x, 1) > Y (x—xo, 1) (3.57)

illustrating how one derives Eqn. (3.35).

(b) Analyze the effect on v (x, t) of letting

A2
d(p) — ¢ (p) e’ (3.58)
where A is a constant.
Show that
lim ——— e~ =P0t/m*/BE — §(x — pot/m 3.59
e (x — pot/m) (3.59)
lim — e~ ®=P) = §5(p — po) (3.60)

1a—0 /T

Discuss how your results might bear on a classical limit of quantum mechanics.

Other Gaussian wave packets I. One can construct other examples of closed-
form wave packets using Eqn. (3.17) in certain special cases. Evaluate ¥ (x, t) for
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the momentum amplitude

20 ~(p—p)*/2
#(p) = ﬁ(P—Po)e P=Po (3.61)

and find the resulting expression for [y (x, t)|?. Does it spread in a manner
consistent with Eqn. (3.32)?

Other Gaussian wave packets II. Find the time-dependent solution to
the Schrodinger equation, ¥ (x, t), corresponding to the initial momentum

amplitude given by
P (p) = /% e~ (p=p0)*(1+iC) /2 (3.62)

where C is a real parameter. Evaluate |1/ (x, t)|?, find the analog of B; in
Eqn. (3.32), and discuss how the time-dependence of the position of the peak
and the spread in position depend on the magnitude, and especially the sign, of
C. Under what circumstances, if any, does Ax; actually shrink with time, at least
initially? What is it about the form in Eqn. (3.62) when C # 0 that allows one
to “construct” an initial position-space wave packet so that this could happen?

Show that the Gaussian wave packet solution from P3.4, in the special limit that
Do>xp = 0, also satisfies the Schrodinger equation (and boundary conditions)
for the “bouncing” wave packet geometry in Section 3.3.

Overlap integrals.

(a) Show that the general Gaussian wave packet

W6 (6 £) = e P00~ t/2m) B (im0 —pot/m)? 20 R2F
VahFm
(3.63)
satisfies
400
/ dx Y6 (x, D> =1 (3.64)
—0oQ

for all values of t, pp, and xg. Show also that the corresponding Gaussian
momentum amplitude

¢(G) (p, t) = % e_az(p_PO)z/z e_iPXO/h e—iPZt/ZWlh (365)
V 4

satisfies

—+0o0
/ dp 1) (p, > = 1 (3.66)

—0o0

for all values of ¢, py, and xo.
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(b) Consider the overlap integral of two general Gaussian wave packet solutions
of the form

+00
04 = [ o wil oo dx
—0oQ

+00
=/ [B(ey (P> 1" by (P> £) dlp (3.67)

for two different sets of initial positions and momenta, (xp, po) = (x4, pa)
and (xp, pp); the two forms are guaranteed to be equal from Eqn. (3.24).
Show that it is much easier to evaluate this overlap integral using the
momentum-—space amplitudes with the result that

OWB) — o= (s—xa)?/4P" p—a (pp—pa)*/4 pipa+pp)5—x2)/2/h (3 gg)

independent of time. Thus, these wave packet solutions can have “arbit-
rarily little in common” (exponentially so) if their initial positions and/or
momenta differ significantly.

(c) Redo the evaluation of Q4 using position-space wavefunctions, first spe-
cializing to t+ = 0 (where the calculation is easy) and then for the general
t # 0 case (where it is much lengthier) and confirm the result of Eqn. (3.68).

P3.8. Autocorrelation functions. Another type of overlap integral which finds use in
quantum mechanics is the autocorrelation function, defined by

—+00 +00
At) = wwwwmma=/ S0 dp  (3.69)

which measures the overlap between a wavefunction as it evolves in time
with its initial value. Data on quantities which are related to |A(t)|? is some-
times available from experiments. The two forms give the same results from
Eqn. (3.23).

(a) For the general Gaussian wave packet in Eqns (3.35) and (3.36), evaluate
A(t) using both the position—space and momentum—space wavefunctions
and show that

A(t) = ! exp |: iazpét i| (3.70)
VT — it/ 2t0(1 — it /21y) ’
so that
2 _ 1 52,2 (t/2t0)2 :|
AmE = uuwmmew[za%a+0ﬂm% G371

(b) Discuss how the pre-factor is due only to wave packet spreading (as it is
present even when py = 0.) Discuss why the exponential suppression “sat-
urates” to a fixed values for long times as the wave packet “moves” away from
its initial location.
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If two wave packets (representing the same mass particle) have different initial
widths (determined by o; # «;), and hence different spreading times, to(l)
and tg), show that the narrower one will spread faster, so that after a time

t =,/ tél) téz) the two packets will (temporarily) have the same width.

(a) Assume that the electrons in a TV set are accelerated to 30 kV and travel
10 cm before they hit the back of the screen. If each electron is associated
with a wave packet of initial size ~0.1 mm, estimate the amount of spreading
that occurs before the electron hits the screen. How far would the electron
have to travel before the size of its wave packet would have grown to roughly
10 times its initial size?

(b) Electrons at the Stanford Linear Collider are accelerated to energies of
~50 GeV. If their initial wave packets are localized to say 10 pm, what
is their spatial extent at the time of their collisions when they have traveled
1 km? Hint: Are these particles nonrelativistic or not? If they are, what do
you do?

Show that the momentum amplitude of Eqn. (3.54) (or (3.55)) is indeed the
Fourier transform of the initial spatial wavefunction in Eqn. (3.52) (or (3.53)).
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Interpreting the Schrodinger
Equation

In stark contrast to classical Newtonian mechanics, the standard interpretation of
quantum mechanics associates the Schrodinger wavefunction, not in a determ-
inistic way with definite predictions about a specific, individual experimental
result, but only in a probabilistic manner, with |1/ (x, t)|? acting as a probability
density, in this case, for position measurements. Before analyzing this approach
in more detail, we will find it profitable to briefly review some of the basic
concepts of discrete and continuous probability theory.

4.1 Introduction to Probability

4.1.1 Discrete Probability Distributions

For a given experimental situation for which the outcomes are determined by
random chance, the collection of the probabilities of all the possible outcomes
defines a probability distribution. Such a collection of probabilities for which the
outcomes form a discrete set, and hence can be classified by an integer label,
is called a discrete probability distribution. We can therefore label the possible
outcomes as xj,1 = 1,2,..., N and the upper limit, N, can be either finite or
infinite; the corresponding probabilities are labeled P(x;).

Trivial examples which are obviously labeled by integers are the number on the
ith face in one roll of a die, or more prosaically, the number of raisins found in a
single slice of raisin bread; in both cases the upper limit on N is finite. An example
in the context of quantum mechanics is the set of quantized bound state energy
levels, such as the allowed energy states of a hydrogen atom, E, = —Ey/n>.
The x; in this case are the energies and are not themselves integers (or even
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dimensionless numbers), but a measurement of the energy of an individual
atom will yield only those discrete values; the upper limit for the integer label in
this case is infinity.

A simple example which exhibits many of the most general features of a
discrete probability distribution is the set of probabilities corresponding to the
throw of a pair of dice. In this case, we can define x; = 2,..., x;; = 12 as the
possible outcomes, with probabilities given by

1 6 1
P(x1=2)=%---P(x6=7)=%---P(x11=12)=£ (4.1)

These a priori probabilities, P(x;) versus x;, are shown in Fig. 4.1; they are
clustered, as can often happen, about a central value, but with a characteristic
spread.

Because in each measurement, something will be measured, the probabilities
P(x;) must satisfy the obvious constrain

N
Z P(x;) =1 (4.2)
i=1

which is often called a normalization condition. While the complete set of the
P(x;) encodes all of the available information concerning the system, specific
combinations of the P(x;) are often useful. The average value or expectation

0.20
P(n) versus n for two dice
015~
0.10 —
0.05
0.00 H H

2 3 4 656 6 7 8 9 10 11 12

Figure 4.1. The predicted probabilities for the throw of two dice.
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value of the discrete variable x is defined by

N
(x) = > xi P(xi) (4.3)
i=1

as is the average value of any function of x,

N
(fe0)) =Y flxi) P(xi) (4.4)

i=1

Both give information on the expected results of many measurements of quant-
ities depending on the variable. These a priori predictions can, of course, be
compared to the experimental values given by repeated measurements of x or
f(x); if the values of a set of Ny measurements of the variable x are labeled
Xs,s = 1,..., N7, we define

L LA
<x>expzN—TZx5 or <f<x)>expzN—TZf<xs> (4.5)
s=1 s=1

While the values of the variable x often (but not always) cluster around the
average value, a given measurement will often find x within a rather well-defined
range about (x). The variable y; = x; — (x) naturally measures the deviation of
an individual value from the average, but it satisfies

) =(x—(x)=(x)—(x)=0 (4.6)

because the average deviation away from the mean vanishes. A better estimator
of the spread or uncertainty in x that arises very naturally is the so-called root
mean square deviation or RMS deviation or standard deviation defined by

N 1/2
Axpus = Ax = ({(x— () * = (Z(xi — (x))? P(x») (4.7)

i=1

The name itself is a useful mnemonic for this formula as it requires one to

(1) first take the deviation (of each x; from the average value (x));
(2) square it;
(3) then evaluate the mean (or average);

(4) and finally take the (square) root.
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A more calculationally useful form of this relation is obtained by noting that
(Ax)* = ((x — (x))?)
= (x* — 2x(x) + (x)%)
= (x*) — (x)? (4.8)

so that an evaluation of (x) and (x?) suffice to determine Ax.

Example 4.1. Expectation values for two dice

For the case of the throw of two dice, we easily find that

1974
x)=7 and (x%) = = = 54.833 sothat Ax = 2.415. (4.9)

If we sum the probabilities corresponding to results which fall within one standard deviation
of the mean, that is, in the interval ((x) — Ax, {(x) + Ax), we find 24/36 = 2/3 ~ 0.67;
we similarly find that 34/36 ~ 0.94 of the total (unit of) probability is found within two
standard deviations.

This pattern is rather typical of probability distributions that are roughly
centered and somewhat peaked around their average values (see also P4.1—P4.4).
Thus, a knowledge of (x) and Ax allows one to make reasonable predictions
for the likely outcome of a given measurement, as well as for the reliability or
uncertainty of the result.

4.1.2 Continuous Probability Distributions

If the random variable x can take on continuous values (e.g. heights of a pop-
ulation, location of a particle along a line segment, etc.) we can generalize the
discrete probability distribution above by noting that the P(x;) can be trivially
rewritten as P(x;) Ax; if we define the “distance” between integrally labeled meas-
urements to be Ax; = 1, that is, a unit sized bin centered at x;. The continuous
case can then be obtained by the analogy

P(xj) ~ P(x))Ax; = P(x)dx (4.10)

where dx is an infinitesimally small unit of measure of the variable x. With this
identification, we are led to the interpretation of P(x):

® P(x) dx is the probability that a measurement of the variable x will find it in
the interval (x, x + dx), implying that
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P(x) versus x

Figure 4.2. A generic continuous probability
distribution. The predicted probability that a H
measurement will yield a value in the range (a, b) xx+dx a b
is given by the shaded area.

¢ the probability that a measurement of x will be in the finite interval (a, b) is
given by
b
Prob(a < x < b) = / P(x) dx (4.11)

a

which we illustrate in Fig. 4.2.

Assuming for generality that the variable can take on values anywhere in the
interval (—00, 400), the normalization condition on the probability distribution
P(x) becomes

N +oo
Y Py =1 = / P(x)dx =1 (4.12)
i=1 -

The definitions of average values and RMS deviations are easily generalized to

+o0 +0oo
(x) = / xP(x)dx or (f(x))= f(x) P(x) dx (4.13)

—0o0 —00

and

+00
(Ax)* = / (x — (x))? P(x) dx = (x*) — (x)? (4.14)

—0o0

Example 4.2. The Gaussian distribution

One of the most frequently occurring continuous probability distributions is the Gaussian (or
normal or "bell-shaped”) distribution, given by

1
P(x; 11, 0) = ——e~0?/207 (4.15)
o 2w

which is shown in Fig. 4.3, and characterized by two constants u, o. This distribution arises
in a fundamental manner in the theory of statistics (via the so-called Central Limit Theorem?),

! See, for example, Mathews and Walker (1970).
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(Continued)

~2/3 of total probabilitY
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Figure 4.3. Gaussian probability distribution: the mean value x and the one-standard deviation (o)
values are shown.

but also appears in an important and natural way in quantum theory as well. Using the
(appropriately named) Gaussian integrals discussed in Appendix D.1, it is easy to show that
P(x; u, o) is appropriately normalized for any values of u, o, and that

X)=nu and %) = u? +o?, sothat Ax =o (4.16)

Thus, the parameters i and o very directly characterize the average values and RMS deviations.
The probability in any finite interval (i.e. the area under P(x)) can only be calculated numerically
(see Appendix B.3) and one finds

Prob(|Jx — | < o) ~ 0.6826 ~ 68.3%
Prob(|x — u| < 20) ~ 0.9544 ~ 95.5%
Prob(jx — u| < 30) ~ 0.9974 ~ 99.7% (4.17)

Thus, the measurement of a quantity described by a Gaussian distribution found to have a
value more than three standard deviations away from its average is rare (less than 0.3% of
the time) but not impossible, while we expect roughly two-third of the measured events to be
less than 1o~ away from the mean.

Several points concerning P(x) should be kept in mind:

® P(x) is, by itself, not a probability but rather a probability density as it can be
crudely defined as

Px) = —— (4.18)

or the probability per unit x interval. The need for the infinitesimal unit of
measure, dx, should always be kept in mind.
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® Because of this, P(x) has nontrivial dimensions, namely

1
[P(x)] = [5] (4.19)

whatever the units of x happen to be (height, etc.). (Recall that [z] denotes the
dimensions of the variable z.) This is clear from the specific example of the
Gaussian distribution in Eqn. (4.15), where [x] = [o] and [P(x)] = [1/0].

The experimental measurement of a continuous probability distribution can
be accomplished in a limiting procedure similar to that for discrete distributions.
We can “discretize” the problem by defining “bins” of finite width in x, of some
reasonable size, §x, centered at the desired value of x. The ratio of the number,
of successes to total trials in that small bin, §Prob = Ng/Nr, divided by the “bin
width” estimates the local probability density

Ng/Nr 8Prob
_—
6x ox

One can decrease the bin width appropriately as the number of events collected
increases. This is shown in Fig. 4.4 where a Gaussian probability is “built up”

P(x) = (4.20)

N =240 N = 2400

g, Tt A - T gepE
.

* T i
i T

Figure 4.4. "Experimental” (i.e. computer) determination of a Gaussian probability distribution for increas-
ingly large numbers of measurements. The individual measurements are shown as dots, while the smooth
Gaussian curve is approximated by the binned data, using Eqn. (4.20).
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by repeated measurements. The distribution of measured points is shown below
each figure; the gradual accumulation of data points leading to the emergence
of the probabilistic pattern should be reminiscent of Fig. 1.2 and is one of the
hallmarks of many quantum mechanical experiments.

4.2 Probability Interpretation of the Schrodinger
Wavefunction

One of our stated goals in understanding quantum physics has been to incor-
porate the experimentally observed wave properties of matter in a self-consistent
manner with the basic (nonrelativistic) dynamical laws of motion for particles;
this has led us to the time-dependent Schrodinger equation

OV (X, 1) R 9%y (x, 1)

YT T Tam ox?
The derivations leading to other wave equations make it clear that the solutions
represent various physical observables (displacements of a string, an electric or
magnetic field, or more generally the amplitude for some wave phenomenon),
but the arguments leading to Eqn. (4.21) do not make obvious the appropriate
interpretation of ¥ (x, f). Aside from the fact that we know that ¥ (x, ¢) (or rather
| (x, t)] since ¥ is complex) for wave packets is correlated with the position of
the particle, the Schrédinger equation itself provides no obvious guidance. At
the same time, we also wish to incorporate into our description of microscopic

+ V(x, O (x, 1) (4.21)

phenomena, the statistical nature of the measurement process mentioned in
Section 1.1.

These two ideas come together in a natural way in the standard interpreta-
tion of the wavefunction solutions of the Schrodinger equation, namely that we
are to interpret | (x, t)|> as a probability density for position measurements.
Specifically, if we define

P(x, 1) = Y (6, O = ¥ (x, )Y (x, 1) (4.22)
then the so-called Born interpretation” states that

® P(x,t) dx is the probability that a measurement of the position of the particle
described by v (x, t), at time ¢, will find it in the region (x, x + dx).

In this view, it seems at this point that the wavefunction itself does not make a
direct confrontation with experimental measurements of position, but does so

2 Named after M. Born, 1928.
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only through | (x, t)|?. This type of identification is not unique to quantum
mechanics; the squared amplitude of a field is often used in the description of
other wave phenomena where it appears, for example, in expressions for the
energy density stored in the electric field given by ug(r, t) = €o|E(r, t)|?/2 or
the magnetic field by up(r, t) = |B(r, t)|?/2 /0.

A similar and related ensemble interpretation of ¥ (x, t), which is perhaps more
closely related to experimental test, is obtained by considering a (presumably
large) number, Ny, of identically prepared particles, all described by the same
wavefunction v (x, t). Then

® dN(x,t) = NoP(x, t)dx = Ny|yr(x, t)|>dx is the number of particles found
with position in the interval (x, x 4+ dx) at time ¢.

In this way, one can imagine measuring the probability density by binning
measurements of the position in small increments §x, each bin having § N (x, t)
measured values, so that

SN(x,t)

o = Nolv(x, t)|? (4.23)
X

gives | (x, %
Just as with any other continuous probability distribution, we then argue that

b

b
Prob[x € (a,b)] = / P(x,t) dx = / [V (x, t)|>dx (4.24)

a

is the probability of finding the particle in the finite interval (a, b); this in turn
implies that

+00 +o0
/ P(x,t) dx = / [y (x,t)>dx =1 forallt (4.25)
—0o0 —00

since the probability of finding the particle somewhere in its one-dimensional
universe (i.e. the real line) must be unity.

This last constraint that the wavefunction be properly normalized is very
important, as not all solutions of the Schrodinger equation will automatically
satisfy this requirement; for example, the plane wave solutions for a free particle
give

+00 +00
/ (e, O] dx = /

As long as the solutions are at least square-integrable, namely

+00
ei(px—pzr/zmwh‘z dx — / 1dx = 0o (4.26)

—0

400
/ | (x, t)|*dx = C = constant < 0o (4.27)

—00
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then we can use the linearity of the Schrodinger equation to write

Fxt) = % ¥(x D) (4.28)

Then ¥ (x, t) will still be a solution (because of linearity) with the same physical
properties, but it will now satisfy Eqn. (4.25) and be properly normalized. This
probability constraint is the motivation for the normalization factors in all of
our examples throughout Chapters 3 and 4. We stress that the two steps of
solving the Schrodinger equation (implementing the wave physics) and initially
normalizing the solutions (ensuring a consistent probability interpretation), are
independent of one another.

The requirement of square-integrability implies strong constraints on

Y(x,t):

® | (x, t)| must tend to zero sufficiently rapidly as x — 400 so that the integral
of | (x, t)|* will converge.

* We will usually assume that ¥ is well enough behaved that various spatial
derivatives of ¥ also vanish at infinity.

¢ For a probability interpretation to be valid, we must also require that ¥ (x, )
be continuous in x as a discontinuous ¥ would lead to ambiguous predictions
for probabilities near the “jump”, as in Fig. 4.5.

® Unless the potential energy function is extremely poorly behaved (see
Section 8.1.1 for an example of just how bad it would have to be), we can also
assume that ¥/ (x, r) and higher spatial derivatives are everywhere continuous.

We have argued that the requirement that ¥ (x, t) be properly normalized at,
say, t = 0,1is independent of the fact that it is a solution of the wave equation. It is
not obvious, therefore, that once normalized it will continue to be so at future

P(x) H0
Y'(x) not continuous as X — +oo

/‘7i

Y(x) not continuous

Figure 4.5. Unacceptable position-space
wavefunction. v (x) is assumed real, so it can be
plotted easily.
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times. We are thus naturally led to ask whether

+00 +00
/ ¥ (x, to)|2dx = 1 / [ (x, t)2dx = 1
oo o
== (4.29)
atfo =20 for all later times ¢.

We want to know if the time-evolution of the wavefunction, dictated by the
Schrodinger equation, respects the normalization imposed by a probability
interpretation.

To confirm this, we assume that ¥ (x, t) is a solution of Eqn. (4.21) (so that
Y*(x, t) satisfies the complex conjugated version of Eqn. (4.21)) and we note
that

OP(x,1) _ (axp*ww aw)

ot
(i hzaw* . —i( R Py
—(%( 2m ox7 ”‘”Wﬂ” (5 (5 )

0P, _ i (aw* aw)

o7 -y — (V') (VF=V) (4.30)

0x2 dx2

Classically, any potential energy function with which we are familiar is real, so
that V*(x, t) — V(x, t) = 0 and we can then write

IP(x, a3 h oy 9
o8) 0 [_ (,/,*_‘/’ _ w)] =~ ) (4.31)

ot ox | 2mi 0x 0x
We have defined
d , a ,
oo n =5 (w (oD WD, >) (432)

which can be interpreted as a probability current or flux. This relation, relating
the time rate of change of a probability density to the spatial change in a flux,
dP(x,t)  0j(x, 1)
at  dx

(4.33)

is called the equation of continuity. It is based on conservation of probability in
the same way that the similarly named equation for the flow of incompressible
fluids, namely

ap(x,t) _ 0

9t - a [,O(X, t)vx(x, t)] (434)
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or, in three dimensions,

dp(r,t)
at

(where p(x, t) is the fluid density), is based on the conservation of fluid mass

=V - [p(, t)v(r, t)] (4.35)

or the similar statement in electromagnetism based on conservation of electric
charge. Integrating Eqn. (4.33) over a finite region of space, we find

b b q;
4 { / P(x, t) dx} — / GO0 b — iart) — j(by 1) (4.36)

dt 0x

which can be interpreted as saying

® The time rate of change of the probability in a finite interval (a, b) at any given
time ¢ (the left-hand side) is given by the difference in the rates of probability
“flow” into (j(a, t)) and out of (j(b, t) that interval (the right-hand side).

Most importantly, if we specialize to (a, b)) = (—00, +00), that is, the entire
one-dimensional universe, we have

d d o0
P = — / P(x,t)dx | = j(—o0,t) — j(+00,t) —> 0 (4.37)
dt dt | J_o
because
lim (Y (x,t)) =0 (4.38)
x—+00
if the wavefunction is to be normalizable. Here
+00
P(t) = / P(x,t) dx (4.39)
—00

is the probability of finding the particle somewhere as a function of time. Thus,
P(t) = C is a constant for all times, one which we have already set to unity to
implement probability conservation.

This shows that the total probability is indeed constant in time provided that

(1) the solutions satisfy the Schrédinger equation;

(2) the solutions are localized so that the wavefunction can be initially
normalized;

(3) the potential energy function is real.
Under these conditions, the initial normalization factor is preserved by the sub-

sequent time-evolution dictated by the Schrodinger equation; we can “set it and
forget it.”
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While the normalization of the wavefunction necessary for a probability
interpretation is initially separate from the implementation of the wave equation,
the Schrodinger equation guarantees that such an identification is preserved.
This connection is a further assurance that the association of [y (x, t)|> with a
probability density is a very natural one.

If we relax the constraint that the potential be real and allow it to have, for
example, a constant, negative imaginary part V(x) = Vr(x) — iV}, we can repeat
the analysis above (P4.8). We find that

4P(1) = —&P(t) =—-AP@) = —lP(t) (4.40)
dt h T
where A = 2V} /h = 1/t; this has the trivial solution

Pt =PO) e =P0)e /" (4.41)
Viewed in the “ensemble” interpretation where
N() = N©Oe ™ = Noe /" (4.42)

it becomes clear that this represents the loss of probability or particles with an
exponential decay law familiar from radioactivity. The decay rate, A, and mean
lifetime, 7, of an unstable particle (or ensemble thereof) can be described in
quantum mechanical language at the cost of a nonintuitive (or at least nonclas-
sical) complex potential energy. The relationship between the complex energy,
V1, and the lifetime, 7, namely, V7 - 7 = A/2, is reminiscent of an energy-time
uncertainty principle.

4.3 Average Values

4.3.1 Average Values of Position

Given a probability density for position, we can immediately evaluate the expect-
ation values of any x-related quantity; for example, the average value resulting
from many position measurements is predicted to be

+o00 +o00
(x)t:/ x P(x, 1) dx=/ x | (x, 0)|? dx (4.43)

where we stress that

¢ the time-dependence of (x); comes solely from the information contained in
the wavefunction, ¥ (x, t).
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The average value defined in this way is as close as one can come in quantum
mechanics to the concept of a classical trajectory, x(). In a similar way, one can
evaluate

+o00
(x™M; = f x" P(x,t) dx (4.44)
as well as
+o0
(f(x) = f(x) P(x,t) dx (4.45)

for an arbitrary function of position.
Using these, we can return to the example of a spreading Gaussian wave packet
considered in Section 3.2.2 where we studied

1
v (x, t)* = N o~ (x—pot/m)*/ B} (4.46)
t

with B; = ahy/1 + t2/t}; we can now evaluate expectation values of any power

of x. Using Appendix D.1 we find that
+00

(x)s =/ dx x [ (x, )2

—0

+00
:/ dx(x—pot/m—f—Pot/m)[

—0o0

e~ (—pot/ m)z/ﬂf]
BV

/—i-oo dx ( t/m) |: 1 —(x—POf/m)z/ﬂ2i|
= X (X — m e £
. e VW

+ pot/ /+Oo d [ ! —(X—Pot/m)z/ﬁtz]
ot/ m x e
— BT

1 +00 ) 1 +o0 )
= [ﬁ/ ze ? dz] + (pot/m) [ﬁ/ e ? dz]

_ bt
m

(%) (4.47)

. . 2
as expected, where we have used the fact that the odd Gaussian integrand (z e #")
vanishes when integrated over all space. Using similar integrals, we find

2 2
(x%) = (pit) i (4.48)
m 2

so that the spread in position does indeed increase with time via

Axy = /(x2) = (x)F = f/—f;/l + 12/ = % (449)
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Figure 4.6. Contour plot of |y (x, t)|2 versus (X, t)
for a Gaussian free-particle wave packet. Superimposed
is the classical straight-line trajectory, x(t) = vt
(dashed line), as well as random measurements of the
particle position for increasing times (connected by the
‘erratic’ solid lines) to illustrate wave packet spreading.

We can “sample” this wavefunction by randomly measuring the position of a
particle at various times and comparing these measurements to the classical,
straight line trajectory in Fig. 4.6. We note that the measurements tend to
cluster around the classical path, but with increasingly large excursions due to
the spreading.

4.3.2 Average Values of Momentum

It is initially far from obvious how to extract further information from ¥ (x, t)
on other physically observable quantities, such as momentum and energy, which
are now represented by operators. For example, in Section 3.1 we identified the
momentum with an operator via p = (h/i)d/dx. Does one then define

? —+00 . ? +0o0 .
e i/ dx p 1y (e 1) i/ Byt DpYnn  (450)

or in some other way? No such ambiguity arises, of course, for the position
variable itself as

+00 +00
(x)¢ =/ dx x | (x, n|? =/ dx ¥*(x, t) x ¥ (x, ) (4.51)

—o0 —00

To gain some guidance, we note that classically the trajectory x(t) would satisfy

dx(t) _ p(t)
- = (4.52)
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so we examine the time-dependence of its quantum analog, (x);, more fully.

d d +o0
Lige=2 [ [ r>|2dx]

We can write

dt dt
—+00 *
=f dxx(aw v+t 1//)
+00 2 *
:i dx ( id Xy —Y¥x W) (4.53)
2mi J_ o

where we have once again used the fact that ¥ (x, t) satisfies the Schrodinger
equation (and v * its conjugate) and have assumed that V (x;, ) is real. To simplify
this, consider

+o00 82* Jur* +00 av* 9
/ da‘” w‘i*’(ww)) —/_ ‘”—(w

oo . *ox

__ / T (w + x%> (4.54)

0x 0x

where we have used an integration by parts (IBP) and dropped the “surface”
terms (those evaluated at +00), using the fact that the wavefunction vanishes
sufficiently rapidly at infinity. We can repeat this trick once more to obtain

+o00 * +o00 +o00 2
/ daawxl/f—Z/ d¢—+/ dx y* x aw (4.55)

—00 —0o0

so that substitution back in Eqn. (4.53) gives
d hoo[tee 9 9? 9*
<‘x>t dx (zw*a_w_i_w*x_w * w)
X

dt 2mi ax2 vx 0x2

+00
= l/ dx *(x, t) (7—?3) Y(x,t)
mJ_o 10x

1 [T

- W*(x’ f)IA”ﬁ(x) t)
m

d(x)e _ (pr)
i (4.56)

This identification of the average values, which is similar to the classical one
for the trajectory variables, is valid provided we adopt the following general
definition:

® The average value resulting from a large number of measurements of a phys-
ically observable quantity, O, corresponding to some quantum mechanical
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operator, f), in a state described by a wavefunction ¥ (x;, t), is

A +w A
mnz/ d [ (x, ] O [ (x, )] (4.57)

—0o0

so that the operator is “sandwiched” between ¥* and v, but acts “only to the
right”. We will speak of (O), as the average or expectation value of that operator
in the state ¥ (x, t). Clearly this definition reduces to the standard one for any
function of the position “operator” x.

Given this general result, we can now extract some (but not all) of the inform-
ation contained in v (x, t) about any other physical observable O for which we
have an associated quantum operator, O. The expectation value of any power of
an arbitrary operator, O”, is defined in a similar way, and we can generalize this
further to any function of an operator, f(0), provided we have a well-defined
series representation for the function f (y). Thus, if

, £ (0)y? — ™0 ,
fO) =fO+f Oy +— +---=Z; —— (4.58)
then
R © (M) .
fon =3 e, (459)

n
n=0

which is sometimes useful. The need for well-defined values of moments of
the momentum operator, implied by Eqn. (4.59), helps justify our continued
assumptions that spatial derivatives of ¥ (x, f) exist and are well behaved at
infinity.

4.3.3 Average Values of Other Operators

We can generalize the definition of (p), to include any power of the momentum
operator via
. oo . oo hoo\"
(p"): = V) P (e 1) = P (x 1) (75) ¥ (x,1) (4.60)

—00 —00

so, for example, the RMS spread in momentum measurements will be given by

Apr =/ (PP — (P} (4.61)
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Returning to the Gaussian wave packet of Eqn. (3.29), we can evaluate (p);
(P4.13) and find

A +00 h o
Py = WNnﬂ(f—)ww¢>
—0o0 10x
I e 2(x — pot/m) >
—[mtth——zﬁa;—>W@JN
+0o0

=mf G D)

(P)e = po (4.62)

where the two terms arise from differentiating the “phase” and the “Gaussian”
term, respectively. In the case of position measurements, the “phase” term played
no significant role, since only | (x, t)|* appeared. For more general average
value calculations where the operator must act on v (x, t) before one squares,
its effects can obviously be important. In this sense, ¥ (x, t), with all its phase
information intact, is clearly more fundamental than | (x, t) 2.

A similar (and only slightly lengthier) calculation shows that

. 1
(%) = pg + S sothat Ap = 1/v/2a (4.63)

is indeed constant in time, consistent with Eqn. (3.21). Combining this result
and that of Eqn. (4.49) we find that

h h
Ax; Aps = 5,/1 + 12/t > 2 (4.64)

and at + = 0 this wave packet actually attains the minimum product of spreads
in x and p allowed by the uncertainty principle.

The evaluation of (p?) is especially interesting as it is related to the kinetic
energy operator T, and we can write rather generally

. 1 . I %Y (x, 1)
T, = — (p?), = —— x*Z P
( )t 2m<p )t m o dxw 8x2
h? (e, )\ B T 9yt 9
12’_—<¢*(x,t) V(x t)) G i y* oy
2m ] oo 2m J_ dx 0x
. hZ 400 9 , 2
<m=—/ aPﬁﬁ (4.65)
2m J_ oo ax

This not only simplifies the calculation of (p?) somewhat (one derivative instead
of two), butit also shows that the kinetic energy associated with a quantum mech-
anical wavefunction can be related to its spatial variation, that is, its “wiggliness.”
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This justifies the statement made in discussing Fig. 3.2. The quantity

2 |9 (x,
T(n=- %

2 400 .
where T(x,t)dx = (T); (4.66)

—00

can be associated with a kinetic energy distribution. While it is not as funda-
mentally important as |/ (x, t)|?, 7 (x, t) is sometimes of use in visualizing the
distribution of kinetic energy in quantum wavefunctions. A similar quantity is
the potential energy distribution, which we can define to be

Vix, t) = |[¥(x, 0)]* V(x, t) (4.67)

whose integral gives the expectation value of V (x, 1).
Finally, the expectation value of the total energy, represented by the average
value of the operator E = ihd/dt, can be evaluated for any state via

. oo 0
(E)e = Y*(x, t) (ih—) V(x,t) (4.68)
—c0 ot
and for the Gaussian wave packet an explicit calculation gives
. 1 1 (p7)
Eyy=—pt+— )= 4.69
e 2m (p() + 2a2) 2m (4.69)

consistent with Eqn. (4.63) and the fact that the wave packet is a solution of the
free particle Schrodinger equation.

4.4 Real Average Values and Hermitian Operators

While we have introduced a well-defined operational procedure for the calcu-
lation of expectation values of quantum mechanical operators, many questions
about the connection between classical observable quantities and their quantum
mechanical operator counterparts remain to be answered. For example, for (x);
and related position averages, it is clear from Eqns (4.43) and (4.45) that we will
always find real values, as we should if we are to confront the results of measure-
ments of observable quantities. In contrast, the forms for the momentum and
energy operators, for example,

. .9
_ "9 nd B=inl 4.70
P=55 PP (4.70)

with their explicit factors of i, make it far from obvious that their expectation
values will not be complex, and hence have no connection with real measure-
ments. We presumably wish to restrict ourselves to operators, O, for which we can
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guarantee that the expectation values will satisfy
(0) = (0)* (4.71)

or

+00 400 *
/ dx y*(x, ) OY (x, 1) = [/ dx ™ (x, 1) O (x, t)i| (4.72)

—oQ —0oQ

for any physically admissible wavefunction, v (x, t). Operators which satisfy
Eqn. (4.72) are called Hermitian, which we can take to be an extension of the
notion of “realness” to operators. The similar statement for general complex
numbers would, of course, be that a complex number, z, is real provided z = z*.
Thus, a first test of any identification of an operator with a classical observable
will be to check whether Eqn. (4.72) is satisfied.

We note that this definition can be easily extended (P4.20) to show that a
Hermitian operator, O, will actually satisfy the more general condition

+00 —+00 *
/ dx y*(x, 1) Op(x, 1) = U dx ¢*(x, 1) O ¥ (x, t):| (4.73)

—0 —00
for any two admissible wavefunctions ¥ (x, t), ¢ (x, t).

While Eqn. (4.56) shows implicitly that (f))t is real (because (x); is manifestly
real), it is instructive to demonstrate this in a more explicit way. We can write

. +oo L(h *
b [[ v (2)3]
—+00 ha *

- e (435

B R, . \+oo +oo L0V
gt [ e

+o0 h o
= [ axw (m)‘”

(p)* = (p) (4.74)
One explicit factor of —1 arising from the complex conjugation has been canceled
by a similar one from an IBP. This trick can be extended to show that (p") is real
for any power of the momentum operator if one assumes that all the relevant

surface terms generated by the various integrations by parts vanish due to the
behavior of ¥ and its spatial derivatives at x = Fo00. Using Eqn. (4.59) then
shows that an arbitrary function of p will also have real expectation values.
Thus, we have found that x and f (x) (trivially) and p and f (p) are all Hermitian
operators.
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The proof that the energy operator is Hermitian is somewhat different, as we

examine
R ~ 400 e P 400 e 9 *
== [ e ()= [ aew ()¢
_ L [ LY YT
_1h/_oo dx(w 5—%— » 1#)
L d +oo y
= 1ha |:/_Oo dx ™ (x, )Y (x, t)]
) d +00
= 1715 |:/OO dx P(x, t)i|
. d
= lhE [P(1)]
(E) — (EY* =0 (4.75)

so that E is a Hermitian operator provided the total probability, P (), is constant
in time. We have seen that the only situation in which this is not true is when the
potential energy function, V' (x, t), does, in fact, have an imaginary part; in that
case we might expect the classical energy to not be well-defined.

4.5 The Physical Interpretation of ¢ (p)

We are now able to calculate average values (and higher moments) of the
momentum operator, but even more detailed information on the “momentum
content” of the wavefunction ¥ (x, t) is available. In order to extract it in a
simple way, we will analyze the role played by ¢ (p) more carefully. So far, we
have constructed localized wave packets from plane wave solutions by using

1 e ipx/h
S dp ¢ (p) €' (4.76)
V2mh ./;oo 4 ¢ P
where ¢ (p) simply played the role of a weighting function, the amplitude associ-
ated with each plane wave component of definite momentum, p. Given a solution

V(x) =

of the Schrodinger equation, ¥ (x, t) we can invert this to obtain

o (p, 1) dx W (x, t) e~ 'PX/P (4.77)

1 +00
B A/ 2 h ./oo
so that this momentum-amplitude can be obtained from any solution of the
Schrodinger equation. Recall that the normalizations of ¥ (x, t) and ¢ (p, t) are
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completely correlated as

+0o0 +00
f dp o (p,0)* =/ dx [y (x, D> =1 (4.78)

—00 —0o0
This is true provided that we have enforced the normalization for ¥ (x, t) as
a consequence of its interpretation as giving a probability density for posi-
tion measurements. This fact strongly suggests that we make the additional
association that

Pou(p: 1) = ¢ (p, DI = ¢*(p 1) ¢ (s 1) (4.79)
is a probability density for momentum measurements, and that

* |¢(p,t)|* dp is the probability that a measurement of the momentum of a
particle described by ¢ (p, t) (obtained possibly via the Fourier transform of
Y (x, t)) will find a value in the interval (p, p + dp) at time .

We can call ¢ (p, t) the momentum-space wavefunction by analogy with ¥ (x, )
which is the position- or configuration-space wavefunction. This then allows one
to make more detailed predictions about the distribution of momentum values
using, for example,

Pb
Prob[p € (pa> pp)] =/ dplo(p, 1) (4.80)

a
being the probability of measuring the momentum to be in the finite interval

(pa; pb)

This identification is made more compelling by the observation that

. +00 h o
<P>t = / dxw*(X, t) (_, ) W(X, t)
10x

—00
+oo h o

1 +o0 ,
_ * ipx/h
- [ (i)l L avene

+0o0 +00 )
=[ Tlnh /_oo dx ™ (x, 1) f_oo dpp ¢ (p, t)e’P"/ﬁ}

+00 1 +00 . *
/ dpp¢(p,t)[m/ dxt/f(x,t)e"f’x/h]

+o0
= / dppd(p, )™ (p, 1)

+oo
=f dpp o (p, t)I*

—00

(P)e = (p)e (4.81)
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where we have written the average value now as (p); (i.e. without the “hat” or
operator symbol) when evaluated using the momentum-space wavefunction.
In this representation of the quantum mechanical solution, the momentum
observable is represented by a “trivial” operator, p. Position information is now
less directly obtainable, as we can write

+00
{x)e 2/ dx Y (x, 1) x Y (x, 1)

—00

oo +00 .
:/—oo [\/217171 /_oo dp¢™(p, 1) e_lpx/h}xlﬂ(&t)dx

+o0 +oo
/_ _ B [ﬁ f_ ey @ e—ipx/h]
/-—l—ood o0 (in 0 |: 1 /+ood 0 —ipx/ﬁi|
—00 p¢ P (1 %) \/ﬁ -0 XI//X ‘

+00 . )

= ¢~ (p, 1) (zh@) ¢(p,t)

+00

¢ (P, 1) X P (ps 1)

(x)r = (X)¢ (4.82)

where we now identify the position operator in the momentum space represent-
ation as
0
ap
The probability interpretation of ¢ (p, t) also implies that:

x =ih (4.83)

® ¢(p,t) should be square-integrable (as a function of p) and continuous in p
and

® ¢(p,t) (and its spatial derivatives) should be continuous and must vanish
sufficiently rapidly as p — =00 so that it is square-integrable.

The expectation values of higher powers or functions of x are also easily obtained,
generalizing ideas in Sections 4.3.2 and 4.3.3. For example, a sometimes useful
expression for the average value of x? is given by

) +o0 32¢(p, t) +o0 a(p(p’ t)
2y 32 * _ 2
= h/_oo P00 =th /_oo ‘ ap

2
dp (4.84)

where the second form is obtained by an IBP, as in Eqn. (4.65).
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4.6 Energy Eigenstates, Stationary States, and the
Hamiltonian Operator

In much the same way that Newton’s second law relates the time-dependence
of a particle’s trajectory to the external force, the time-dependent Schrodinger
equation

0 h? 3%y (x, t)

1h5¢(x, t) = RS T
dictates the time-development of the wavefunction of a particle in the presence
of an external potential. If V (x, t) is truly time-dependent, the resulting partial
differential equation can be difficult to solve, but we can often consider the

special, but very important, case of a time-independent potential, that is, one for
which

+ V(x, )y (x, t) (4.85)

V(x, t) = V(x) (4.86)
only. In this case, the Schrodinger equation can be separated in the form
9 2 2 .
ih— M =|—-———4+V ) =H ot 4.87
i 8t1ﬁ(x ) [ 2m8x2+ (x)]lﬁ(x ) Y (x, 1) (4.87)
where we have introduced the Hamiltonian operator, which can be written as
A B2 52 »?
H=——+V =—+4V 4.88
ma T (x) o T (x) (4.88)

and is seen to be a function of position coordinates only. This operator is
the quantum mechanical version of the corresponding classical Hamiltonian
function.”

Equation (4.87) is now a separable differential equation and a standard method
of solution is to assume a product wavefunction of the form

V(x,t) =¥ (x) T(1). (4.89)
If we substitute this form into Eqn. (4.87) and divide by ¥ (x, t) we find
L dT (1) .
[zh _ ] / (1) = Ay ] /v (4.90)

which must be true, of course, for all possible values of x and ¢. The constraint
that two different functions of independent variables be identical, that is,

F(t) = G(x) forall x and ¢ (4.91)

* See many undergraduate texts, for example, Marion and Thornton (2003), for an introduction to
the Hamiltonian formulation of classical mechanics; a brief review is also contained in Appendix G.
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can be satisfied only if both functions are equal to a constant. This is easily shown
by noting that
0F(t) 9G(x)
0= = = G(x) = constant
ox ox
dF(t)  9G(x)
at ot

Noting the dimensions, we can then write the common constant as E giving

= 0 = F(t) = same constant (4.92)

[ih(dT(t)/dr)] [H 1ﬁ(x)]

= =E (4.93)
T(t) ¥ (x)
so that the time-dependence is easily found to be
T(t) = e "B/ (4.94)
The complete wavefunction is then
Y1) = Ype 0 (4.95)
where ¥ (x) now satisfies the time-independent Schrodinger equation
R 2 d2
Hyp(x) = (_ﬁ@ + V(x)) VE(x) = Ep(x) (4.96)

We will devote much of the rest of the book to examining the mathematical prop-
erties and physical meaning of solutions of the time-independent Schrodinger
equation. We note that:

® The number E can certainly be identified as the uniquely defined energy of the
state since application of the energy operator, E, gives

n 0 .
Evpan) = iho (wE(x)e*ZEf/h) — EYp(x, 1) (4.97)

Moreover, calculations of expectation values of powers of the energy operator
give

—+00
(E"y = f dx ¥ (x, 1) E" ¥ (x, 1)

_ f_ﬁtoo 0 <1//E(x)ei}3t/h> (ih%)n (wE(X)e_iEt/ﬁ>

o0

+o0
= E”f dx | yrg(x)|*

—00

=E" (4.98)
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This implies that the uncertainty in energy of this state is

AE =+/(E2) — (E)2 =0 (4.99)

Such a state, with a precisely defined value of energy, can be called an energy
eigenstate with energy eigenvalue given by E. (The use of the German “eigen”
meaning characteristic or “belonging to” or, colloquially, “own” is appropriate
here.)

The energy eigenvalue appears as a parameter in the time-independent
Schrodinger equation, so that separate solutions must be found for each dif-
ferent value of E, hence the label /g (x). For the case of a free particle, where
V(x) = 0, for example, we solve

Hyrp(x) = —;% = Eyp(x) (4.100)
to obtain
Yp(x) = FiVImEx/h (4.101)
or

wE(x, t) — e:tiv 2mEx/he—iEt/h — ei(px—pzt/Zm)/h — wp(x, t) (4102)

which are the standard plane wave solutions, with the identification E =
p?/2m for the parameters E, p.

An equation such as a YE(x) = EY¥g(x), of the form
operator acting on function = number times a function (4.103)

is called an eigenvalue problem. Similar problems arise in matrix algebra and
elsewhere; in that context, they are often of the form

M-v=A-v (4.104)

where M is a matrix and v is a vector.

The trivial time-dependence of such states implies that the corresponding
probability densities are independent of time, since

P(x, t) = [WE(x, 0% = [Yp)Pe B/ EN = |y (4.105)
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Therefore, the expectation values of most operators, @, for such states will
satisfy

(0); = /‘+°° i (wg(x)e—i-ilit/h) O <wE(x)e—iEt/h)

—00

+oo A
= / dx YE(x)* O Yg(x)

(0 = (O)i=0 (4.106)
Such states for which the probability density and other observables are “frozen
in time” are called stationary states.

® Because of the linearity of the Schrodinger equation, the most general solution
will consist of linear combinations of such stationary state or energy eigenstate
solutions, that is,

Vix,t) = <Z+ / dE) Y (x)e BT (4.107)
E

where the sum is over all possible discrete and continuous values of E. Because
this function contains solutions of different energies, it will no longer be an
energy eigenstate and will, in general, have AE # 0. In addition, because
of the possibility of “cross-terms” in |y (x, t)|?, the probability density (and
physical observables) can have nontrivial time-dependence, and so it is not a
stationary state either. Examples of this type include the Gaussian wave packet
constructed from free-particle solutions in Section 3.2.2 or the accelerating
wave packet considered in the next section.

An especially simple case of such time-dependence is a solution consisting
of a linear combination of two normalized energy eigenstates, namely

1 . :
V6t = —= (Ve () B 4 g, (x) TR (4.108)
V2
where we assume that g, (x) and g, (x) are real for simplicity. We will also
assume that the two states have a vanishing overlap integral (to be proved quite

generally in Section 6.3). In this case we have

.  E+E . E?> + E?
By =22 g <E2>=% (4.109)
so that
" " E —E
AE = (152>—<E>2=|1 2| (4.110)
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while
P(x,t) = Y (x, > = ¥ (x) + ¥, (%)
+ 29, (X)¥E, (x) cos(|Ey — Ep|t/h) (4.111)

® This example serves to remind us that the actual value of E itself is not
important, as for individual eigenstates the effect of the time-dependent phase,
e Et/h s irrelevant. In mixed states, only energy differences appear, and this
fact is a reflection of the arbitrariness inherent in choosing the potential energy
function, V (x); in classical mechanics, letting V(x) — V(x) + V) makes no
change in the applied force (and hence the physics), and the choice of Vi can

change the overall energy scale, but not energy differences (P6.4).

* Energy eigenstates, characterized by AE = 0, in order to be consistent with
the energy—time uncertainty principle, AE At > h/2 require that At = oo in
some sense; this is plausible given the static character of stationary states. For
the two-state system above, the characteristic periodicity of the system from
Eqn. (4.111) is

h
T=2r—— (4.112)
|Ey — B
which indeed is perfectly consistent with
E, —E
AEar~ B EBL (4.113)

4.7 The Schréodinger Equation in Momentum
Space

4.7.1 Transforming the Schréodinger Equation into Momentum
Space

We will often concentrate on the solution of the time-dependent Schrodinger
equation in position- or configuration-space, namely, solving

R 3%y (x, 1) Y (x, 1)
-4V 1) = ih————— 4.114
m a2 T Y (x, 1) =1 " ( )
for ¥ (x,t) and then obtaining ¢ (p, t), if desired, by the appropriate Fourier

transform,
+o0

1
\/27Th —00

d(p,t) = W (x, t)e Py, (4.115)



112 CHAPTER 4 INTERPRETING THE SCHRODINGER EQUATION

It is possible, however, to transform the Schrodinger equation itself into
momentum space and solve for ¢ (p, t) directly, and this strategy sometimes
yields a simpler and more directly interpretable solution. (For another variation
on this approach, see P4.22.) To this end, we multiply both sides of Eqn. (4.114)
by exp(—ipx/h)/~/27 h and integrate over dx to obtain

al//(x) t) _1px/ﬁd

J_
B B PP (60 [ i/
= il (‘%T) ()i

V(x)Y (x, 1) e P dx (4.116)

1
_|_
2mh J-
The order of integration and differentiation with respect to time on the right-
hand side can be exchanged so that

31#(96, t) J—ipx/h ) ( 1 +oo Cioeh
i i idd dx = ih— (x, t)e PPy
A2 ot V2rh J—o0o v

= ih8¢(p’ 2 (4.117)

ot

The spatial derivative term can be rewritten as

2
il o 5et) e

IBP ﬁz 1 oo & —ipx/h
B RET (E [e ] dx

2m2mh J-
_p (1 [t —ipx/h
= ( — ] v(x,t)e dx
2
=2 4(p1 (4.118)

where we have used two integrations by parts to move the derivatives onto
the exponential term. Finally, the potential energy function can formally be
expanded in a Taylor series to yield

V(x)¥(x, t)e P dx

1
2mh J-
. vy 1

= n!l 2mh

w .
x" Y (x, t)e” ¥/ dx (4.119)
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and we can use

1 +00 .
W (x, t)x" e PX/M dx

27‘[77, —00
1 oo

a\" ;
_ e —ipx/h
= 5 Y(x, 1) <zhap) (e P ) dx

—0

L 0\
= <Zha_p) P (p, 1) (4.120)

in which case the potential term becomes

00 V(n)(o) 9 n 9
|:Z l (lh@> i|¢(P’ t) = V(lh$> d(p, 1) (4.121)

n=0

where we once again have identified X = ihd/dp. Thus, the time-dependent
Schrodinger equation in momentum-space can be written as

2

p L 0 _ 4 00(p, 1)
%(b(p, t) + \%4 <lh@) ¢(P, t) = ih———=

4.122
” (4.122)

where we implicitly use the series expansion for V(x) = V(ihd/dp). If the
potential energy function does not depend explicitly on time, we can write

o (p,t) = p(p) e E/N (4.123)

and obtain the time-independent Schridinger equation in momentum-space
2

P L d B
b +V (zf%) ¢(p) = Ed (p) (4.124)

in the usual way.
For the simple case of a free particle (V(x) = 0), we have

09 (p.t) _

p2
—ih=—¢(p, 4.12
Y ih>— &, 1) (4.125)

which is easily integrated to yield

b (p, 1) = po(p) e~ P7H/2mP (4.126)
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where ¢o(p) is an arbitrary initial momentum distribution; this yields the
standard position-space wave packet via the Fourier transform since

400 )
Y(x, 1) = / dp ¢(p, t) /"

—00
oo —ip?t/2mh\ ipx/h
= [ (qupreirerm) gy
1 +oo . 2
= do(p) e Px=Pt/2mh gy (4.127)

LV, 2nh —00

as in Section 3.2.1.

4.7.2 Uniformly Accelerating Particle

A model system (with a very familiar classical analog) where the solutions of
the Schrodinger equation are actually more easily obtained and analyzed using
momentum-space methods is the case of a particle acted upon by a uniform or
constant force. We take the force to be given by F(x) = F, so that the potential
energy function is V(x) = —Fx. We can assume for definiteness that F > 0,
corresponding in the classical case to uniform acceleration to the right. The
time-dependent Schrodinger equation in p-space from Eqn. (4.122) has the
form

P2 _d 36, D)
(1) — F- [zh@]qs(p, 0= ih= (4.128)
or
L (L90(pt) | B(p, )\ PP
ih (F 5 T ar ) = -1 (4.129)

We note that the simple combination of derivatives guarantees that a function
of the form ®(p — Fr) will make the left-hand side vanish, so we assume a
solution of the form ¢ (p, t) = (p — Ft)qz(p), with @ (p) arbitrary and qz(p) to
be determined. Using this form, Eqn. (4.129) reduces to

a¢ ihp? -
d;g’ b= i) (4.130)
with the solution
B(p) = e~ 0*/6mER (4.131)

We can then write the general solution as

¢ (p,t) = O(p — Ft) ¢~ P’/6mER (4.132)
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or, using the arbitrariness of ®(p), as
d(p,t) = o(p — Fr) " 0=F’=p)/6mER) (4.133)

where now ¢ (p) is the initial momentum-—space amplitude, since ¢ (p, t = 0) =
o (p). If the initial momentum distribution is characterized by (p)o = po then
(using an obvious change of variables) we find that

“+00
(P =f plo(p,1)I* dp

+00
= f pldo(p—Ft)|* dp (and using q = p — Ft)
o0

+o00 +0oo
:f q|¢0(q)|2dq+Ft/ o (q)|*dg

(p)e = (plo + Ft (4.134)

Thus the average momentum value increases linearly with time, consistent with
the classical result for a constant force, F = dp/dt; the momentum distribution
simply ‘translates’ uniformly to the right with no change in shape since, from
Eqn. (4.133)

19 (p, )* = |po(p — Ft)|? (4.135)

The corresponding position-space wavefunction can be written as

¥(x, 1) = Go(p — Fr) ! 0=FO°=p/6mER gipx/h gy (4.136)

1 f+°°
V2 h J -0
and, because the p3 terms cancel in the exponent, this transform can be done
analytically (P4.24) for a Gaussian momentum distribution. In that case, we have

do(p) = /% e )2 (4.137)

so that
d(p, 1) = /% o=@ (0—F)?/2 ,i((p—F1)’=p®) /6mFh (4.138)
T
and
_ iFt(x—Ft=/6m)/h —(x—Ft=/2m)=/2h"a=(14it /1)
U t) = 1 . 2 . 2 2 /052,2

Vahym (1 + it/ ty)
(4.139)
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where the spreading time is defined by ty = mha?, just as in the free-particle
wave packet case of Section 3.2.2. The corresponding probability density is then

1
W (x, )7 = ———e T F/2m B (4.140)

Bivm

where 8; = ha,/1 + tz/tg, also as before. It is easy to see (P4.25) that

(x); = Ft?/2m and  (p?); = (Ft)* + ﬁ (4.141)

so that the uncertainty principle product is given by

h
AxAp = E‘/l + 12/13 (4.142)

as before. A position-space wave packet with arbitrary initial position (xp) and
momentum (pg) can then be obtained by letting

do(p) —> e P/ go(p — po) (4.143)

which gives the most general such Gaussian solution with arbitrary initial con-
ditions. Just as in Section 3.2.2, the integral in Eqn. (4.136) can be performed
numerically for other initial momentum distributions. For ¢ (p,0) other than
a Gaussian, the position-space wave packet will change shape, but Eqn. (4.135)
guarantees that the momentum distribution will not disperse.

4.8 Commutators

In the analytic wave packet examples considered so far, the free-particle and
accelerating Gaussian packets, we have explicitly demonstrated the validity of
the position—-momentum uncertainty principle,

h
AxAp> = (4.144)

We have previously understood this as arising from a fundamental limitation
imposed on wave packets formed by constructive/destructive interference by the
relation AxAk > O(1) from Section 2.3 and the identification (via de Broglie)
p = hk, that is, as a basic constraint arising from a wave mechanics description
of particle dynamics. We can approach this relation in a more formal way, using
the notion of quantum mechanical operators, as a preview of the more rigorous
proof of the uncertainty principle in Chapter 12.
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If we choose to work in a position-space representation, we note that because
p is associated with a nontrivial operator, the result of the application of p and x
to a wavefunction will depend on their ordering, specifically

XpY(x) # pxy(x) (4.145)

We can show quite generally that

) we = (MY (1
(xp—px)w(x)—x<i ™ ) (idx>(xw(x))
:x<§d¢(x)>_x<f_jld¢(x)>_7_jlw(x)
i dx i dx i
= ihyr(x) # 0. (4.146)

Since this is true for an arbitrary v (x), we can write an operator identity, namely

A

[x,pl=xp—px=ih (4.147)

where we have introduced the commutator of two operators, defined by

N

[A, B]

>

A

AB—-BA (4.148)

It is easy to show (P4.28) that this same result is also obtained in momentum-
space where X = i4d/dp is now the “nontrivial” operator, so that this relation is
not dependent on a specific representation.

To preview the connection between this lack of commutativity (as measured
by the nonvanishing commutator) and the uncertainty principle, we can look
again at Eqn. (4.146). If measurements of x and p gave the same result done
in either ordering, we could argue that the measurement procedures for these
two physical quantities did not “interfere” with each other, and independent
measurements of both are possible. One could then imagine making increasingly
precise measurements of both quantities until the uncertainty principle product
AxApwasas small as desired. The content of Eqn. (4.145), however, is to say that
a measurement of, say, p will necessarily alter some of the information regarding
the position x of the particle, or vice versa. This formal statement is important,
as it codifies the results of a large variety of “gedanken” experiments (thought
experiments) designed to violate Eqn. (4.146) (e.g. see P4.29) but which do not
after careful consideration.
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4.9 The Wigner Quasi-Probability Distribution

We have examined the probability interpretation of both v (x, t) and ¢ (p, t),
their connection via the Fourier transform, and how to extract information on
expectation values from either representation of the quantum wave function. In
classical mechanics, one often asks about the behavior of the motion of a particle
using both the x and p variables simultaneously, via a phase-space description,’
as discussed in Appendix G; such an approach has proved especially useful in
the analysis of systems exhibiting classical chaos. We also encounter this idea in
statistical mechanics’ where phase-space is a common topic, and related concepts
play an important role in quantum optics.”

It is therefore natural to consider if a quantum mechanical analog of a phase-
space probability distribution is a useful construct, despite the obvious problems
raised by the x — p uncertainty principle (discussed in the last section) and the
resulting restriction on one’s ability to make simultaneous measurements of both
x and p.

The closest that one can seemingly come to a joint (x, p) probability distri-
bution is a version proposed by Wigner (1932), who defined a quasi-probability
distribution via

+00

1 .
Pw(x,pst) = — Y+, ) Y(x —p, 1) 2P dy (4.149)

using position-space wavefunctions. Using the properties of the Fourier trans-
form, this can also be written in an entirely equivalent form in terms of
momentum-space wavefunctions as

+0o0

1 .
Pw(xpit) = — P*P+at)p(p—qt)e M dg (4.150)

We stress that in both equations x and p are simply variables and have no operator
properties.

* See, for example, Marion and Thornton (2003) or Cassiday and Fowles (1999).
> See, for example, Reif (1965).
6 See Scully and Zubairy (1997) and especially Schleich (2001).
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The Wigner distribution is easily shown to be real, since

1 +00 )
[Pwepin] = = | Y&+yDv x—yne Py
7Th J_so
1 +00 o
=— | VatnnvE-yn PNy
Th J_s
= Py (x, p; 1) (4.151)
by using a simple change of variables (y = —y). This is, of course, one of the

desired properties of any probability distribution constructed from complex
wavefunctions.

The integration of Pw (x, p; t) over one variable or the other is seen to give the
correct marginal probability distributions for x and p separately, since

+o0

Pw(x,pst) dp = [ (x, )|* = Pou(x, 1) (4.152)
+0o0
Pw (x, ps ) dx = | (p, 1)|* = Pom(p, 1) (4.153)

where one uses the definition of the Dirac §-function in Eqns (4.149) or (4.150).
This property of Pw(x,p) is clearly another necessary condition for a joint
probability density. Thus, in the limit that we consider only one variable or the
other, all results we have obtained so far are recovered.

However, one can also easily show that the Wigner distributions for two
distinct quantum states, V¥ (x, t) and y (x, t),

1 +o00 )
PY ity =— [ v+ pnnva—yneP My (4154)
Th J_so
0 1 +o00 .
PV\),( (x,pst) = — / X (x+2z,1) x(x — z, 1) P/ dz (4.155)
Th J_s

satisfy the relation

+00 +00
—00 —00

+o0 2
= ‘ Y (x, t) x(x,t) dx (4.156)
Th|J_s

So, for example, if ¥ and y are orthogonal states, so that their overlap integral
vanishes, it cannot be true that the corresponding Wigner distributions, P\(Al,/f )

and P\(,\),( ), can be positive-definite everywhere, as there must be cancellations in
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the integral on the left side of Eqn. (4.156). The fact that Pw(x, p;t) can be
negative in parts of (x, p) space is also easily confirmed by direct calculation
(P4.37, P5.23, P9.16) of specific cases.

This feature is, after all, hardly surprising because of the noncommutativity of
x and p encoded in the uncertainty principle. Despite this obvious drawback, the
Wigner function is still useful for the visualization of the correlated position- and
momentum-space behavior of both quantum eigenstates and time-dependent
wave packets.

Example 4.3. Wigner distribution for the free-particle Gaussian wave packet

A useful benchmark example of the Wigner function is that of a Gaussian free-particle wave
packet, where the time-dependent momentum- and position-space wavefunctions (for arbit-
rary initial xo and pg) are given in Eqns (3.35) and (3.36). The corresponding Wigner function
is easily obtained from either Eqn. (4.149) or (4.150) using standard Gaussian integrals, and
is given by

P(G)(X p;t) = L e,az(p,po)z er(X*Xo*Pl‘/m)z/ﬁ2 (4.157)
W wh

where 8 = ha. In this case, the ultrasmooth Gaussian solution does give a positive-definite
Pw(x, p; t) and it is known that such solutions are the only forms which give rise Wigner
functions which are everywhere nonnegative. Note that in the second exponential term, it is
the constant B that appears and not the time-dependent 8; = 8+/1 + (t/ty)?; similarly, the
term pt/m that appears there is also correct, and not pot/m as one might have expected.
To see how this form allows us to visualize wave packet spreading, we plot Py (X, p; t)
versus x, p in Fig. 4.7 for t = 0, ty, and 2ty (where ty is the spreading time) and note how it
develops with time, especially the ‘tilting" of the shape of Pyy. A projection of Py (x, p) back
onto the (vertical) p-axis, via Eqn. (4.153), is seen to give the same Pqm (p, t) for each time

Figure 4.7. Plot of the Wigner distribution,

Py (x, p; ) versus (x, p), for the free-particle
Gaussian wave packet, from Eqgn. (4.157),at t = 0,
tp, and 2t.
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(Continued)

shown, consistent with no change in the shape of |¢ (p, t)|2. A similar projection downward
onto the (horizontal) x-axis not only illustrates the constant speed motion (to the right), but
also does give rise to an increasingly spread out | (x, t)|2. The large (small) momentum
components of the packet are increasingly correlated with the front (back) of wave packet
(as shown more quantitatively in P4.18) so that the fast (slow) parts are ahead (behind) the
center of the packet, and therefore in the upper left (lower right) of the Py peak, giving rise
to the observed “tilt.”

The Wigner distribution also provides a useful context in which to visualize
the constraints placed on measurements of x and p by the uncertainty principle.
In this picture, the smallest possible “area” over which a quantum wavefunction
can be spread in (x, p) spaceis Ax- Ap > h/2;if ones squeezes the wavefunction
down in one direction (say x), it must necessarily stretch out along the other (p)
one. While we have focused on the use of Py (x, p; f) as a visualization tool, many
of the formal results discussed in this chapter regarding expectation values and
operators can be obtained in a natural way through its use, as in P4.37.

4.10 Questions and Problems

Q4.1. Would Ax = (|x — (x)|) be a good choice for the spread or uncertainty in x?

Q4.2. Can you show that (x?) > (x)? quite generally? Under what conditions is
the equality possible? Can you find a probability distribution, P(x), for which
Ax=0?

Q4.3. What is the statement of the equation of continuity in electromagnetism? What
is the conserved quantity in that case?

Q4.4. What are the dimensions of probability flux in Eqn. (4.32)?

Q4.5. What does the conservation of flux equation look like in momentum-space? For
simplicity consider only the case of a free-particle and one with a constant force,
using the momentum-space equations in Eqns (4.125) and (4.128), respectively.

Q4.6. Consider a particle moving in an imaginary potential V(x) = —iV;. What are
the possible plane wave solutions of the Schréodinger equation? What would
happen to a wave packet which impinged on a region with this potential? What
does such a potential have to do with absorption?

Q4.7. Why do we more often solve the Schrodinger equation in position space than in
momentum space?

Q4.8. For the free-particle and accelerating wave packets, the spread in position
increases with time. Is it possible that the spread in position of a wave packet
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Q4.9.

Q4.10.

P4.1.

P4.2.

(not necessarily for a free particle) could shrink with time? What would that
imply about the spread in momentum? How about the case of the ’bouncing’
wave packet in Section 3.3? Or the alternate Gaussian wave packet of P3.5?

In Chapter 2, it was discussed how solutions of the classical wave equation of the
form ¥ (x,t) = ¥ (x — vt) propagated with no distortion or change in shape.
Show how to calculate Ax; for such a wave and discuss how the spread in position
remains constant in time. Can such solutions satisfy the Schrédinger equation?
Sketch the contour plot and “trajectory” picture for |¢ (p, t)|? corresponding to
a free particle; that is, what does Fig. 4.6 look like for the momentum space
distributions? How about the corresponding plots for the accelerating wave
packet in Section 4.7.2?

Probabilities for dice. Consider the throw of a single die.

(a) Enumerate all of the possible outcomes, and evaluate the a priori probabil-
ities, P(x;).

(b) Evaluate (x), (x?),and Ax.

(c¢) How much of the probability is found in the interval ((x) + Ax, (x) — Ax)?
Within 2Ax of the average?

(d) Repeat for two dice thrown at the same time, and confirm the results from
Example 4.1 and Eqn. (4.9),

(e) Are your results for the one- or two-dice problem similar to those expected

for the Gaussian or normal distribution in Eqn. (4.17)?

Poisson probability distribution. The Poisson probability distribution is defined
by
n

A
P(mi) == e (4.158)
n.

where A is a constant. This distribution can correspond, for example, to the
probability of observing n independent events in a time interval ¢ when the
counting rate is r so that the expected number of events is rt = A; this is
especially relevant when A = rt is not too large.

(a) Show that the P(n; 1) are properly normalized, namely that
oo
> P(mn) =1 (4.159)
n=0

(b) Evaluate (n) and An for this distribution in terms of A. Hint: One can write

]

> e han 0 = A"
(n>=§np(n;x)=n§)n = (’\ﬁ)gﬁ (4.160)

(c) Plot P(n;X) versus n for several values of A, indicating the average value and

the 1o limits. Is the distribution symmetric around the average?
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(d) Assume that a book is 600 pages long and has a total of 1200 typographical
errors. What is the average number of errors per page? What is the probability
that a single page has no errors? How many pages would be expected to have
less than 3 errors? What is the probability that a single page has 4 or more
errors?

Binomial probability distribution. Consider a trial which only has two out-
comes, the desired one with probability p, and anything else, with probability
q =1 — p.In N independent trials, the probability of n successful outcomes is

N! Y
P(n;N) = mp" g~ (4.161)

This result depends on two factors; the last two terms correspond to the prob-
ability that the first n trials are successful while the last N — 7 ones are not; the
first term simply counts the number of different distinguishable ways in which
one can obtain the n possible outcomes.

(a) Show that this distribution is normalized, namely that

N
Y PNy =@+~ =1 (4.162)
n=0

Hint: Use the binomial theorem!

(b) Evaluate (n),(n?), and show that An = ,/Np(1 — p). Hint: Use a
differentiation trick of the form

K
nK P(n; N) = (p%) P(n;N) (4.163)

which “brings down” the requisite number of powers of #.
(c) Why does An behave as it does when p — 0 or 1?

Exponential probability distribution. A continuous probability distribution has
the form

P(x) = Ne~I*l/a (4.164)

(a) Find N so that P(x) is properly normalized.

(b) Evaluate (x), (x*), and Ax.

(c) What is the probability that a measurement would find x in the interval
(0, +00)?(—a, 2a)?(0,0.0001a)?

(d) What is the probability that a measurement would find x = 1.5 exactly?

(e) What is the probability that |x — (x)| < Ax? < 2Ax? < 3Ax? Compare
these values to the Gaussian distribution in Example 4.2.

(f) Plot the distribution above for a given value of a along with a Gaussian
distribution with its parameters (1 and o) chosen to give the same average
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P4.5.

P4.6.

P4.7.

P4.8.

P4.9.

value of x and spread Ax. Show how your plot illustrates the results of
part (e).

Classical probabilities for a particle in a box. Consider a particle which is located
with equal probability anywhere along a one-dimensional segment of length L.

(a) Find P(x; L), that is, the normalized probability of finding the particle at
position x.
(b) Evaluate (x) and Ax.

(c) What are the probabilities that the particle would be found within one
standard deviation of its mean value? Why is this value lower than for the
Gaussian distribution?

(d) What are the dimensions of P(x; L)?

(e) This is an excellent problem for which you could try to generate “measure-
ments” of the probability distribution by using a random number generator
on a computer. Write a short program that generates a random num-
ber in the range (0,1) (i.e. let L = 1), and put it into bins, éx, of your
own choosing, counting how many fall into each bin. Use this to evaluate
P(x) = (AN/Niot)/Ax as a function of x, plotting your results.

Consider a particle described by a wavefunction
V(x,t) = Ae WI/L—iEt/h (4.165)

(a) Find A so that ¥ (x, t) is normalized properly.
(b) Evaluate (x), (x?), and Ax.

(c) What is the probability of finding a particle in the region (—L, +L/2)? How
about in the interval (+L, 400)? and in the interval (0.99999L, L)? What is
the probability of finding the particle exactly at x = 3L?

(d) Try to evaluate (p) and see what you get. Now try (p?). If you have problems
doing this, to what do you trace your difficulties?

Consider the same position-space wavefunction in P4.6.

(a) Using the Fourier transform, find ¢ (p, t).

(b) Evaluate (p), (p*), and Ap. Why do you think you got the results you did?

(c) What fraction of the particles would be moving with momentum in the
range p € (h/L,2h/L)?

Assuming that the potential has a negative imaginary part, thatis V(x) = V(x)—

iVy, derive Eqns (4.40) and (4.41).

Lorentzian line-shape. Consider the time-dependence of a wavefunction, which

has an energy with both real and imaginary parts, namely

T(t) = ¢~ "Ea=VDU/h (4.166)
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Use this wavefunction to evaluate (t) and (%) using
oo o
<ﬂm=/ manfm// dt | T(D)] (4.167)
0 0
Find the analog of the Fourier transform of T'(¢), namely
oo .
A(E) = / dt T(t) eEt/h (4.168)
0

and show that

N
(E — Ex)? + (h/21)2

|A(E)|? = (4.169)
and find the normalization factor N (by integrating over all possible energies,
E.) Evaluate (E) and estimate the value of the spread in energy. This functional
form for A(E) is called a Lorentzian line shape and is relevant for describing the
spectral line shapes of unstable quantum states.

P4.10. What is the probability flux for a plane wave of the form

P4.11.

Yy (x, 1) = AelCEPx=p*t/2m/R (4.170)

The Klein—Gordon equation. Consider the relativistic wave-equation

P(x, 1) ,0%P(x,1) mc?
TSI o < ) ¢(x, 1) (4.171)

(a) Define the probability density for position to be
Plx, 1) = 9" () 200D _ 3¢ (x’ D (5, 1) (4.172)

at
and show that the corresponding equation of continuity can be written as

dP(x,t)  9j(x,1)

= 4.173
Jat 0x ( )

where
h ¢ (x, a ,
jlet) = <¢ (x, 1) ¢(x H_ 9" (x t)cp( )) (4.174)

(b) Evaluate the probability density for a solution of the form

¢ (x, 1) = u(x) e EIR (4.175)

Is the probability density positive definite no matter what the sign of E? Com-
pare this to the probability density defined via Eqn. (4.22) for the Schrodinger
equation.



126 CHAPTER 4 INTERPRETING THE SCHRODINGER EQUATION

P4.12. Show that the overlap of two solutions of the Schrédinger equation,

+00
o = / UF 6 1) a(x, 1) de = OF (4.176)

o0

is independent of time, provided V (x) is real.

P4.13. Gaussian free-particle wave packets in position-space. Using the explicit form of
the most general position-space free-particle Gaussian wave packet of Eqn. (3.35)
(with arbitrary xp, po), calculate

(a) {(x);and (x?);

(b) (p)¢ and (p?),

() Ax;and Ap;

(d) (E), (E?),and AE.

P4.14. Gaussian free-particle wave packets in momentum-space. Repeat P4.13, but use
the general momentum space Gaussian wavefunction in Eqn. (3.36), namely

b(p,1) = /% e~ (P=p0)*/2 y=ipxo/h ,—ip*t/2mh (4.177)
T

Are all your answers the same?

P4.15. Kinetic energy calculations. Consider the wavefunction, ¥ (x), defined over the
range (0, a), given by

0 forx <0
Ax/c for0<x<c¢
Y(x) = (4.178)
A(a—x)/(a—c) forc<x=<a
0 fora < x

(a) Find the value of A for which this is properly normalized.

(b) Evaluate the kinetic energy for this wavefunction using the two different
forms discussed in Eqn. (4.65), namely

A 1 . R? [tee %Y (x, )
T = — 2 = —_—— d *—’
(T) = ——(p7) o) Y3
K2 +00 9 Jt 2
_v dx‘_lf’(x ) (4.179)
2m J_oo ax
and show that you get
- 3h?
Ty=—" (4.180)

2mc(a — c)
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For the first form, you should be careful when evaluating d?v (x)/dx?, by
first writing dv (x)/dx in terms of ®-functions (as in Section 2.4), and then
differentiating a second time.

(c) Why does (T) diverge as ¢ — 0 or ¢ — a?

P4.16. Which of the following operators are Hermitian and which are not?

P4.17.
P4.18.

P4.19.

(a) 3—4i

(b) 8/0x

(0) x-p

(d) xpx

Show that the operator (xp + px)/2 is Hermitian.

Position-momentum correlation in quantum mechanics. The “mixed” expect-
ation value involving x and p that measures a correlation between position and
momentum in a quantum wave function, called the covariance (or cov for short)
can be written as

(Gx = (D@ — (PN + (P — (PN (x — (x))). (4.181)

N | —

cov(x, p) =

(a) Show that this is equal to

1, . . .
cov(x, p) = 3 ((xp + px)) — (x)(P). (4.182)

(b) Evaluate cov(x, p) for the general Gaussian wave packet in position space of
the form in Eqn. (3.35).

(c) Repeat the calculation using the general Gaussian wave packet in
momentum space of the form in Eqn. (3.36), now using X as the nontrivial
operator

(d) The analog of a classical correlation coefficient for two quantum mechanical
quantities, which may not commute, can be defined as
cov(x, p; t
p(xX,p;t) = v D) (4.183)
Axt . APt
Evaluate | p(x, p; t)|? for the standard Gaussian wave packet, and discuss its
time-dependence. Why would such a free-particle wave packet develop a
nonzero correlation as it evolves in time?

If the potential energy function is real, show that the Hamiltonian operator,

R P’
H=—+4+V(x) (4.184)
2m

is Hermitian.
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P4.20.

P4.21.

P4.22.

P4.23.

Show that any operator, O, which satisfies Eqn. (4.72) (and which is therefore
Hermitian) also satisfies Eqn. (4.73). Hint: You might wish to follow the following
steps.

(a) Consider a wavefunction ¢(x) = ¥ (x) + A¢(x) where A is an arbitrary

complex number.
(b) Since ¢ is an admissible wavefunction (why?), we must have

+o0 N
I(A) = / dx ¢*(x) O ¢(x) = [IM]* (4.185)
-0

so that I(A) — I(\)* = 0.

(c) Use this result and the fact that X is arbitrary to complete the proof.

Consider the angular momentum operator, defined by
A ho
L =~-—
10¢
which acts on angular wavefunctions of the form Z(¢) only over the range
(0, 27r). To be consistently defined, the wavefunctions should satisty Z (¢p+27) =

Z(¢). Explain why this is so and then use this fact to show that the angular
momentum operator is Hermitian.

(4.186)

(a) Show that the Schrodinger equation in momentum-space can be written
in terms of an integral equation involving a “nonlocal” potential energy,

namely
P2 +00 o
(E - %) o= Ve-pomdp (187
where
V(g = — e~V (x) dx (4.188)
2rh J_o

is essentially the Fourier transform of V (x).
(b) Find the form of V(p — p) in the case of the uniformly accelerated particle.
Position- and momentum-space wavefunctions for the harmonic oscillator.

Consider the Schrodinger equation for the harmonic oscillator, for which the
potential energy is typically written as V (x) = mw?x?/2.

(a) Write down the time-independent Schrédinger equation in position-space
for ¥p(x).

(b) Do thesame for the time-independent Schrodinger equation in momentum-
space for ¢g(p).

(c) Show that both equations can be written in the form

_ RO
de?

+ 2 (0) = €fe(0) (4.189)



P4.24.

P4.25.

P4.26.

P4.27.

P4.28.
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where{ = x/o = p/p witho, p carrying the appropriate dimensions. What
is € in terms of E and the other parameters of the problem? This implies that
the stationary state or energy eigenstates of the harmonic oscillator have the
same functional form in both position- and momentum-space. Why would
you expect this to be the only case for which this might happen?

Evaluate the integral in Eqn. (4.136) explicitly, using the Gaussian ¢o(p) in
Eqn. (4.137), resulting in Eqn. (4.139).

Gaussian accelerating wave packet in position space. Using the explicit form of
the position-space accelerating Gaussian wave packet of Eqn. (4.139), evaluate

(a) (x);and (x*);

(b) (p); and (p*);

(c) Axand Ap

(d) (E)r, (%), and AE

(e) (T) and (V(x)). Compare their sum to ()

Gaussian accelerating wave packet in momentum-space. Repeat P4.25, but use
the momentum space wavefunction, namely

o(p,t) = /% e~ P12 Hi((p—F1)’—p?) J6mFh (4.190)
T

General Gaussian accelerating wave packet. Calculate the position space wave-
function for the accelerating particle using the general Gaussian momentum
distribution of Eqn. (4.133) and show that the probability density is localized at
the point

F
x(t) = —t2+‘@t+xo (4.191)
2m m
Commutators.

(a) Show directly that [x", p] = ihnx"~! by acting with both sides on an arbit-
rary function ¥ (x) using the position-space form of p = (h/i)(d/dx).
(This takes one line.)

(b) Generalize this result to show that [f(x), p] = ih(df (x)/dx)

(c) Show that [x, xp] = [x, px] = ihx.

(d) Show that [x,p?] = 2ihip and then generalize to show that [x,p"] =
ihnp"~L. (The last part takes # lines.)

(e) Show that [x?, p?] = 4xp.

(f) Repeat parts (a) - (e) using the momentum-space description where p is

trivial and x = ifi(d/dp) is an operator and confirm that you get the same
answers.
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Figure 4.8. Schematic experimental apparatus
for testing the uncertainty principle.

P4.29.

P4.30.

Screen

(g) Use this method to show that [X, g(p)] = ih(dg(p)/dp).
(h) Evaluate [E, #] and [E, x].

Outwitting the uncertainty principle? Consider the schematic experiment
shown in Fig. 4.8 where electrons are emitted from a source, allowed to pass
through an aperture of lateral width a, and are detected at a screen a distance
D away. A naive analysis of this “gedanken” experiment might come to the
conclusion that

Apy ~ (%)p and Ay ~a (4.192)

so that the uncertainty principle product Ay Ap, could be made arbitrarily
small by letting a — 0 and D — 0. Discuss what is wrong with such a analysis.

Simple model of “interfering Bose condensates.” In a well-known experiment,’
sodium atoms are trapped and cooled to form two highly localized and well-
separated samples, at which point the trapping potential is released and the two
sets of atoms expand freely, overlap, and exhibit interference effects. A simple
one-particle quantum wavefunction for a particle of mass #, which illustrates
this type of behavior, is given by the initial state

¥ (x,0) = [e‘“‘dﬂ)zﬁﬁz + ei‘f’e—(”d/z)z/zﬂz] (4.193)

N
NN
where the two samples are separated by a distance d > B and ¢ describes a
constant relative phase.

(a) Evaluate the normalization constant N exactly for the general case, and
approximately in the limit when d > 8.

(b) What is the resulting time-dependent wavefunction, ¥ (x, t), which solves
the free-particle time-dependent Schrodinger equation? Evaluate the time-
dependent probability density P(x, t) and discuss why interference effects
arise in the overlap region.

7 See Andrews et al. (1997).
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(c) Intermsof 8, d, m,and h,howlong does it take for the two localized samples
to begin to overlap. Compare this time to the natural spreading time, t;, for
a Gaussian wave packet.

(d) For timescales for which the overlap is apparent, show that the spatial
wavelength of the interference fringes goes like A = ht/md.

(e) Show that the momentum-space probability density is time-independent
and is given by

4N2qy pd 2.2
P(p,t) = 2= ) e 4.194
%)) N cos <2h>e (4.194)

where a = B/h.

P4.31. Expectation values and uncertainties for general free-particle wave packet. We
can evaluate the most general form for the expectation values of position and
momentum, as well as the corresponding uncertainties, using a general time-
dependent momentum-space solution as in Eqn. (4.126), namely

¢ (p, 1) = o(p) &7 t/2mh (4.195)
where ¢ (p) is any acceptable momentum-space wavefunction.’

(a) Show that the expectation values for p and p? are time-independent, namely
that

(p)r = (plo and (p?): = (p*)o sothat Ap, = Apy  (4.196)

which is also consistent with Eqn. (3.21), since the momentum-space
probability density |¢ (p, t)|* = |¢o(p)|* does not change with time.

(b) Use the momentum-space form of the position operator, X = ifi(d/dp), to
show that

(%) = (X)o + (p)ot/m (4.197)

which is consistent with special cases we have considered, and classical
expectations.

(c) Finally, show that

(G2 = (i) + i(p&+5€p)o T+ (pR)or2 i (4.198)

so that the most general form for the time-dependent width of a free-particle
wave packet is

(Ax)? = (Axp)* + (Apo)*t/m?

+ é«p P0G — R)o) + G — R))(p— (p)o)  (4.199)

8 The general expressions here are nicely derived, using a different approach, by Styer (1990).



132 CHAPTER 4 INTERPRETING THE SCHRODINGER EQUATION

P4.32.

P4.33.

P4.34.

P4.35.

Hint: You might find it useful to use the commutation relation [%, p] = if.
The first two terms are familiar from the case of the Gaussian example in Sec-
tion 4.3.1 and Eqn. (4.48). The term linear in ¢ arises only in cases where there
is a nontrivial correlation in the momentum-position construction of the wave
packet. For example, if the higher momentum components (p — (p)o > 0) are,
in general, farther back (X — (X)¢ < 0) in the packet, then the linear term will
be nonvanishing.

Comments: (i) While these results have all been obtained using momentum-
space methods, all of the # = 0 expectation values in Eqns (4.196-4.197) can be
evaluated using either ¢ (p) or ¥ (x,0). (ii) The covariance discussed in P4.18
is clearly useful here.

Expectation values and uncertainties for the “other” Gaussian wave packet.
Evaluate (x); and Ax; for the modified Gaussian wave packet in P3.5. If you
have not already evaluated the appropriate v (x, t) for that problem, you can do
so now. Compare your results for that special case with the general expression
in Eqn. (4.199) above.

Properties of the Wigner distribution.

(a) Using the Fourier transform connection between ¥/ (x, t) ands ¢ (p, t), show
that the two forms of the Wigner function in Eqns (4.149) and (4.150) are
indeed equivalent.

(b) Using properties of the Dirac §-function, confirm Eqn. (4.156).
Wigner distribution for the free-particle Gaussian wave packet.

(a) Using both Eqns (4.149) and (4.150), and the free-particle Gaussian wave
packet solutions in Eqns (3.35) and (3.36), evaluate Pw (x, p; t) in two ways
to confirm the result in Eqn. (4.157).

(b) Integrate Pyw(x, p; t), first over x, and then over p, to confirm that you
obtain the appropriate single-particle probability densities, |(G) (x, t)|* and
|p(G) (> t)|%, respectively. Note especially how the time-dependent B; comes
to appear in the position-space probability distribution in the appropriate
places.

Wigner distribution for the uniformly accelerating wave packet. Using either the
position-space or momentum-space Gaussian wavepackets in Eqns (4.138) or
Eqns (4.139) representing a particle undergoing uniform acceleration, evaluate

the Wigner distribution and show that you obtain

Py, p; ) = Lh o= (p—po—F0? y—(x—x—pt/mrt Fi2/2m)? /B (4.200)
b

What do plots of Py (x, p; t) versus (x, p) look like?



P4.36.

P4.37.
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Wigner distribution for an exponential wavefunction. Recall the position-space
and momentum-space wavefunctions of Section 3.4, given by

V) = =M and gy =)t L (4.201)
Ja hr (1 + (pa/h)?)

(a) Use ¥ (x) to evaluate the corresponding Wigner distribution. Plot Pw(x, p)
in the easiest way you can think of to show that there is a small fraction
of (x, p) space where it is negative. This provides a simple example of why
Py (x, p) cannot be used as a true joint probability distribution.

(b) Integrate Pw (x, p) over p and confirm that you obtain the correct position-
space probability density, as in Eqn. (4.152); repeat for the integration over
x, as in Eqn. (4.153).

Expectation values, operators, and the Wigner distribution. A natural definition
of the expectation value of momentum using the Wigner distribution would be

+00 +00
(p)e = / / p Pw(x, p;t) dx dp (4.202)
Show that this gives

+o00 . o9
(p)e = Y (x, 1) (—,—) V(x, 1) dx (4.203)

00 1dx

+00

(p)e = / plo(p, t)I* dp (4.204)

depending on which representation (Eqn. (4.149) or (4.150)) of the Wigner
function one uses. (Hint: One case is straightforward, while the other requires
several IBP tricks, but both rely on the definition of the Dirac §-function.) Repeat
for the expectation value of x in both representations.
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The Infinite Well: Physical
Aspects

5.1 The Infinite Well in Classical Mechanics: Classical
Probability Distributions

The problem of a particle moving in an infinite well or one-dimensional box,
defined by the potential

Vi) = 0 for0 < x < +a 5.1)

+o0o forx <Oor +a<x

is one of the most familiar and easiest to solve of all problems in introductory
quantum mechanics. It is the simplest case in which to study the phenomenon of
quantized energy levels in bound states, one of the “smoking guns” of wave mech-
anics. In this chapter and the next, we use this problem (and some related ones)
as a tool in understanding the formalism used in solving the time-independent
Schrédinger equation for bound states in a potential, understanding their phys-
ical interpretation, as well as some of the formal properties of its solutions. In
Chapter 7, we also use the infinite well as a model system in which to examine the
role that spin and the Pauli exclusion principle play in multiparticle quantum
systems.

We also wish to develop some intuition about quantum mechanical wavefunc-
tions, both in the ‘quantum’ limit of small quantum number and especially in
the quasi-classical limit of large quantum number. To that end, we first discuss
the problem of a particle moving in this potential well, treated classically, and
introduce the notion of a classical probability distribution.

Classically, a particle in such a potential would move at constant speed
inside the box, experiencing elastic collisions with the walls. The speed (vp)
and period (7) of the motion are easily determined in terms of the energy to be

2a m
vw=+2E/m and t=— =2a,/— (5.2)
Yo 2E
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X(t) <— 7 —0=

+a -

0 t
v(t)
Figure 5.1. Classical trajectories in the infinite well,  -vo —
x(t) and v(t) versus t. -— 7 —&

The position, x(¢), and velocity, v(¢), of a particle in such a well' are shown in
Fig. 5.1. We note that measurements of the velocity of the particle at any time
will only yield values of £vy.

Although we know the exact trajectory, x(¢), for all times, we can still ask for
the probability that a measurement of the position of the particle (using, for
example, a large number of stroboscopic photographs of the system taken at
random times) will find it in a given region inside the well. Since the particle
moves at constant speed, and therefore spends equal amounts of time in all
regions of the well, we must have

Pc1(x) dx = Probability [(x,x+dx)] = C dx (5.3)
where C is a constant, and we have introduced the notion of a classical probability

distribution, Pcp(x). Since the particle must be found somewhere in the box,
Pcr(x) must be normalized in the usual way so that

4 1
1= / Pcr(x)dx =aC — Pcr(x) =C=— (5.4)
0 a

Using this classical probability distribution, we can calculate average values as
usual and find, for example,

. /0 xPoL (o) de= 5 (5.5)

! See Styer (2001) for a discussion of the mathematical representation of these classical trajectories,
and their quantum analogs.
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E;
Figure 5.2. Generic one-dimensional potential with
bound states. For energy £1, a and b are the classical E
turning points for bound motion. For energy £5, ¢ and
d are turning points for unbound motion; particles
incident from the left (right) will rebound at point ¢
(d). For energy E3, classical particles will slow down
(speed up) as they travel over the “bump” (“well") in
the potential, but will not rebound.

E

and
a 1 a az
(x* L = / x?PoL(x) dx = —/ x? dx = > (5.6)
0 0

so that Axcr, = a/+/12.
One can also define a classical probability distribution for momentum, Pcy. (p),

and in this simple case where only the values p = £+py = Fvym are allowed,
with equal probability, such a distribution might be written as

1
PcL(p) = 5[5 (p — po) +3(p — po)l (5.7)

and it is straightforward to show (P5.1) that (p)cL = 0, (p*)cL = pg, and
Apcr = po-

The notion of a classical probability distribution for position” can be gener-
alized to any bound state problem with a potential V (x). Consider a particle of
mass m and energy E moving in a general confining potential such as in Fig. 5.2
(for the case E at least). The motion in such a potential is periodic, the particle
bouncing back and forth between the classical turning points a and b; the time
for one traversal of the well (from, say, left to right) is half the period, t/2. The
amount of time, dt, the particle spends in the small region of space, dx, near the
point x is given by the speed there, v(x), via

d d
dr= 2 = & (5.8)
dx/dt  v(x)
so that the the classical period is given by summing all of these infinitesimal
times for one traversal, namely

ty b d
T one back-and-forth time = / dt = / il (5.9)
2 ta a V(x)

2 The comparison of classical and quantum probability distributions, in both position- and
momentum-space, for many simple systems is discussed in Robinett (1995).
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The probability of finding the particle in the small region (x, x + dx) is simply
the ratio of the time spent there, dt, to the total time for one traversal, that is

dt 2 dx

Pcy.(x) dx = Probability[(x,x+dx)] = @ ?@ (5.10)
so that the classical probability density is
21
PeL(x) = - — (5.11)
T v(x)

which is normalized appropriately since

b 2 (P dx 2\ /T

from Eqn. (5.9). This definition shows that the particle will spend more time
(and hence be found more often) in regions where the classical speed is low;
this is especially true at classical turning points, where the particle is changing
direction, with the velocity changing sign, implying that v(x) — 0 atsuch points.

Since the classical speed is related to the kinetic energy by T'(x) = mv(x)?/2
and hence to the potential energy, we can write

2 2
Pcr(x) = - /Tnzx) = - /2(E——mV(x)) (for a general bound state)

(5.13)

Thus the classical probability density is large (small) where the kinetic energy is
small (large) or the potential energy is large (small). For the case of the infinite
well, where the potential vanishes inside the well, this reduces to

2 1
Pcr(x) = " m_ - (for the infinite well) (5.14)

as expected.

5.2 Stationary States for the Infinite Well

5.2.1 Position-Space Wavefunctions for the Standard
Infinite Well

We now discuss the solutions of the quantum mechanical problem of a particle
in an infinite well potential. We begin by focusing on the potential well of the
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form

0 for0 < x < +a
Vix) = (5.15)
+o0o forx <0or+a < x
which we will describe as the “standard” infinite well problem. The time-

independent Schrodinger equation inside the potential well (where V(x) = 0)

becomes
&y (x) W dy(x) _
S FVEU W =B () — —S- e = EY ()
(5.16)
This is of the form
2
d;ﬁix) —k*¢(x) where k= 2711213 (5.17)

The solutions of Eqn. (5.17), which are most like standing waves (and hence
relevant for bound state problems) are

¥ (x) = Asin(kx) + B cos(kx) (5.18)

where A, B are (at the moment) arbitrary constants. Since the particle is not
allowed outside (i.e. ¥ (x) = 0 for x < 0,a < x), and the wavefunction should
be continuous, we must also implement the requirements that ¥ (0) = v (a) = 0;
the application of these boundary conditions there then requires that

¥ (0) = Asin(0) + Bcos(0) =0
Y (a) = Asin(ka) + Bcos(ka) =0 (5.19)
or
B=0 and Asin(ka) =0 (5.20)

If A = 0 as well, then ¥ (x) vanishes identically (the uninteresting case of zero
total probability, corresponding to no particle in the well), so we must have

sin(ka) =0 or k,a=nm wheren=1,2,3... (5.21)
giving the quantized energies
n*ky  hPnPm?

E, = =
" 2m 2ma?

(standard infinite well) (5.22)

This result can also be obtained from simple “fitting deBroglie wave” ideas, as in
Sec. 1.3. The stationary state wavefunctions, here written in the form ¥ (x) =
u,(x), must satisfy the normalization condition that

1=f Pom(x) dx=/a|un(x)|2dx=l (5.23)
0
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and the appropriately normalized wavefunctions are conventionally written in
the form

2
Up(x) =,/ —sin <@> (standard infinite well) (5.24)
a a

We note that this normalization has the appropriate dimensionality for a one-
dimensional wavefunction, but that the sign (or more generally the phase) of
the normalization constant is purely conventional, and —./2/a or exp(if)+/2/a
would serve just as well. The first few spatial wavefunctions, u,(x), are shown
in Fig. 5.3 (along with those for the related symmetric infinite well discussed in
Section 5.2.3.) We note the general feature that the number of nodes increases
with energy, starting with a nodeless ground state.

These results exemplify a standard analytic approach to the solutions of a
quantum mechanical problem of a particle in a potential well:

1. One solves the time-independent Schrodinger equation in position-space
which gives the appropriate functional forms for ¥ (x).

2. One applies the boundary conditions, which usually involve the condition,
either explicitly or implicitly, that the wavefunction vanish sufficiently rapidly
at infinity, and this restriction gives rise to quantized energy levels; this is the
analog of “fitting de Broglie waves” (as in Section 1.3) for a general potential.

3. Finally, one normalizes the wavefunctions to ensure that a probability inter-
pretation is valid. Other information, such as average values of various
operators or the corresponding momentum-space wavefunction, ¢ (p), are
then easily calculated.

E, E0
E2(+)
E, E1(,)
E1(+)
Figure 5.3. Energy eigenvalues and eigenfunctions 0 a-a ta

for the standard and symmetric infinite well. Standard well Symmetric well
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Each step is independent of the others, and all are required to obtain the full
information possible from the stationary state solutions.

The most general solutions will be linear combinations of these energy
eigenstates with their associated time-dependence, namely

V) =) anpa(ot) = ) aguy(x) e o/ (5.25)

We stress again that, because the u,(x) are stationary state solutions, the
squared moduli of the individual wavefunctions, |¥,(x, t)|*> = |u,(x)|?, are
time-independent.

5.2.2 Expectation Values and Momentum-Space Wavefunctions
for the Standard Infinite Well

To make contact with the classical probability distributions in Section 5.1, we
evaluate the quantum mechanical expectation values

(x) = / x [ (o) dx = / il or de= 2 (5.26)
0
and
a 2
2\ 2 2 _ 2 2 _% __3
(x”) _/x [ (x)] dx_/o x“ [u,(x)]° dx = 3 <1 2(n71)2) (5.27)

We note that the second result agrees with the classical expectation only in the
limit of large quantum numbers (n — 00). This effect is illustrated in Fig. 5.4
where we note that the quantum probability densities, ng\),[(x) = |u,(x)]?,
corresponding to individual energy eigenstates, do not approach the classical
limit Pcr (a) = 1/ain the usual sense of smooth convergence, but rather oscillate
increasingly rapidly about the classical result as n increases (as discussed in P5.5),
locally averaging to the classical result.

The expectation value of momentum in an infinite well stationary state is
given by

n a N h a du,,
(p) = / L () P Lt ()] dx = (—) f () 2.
0 1 0 dx

h a
= [1n(x)*]; =0 (5.28)

since the eigenfunctions vanish at the boundaries. Thus, the average value of the
momentum vanishes in each eigenstate. While this specific calculation provides
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lu(x)?| versus x

AAAN
J A A A

Figure 5.4. Probability density,
P(()’K/)I (xX) = |up(x)|2, for the standard infinite well for

large quantum number (n = 40). P(()IKA) (x) averages
locally to the flat classical probability distribution,
Pc (x) = 1/a. 0 +a

the correct answer, this important (and more general) result can be understood
more intuitively and physically in several ways:

1. The energy eigenstates in this (or any) bound state system can be chosen to
be purely real functions (or real with multiplicative complex phases that are
independent of position). As the calculation in Eqn. (5.28) illustrates, this
implies that the expectation value (p), which we know must be real, can be
written as a purely real integral times i. For consistency, this implies that the
integral must vanish, which it manages to do by integrating to be [, (x)]?/2,
evaluated at the appropriate limits, where the wavefunction vanishes. For the
simple case of the infinite well, these limits are x = 0, a, while for a more
general (and realistic) case, the limits would be x = —o00, +00 where ¥ (x)
must vanish in order for the solution to be physically acceptable. We note that
the inclusion of the exponential time-dependence exp(—iE,t/h) does not
affect the argument. One can also show that the probability flux or current,
j(x, t), for such purely real energy eigenstates also vanishes for similar reasons.

2. The fact that the eigenstates can be chosen as real functions can also be
understood in terms of classical results for standing waves, where (complex)
traveling wave solutions of the form exp(=Zikx) can be combined to form the
real sin(kx), cos(kx) solutions used in Eqn. (5.18).

3. The vanishing of the average momentum value can also be thought of heurist-
ically in classical terms as the symmetry in velocity during subsequent “back
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and forth” traversals of a potential during its periodic motion, as the same
speed is achieved twice during each period. The classical velocity is related to
the energy and potential at a point via

v(x) = :l:,/%(E — V(x)) (5.29)

so that the classical velocity distribution is necessarily symmetric between
+v(x) and —v(x), implying that (p)cr. = m(v(x))cL = 0.

4. While this result is valid for energy eigenstates, linear combinations of
such eigenstates forming a general solution will contain nontrivial time-
dependent phases between eigenstates and can yield nonvanishing values of
(p)+. Examples include the two-state systems discussed in Section 5.4.1 or
wave packets as in Section 5.4.2.

In a similar way, one can evaluate the expectation value of powers of
momentum, including the useful case of

A nrh\?

@>=Amwmﬁmmmk=07)=ﬁ (5.30)

which is consistent with the fact that the kinetic energy for this system

A I . h2in? 2
() = — (%) = -

= =E 5.31
2m 2ma? 2m " ( )

should be equal to the total energy.
To make connections with classical concepts of velocity, we can evaluate the
momentum-space wavefunctions corresponding to the u,(x) via

dn(p) = dx r (x) e~ Px/M

1 00
A/ Zﬂﬁ /;oo
1 a _ -1 ; sin[(nmT — pa/h)/2]
d " ipx/h — zpa/Zii{ +inm/2 ( >
\/anifo * tin(x) € nhae ¢ (nm/a —p/h)

_ iny2 (sin[(nn +pa/h)/2]> }
(n/a+ p/h)

(5.32)
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|bn(p)I? versus p

n=10
Figure 5.5. Momentum-space probability density, |¢n (p)| versus p, J\A A
for the standard infinite well for values of n = 1, 3, and 10. The dotted : :
lines correspond to values of p given by +pn, = +/2mEp. ~Pn *Pn

The momentum-space probability distribution, ng\),[ (p) = |gn(p)|?, is easily
evaluated and we plot in Fig. 5.5 the results for n = 1, 3, 10. We note that even
for rather small values of the quantum number there are two well-defined peaks
at p = =£py,, consistent with classical expectations where one would find only
values +v,, = +p,/m = £./2E,/m as the result of velocity measurements. To
facilitate comparison with the classical probability distribution in Eqn. (5.7), we
can rewrite the momentum-space wavefunction in the equivalent form

bn(p) :_—ie—ip/Ap {e+inn/2 (Sin[(Pn - p)/Ap])

J2iip (P — D)/ AP
_e—inn/z (Sin[(pn +p)/AP])} (5.33)
(pn+p)/Ap '
where Ap = 2h/a. If we take the corresponding momentum distribution,

|#,(p)|?, in the limit that Ap — 0 (either » — 0 or a — o0) and use the
representation of the §-function in Appendix D.8, we find (P5.10) that
lim Q) = lim [6u(p)? = 2 [5(p = pu) +8(p + pu)] = Per(p)
Ap—0 QM Ap—0 ! 2 ! ! !
(5.34)

We also note that the quantum mechanical momentum distributions reflect the
same symmetry as their classical counterparts, as we have

|6n(—p)I* = PoRy(—p) = PGy (+0) = lbu(+p) [ (5.35)
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which is consistent with our observations about the speed distributions arising
from the equivalence of the “back-and-forth” motions in a bound state system.
This fact can also be used to show that

400
(9 = / P lbn(I2dp =0 (5.36)

using the momentum-space representation, since the integrand is now manifestly
odd in the variable p. Other properties of the momentum-space representation
are explored in the problems (P5.6 and P5.8.)

5.2.3 The Symmetric Infinite Well

A variation on the standard infinite well problem, which we will find useful is
the symmetric infinite well, defined by
0 for |x| < a

Vi(x) = (5.37)
400 for|x| > a

that is, a one-dimensional box of width 24, centered at the origin. We discuss
this quite similar case for several reasons:

1. The two potentials, and their solutions (in both position- and momentum-
space) can be obtained from each other by simple scaling arguments and
symmetry relationships.

2. The symmetric infinite well introduces us to the notion of parity, which we
will study further in Section 6.6.

3. Itis a limiting case of the asymmetric infinite well considered in Section 5.3.

4. Finally, the symmetric well eigenfunctions are very similar to those used in
standard Fourier series analyses where we have experience in their use in the
expansion of arbitrary functions.

For this case we find the same Schrédinger equation and solutions as in
Eqns (5.16) and (5.18), but the boundary conditions are implemented in a
slightly different way. Now because ¥ (x) = 0 for |x| > 4, we must impose
the continuity conditions at the walls

Y (+a) = Asin(ka) + Bcos(ka) =0
W (—a) = —Asin(ka) + Bcos(ka) =0 (5.38)
or

Asin(ka) =0 and Bcos(ka) =0 (5.39)
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Once again, if A = B = 0 then ¥ (x) vanishes identically, so we can consider two
cases separately:

A=0, even solutions: In this case, only the cos(kx) (i.e. the even, cos(—kx) =
cos(kx)) solutions survive. We therefore set cos(ka) = 0, which has solutions

~1/2
ke = WD 12,3, (5.40)
a

so that the energy eigenvalues are

hZ(k’({F))Z B h2(2n_ 1)2772

B —
n 2m 8ma?

(symmetric infinite well) ~ (5.41)

where the (*) superscript denotes the even states. The corresponding normalized
eigenfunctions are

1 —1/2
u£l+) (x) = ﬁ cos (W) (symmetric infinite well)  (5.42)

B=0, odd solutions: In this case, where only the sin(kx) (or the odd, sin(—kx) =
—sin(kx)) solutions are used, we set sin(ka) = 0, which has solutions
nmw

K== withn=1,2,3,... (5.43)
a
with energy eigenvalues
W n?m?
Eff) =—— (symmetric infinite well) (5.44)
2ma
and normalized eigenfunctions
1 nwx
uS,_)(x) = ——sin <—> (symmetric infinite well) (5.45)
Ja a

We note that these solutions can be obtained from those for the standard well
(in Eqn. (5.24) by first letting a — 2a (doubling the width of the well, so it
covers the range (0,2a)) and then letting x — x — a (shifting the center to the
origin); see Fig. 5.3 for a comparison. Note that the solutions for the standard
and symmetric wells are necessarily normalized differently, as they are defined
over different length boxes.

These solutions possess the additional property of evenness and oddness,
namely

uff)(—x) = +u,(1+)(—|—x) and uf,_)(—x) = —u,(Z_)H—x) (5.46)

which are obviously related to the symmetry of the well, V(—x) = V(4x); we
will introduce the important notion of parity in just this context in the next
chapter.
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5.3 The Asymmetric Infinite Well
An asymmetric infinite well potential can be defined by

400 for |x| > a
V(ix) =130 for —a<x<0 (5.47)
Vo for 0 < x < +a

corresponding to a change in the potential in the right half of the symmetric
infinite well; for definiteness, we will assume that V' > 0 in what follows. This
small variation is interesting as it provides an opportunity to study several new
features, namely:

1. For the case where E > V), a variation in potential corresponds to a variation
in speed so that the classical probability of finding the particle will not be
uniformly distributed (P5.11) across the potential, providing another example
of the correlation between the potential energy function and the probability
distribution (both classical and quantum mechanical).’

2. For E < Vj, we will find nonclassical solutions, which are nonvanishing in
the classically disallowed region (0 < x < +a), corresponding to quantum
tunneling, which is discussed further in Chapter 8.

An example of the potential (and representative energy levels for both cases) is
shown in Fig. 5.6 and we consider the E > Vj > 0 and V) > E > 0 cases
separately.

The E > V > 0 case. For the left-hand side of the well, where V(x) = 0, the
problem can be analyzed as above, but for the right-hand side where there is a
nonzero potential, the Schrodinger equation becomes

R d*y(x)

o VoY () = By () (5.48)

or

2
dw(x)_ ¥ (x) where ‘,2m(E VO) < k= Z%E (5.49)

3 The asymmetric well is discussed in Doncheski and Robinett (2000) and Gilbert et al. (2005).
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I e B
-a 0 +a

Figure 5.6. Potential energy function, V/(x), for the asymmetric infinite well, with representative energy
eigenvalues for a particular choice of well parameters. The highlighted states, £, £, Ec, Ep, corresponding
ton =1,4,5,7 are visualized in more detail in Fig. 5.7.

with obvious sin(gx), cos(qx) solutions. The general solution for both sides of
the well can be written in the form

0 for |x| > a
Y (x) = { A'sin(kx) + C' cos(kx) for —a<x <0 (5.50)
B'sin(gx) + D' cos(gx) for 0 < x < +a

The boundary conditions on the wavefunction at x = —a, +a (namely ¢ (—a) =
0 = ¥ (4a)) results in a considerable simplification, giving

Vx) = As.in(k(x +a)) for—a<x<0 (5.51)
Bsin(g(x —a)) for0 < x < 4a

Recalling the discussions in Section 4.2, we insist that ¥ (x) (and higher deriv-
atives) should be continuous even at discontinuous boundaries’; matching both
¥ (x) and ¥’ (x) at x = 0 imposes the additional constraints

Asin(ka) = —Bsin(ga) (5.52)
Ak cos(ka) = gB cos(ga) (5.53)
which can then be combined to yield the energy eigenvalue condition, namely
k cos(ka) sin(qa) + g sin(ka) cos(ga) = 0 (5.54)
independent of the normalization constants A, B.

* The discontinuity in V(x) at x = 0 is not “bad enough” to make v'(x) discontinuous; see
Section 8.1.1.
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In the limit Vy — 0, where ¢ — k, this reduces to the condition
2k sin(ka) cos(ka) = 0, consistent with our discussion of the symmetric well
and Eqn. (5.39). However, for V > 0, the equation no longer has simple closed
form or analytic solutions as encountered early, and the values of E (giving k, q),
which satisfy Eqn. (5.54) must be obtained numerically. For example, for fixed
values of A, m,a, the k(E) and q(E) are functions of the energy and one can
define

F(E) = k(E) cos[k(E)a]sin[q(E)a] + g(E) sin[k(E)a] cos[q(E)a]  (5.55)

then plot F(E) as a function of the energy, looking for zeroes, and finally use
root-finding algorithms to locate values of E, which satisfy Eqn. (5.54).

Picking a representative set of parameters, we have followed this approach,
and in Fig. 5.6 we have indicated a number of such energy eigenvalues for the
E > V) case (states labeled 5 and higher); we also plot in Fig. 5.7 (left-hand
side) the corresponding (normalized) probability distributions |,(x)|* versus
x for states with n = 5,7 (labeled E¢ and Ep.) The dashed vertical line indicates
the middle of the well, while the horizontal dotted line indicates the classical
probability density for a symmetric well of width 2a, namely Pcp(x) = 1/2a.
We note several features of these states, which are exemplary of the rather general

[0, (X)I2 versus x [b(P)P versus p

Figure 5.7. Plots of the position-space
probability density |y (x)|2 versus x (left) and
momentum-space probability density |¢n (p)|?
versus p (left) for four energy eigenvalues in the
asymmetric infinite well corresponding to values of
E<Vyg(Epan=1)andEg(n=4)and E > V
(Ec (n =5)and Ep (n = 7).) For the plots on the
left, the center of the potential well is indicated by
the vertical dashed lines, while the horizontal
dotted lines correspond to the classical probability
density in an infinite well of width a (n = 1, 4) and
2a (n =5, 7). For the plot on the right, the vertical
dashed lines indicate the values of +hkp, (motion
in the left side of the well) while the vertical dotted
lines indicate +Aq, (motion on the right.)
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correlations between the magnitude and “wiggliness” of quantum wavefunctions,
namely:

1. The wavefunction (and hence the quantum probability density) is larger
(smaller) in magnitude in regions where the particle moves more slowly (more
quickly), asin Eqn. (5.11), or where the kinetic energy is smaller (larger) or the
potential energy is larger (smaller), as in Eqn. (5.13). The probability density
in the right half of the well is larger than that for the symmetric potential with
no potential step, since the classical particle would be going more slowly on
that side.

2. The wavefunction is “wigglier” (less “wiggly”), with a smaller (larger) local
deBroglie wavelength in regions where the classical speed or kinetic is larger
(smaller), consistent with A = 2 A/p.

3. For bound state wavefunctions therefore, we typically expect to see solutions
with

* large magnitude and few “wiggles” ...or...

¢ small magnitude and more “wiggles.”

The dramatic difference between the wavefunctions on the left and right sides of
the potential seen here will become less noticeable as the energy eigenvalue
increases, since for E, >> Vj the presence of the potential step will have
increasingly less effect.

The momentum-space wavefunctions corresponding to these two cases,
obtained by Fourier transform as usual, are also shown in Fig. 5.7 (right-hand
side), where the symmetric character of |¢,(p)|? is again apparent. For the Ep
(n = 7) case, there are obvious features corresponding to both the back-and-
forth motion in the right side of the well, with momenta p = +hq (location
indicated by the vertical dotted lines), as well as larger momentum values cor-
responding to p = £hk (dashed lines) and motion (“back” or “forth”) in the
left half of the well. The correlation between their heights, namely that the +/g
peaks are higher than the £/k peaks, is again consistent with finding the particle
more frequently with “motion” in the right side of the well. For the n = 5 case,
the two £hq peaks have coalesced, similar to the n = 1 case in Fig. 5.5.

The Vo > E > 0 case. For this case, the Schrédinger equation and its solutions
in the left side of the well are still given by Eqn. (5.18), while for 0 < x < +a,
we have

Py _ <2m(Vo — E)

dx? 2 ) V() =3 ¥ (5.56)
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where

2m(V0 - E)
k2

q (5.57)
The solutions are now qualitatively different than the oscillatory sin(gx), cos(gx)
functions, as they can be written in the form

Y(x) = Bcosh(éx) + Csinh(éx) for0 < x < +a (5.58)

corresponding to linear combinations of exponential (exp(£4gx)) functions. In
contrast to the classical case, where the particle would not be allowed in a region
where E < V), there is a nonvanishing quantum wavefunction (and probability)
in the classically disallowed region. (This same type of behavior is seen in the
reflection of electromagnetic waves from boundaries where the index of refrac-
tion in the first medium is larger than in the second (n; > n,) or optically dense
to optically thin. In this case there are still nonzero fields” in medium 2, which
are exponentially attenuated, so-called evanescent waves.

The matching at boundary/continuity conditions at x = 4a and x = 0
proceeds as before, with the new eigenvalue condition

k cos(ka) sinh(ga) + g sin(ka) cosh(qa) =0 forE < Vj (5.59)

which can also be solved numerically. The energy eigenvalues for this case are
also shown in Fig. 5.6 (those labeled n = 1 — 4) and plots of |1/,,(x)|? versus x
corresponding to n = 1 (E4) and 4 (Ec) are shown in Fig. 5.7. In this region, the
behavior of the quantum wavefunctions is very similar to those for the standard
infinite well (oscillating about the classical Py (x) = 1/a prediction relevant for
a particle restricted to the left-half of the well), but with a clear exponential “tail”
in the classically disallowed region.

The behavior of the quantum wave function in this region can be approxim-
ated from the solution here as

W(x) _ Bsinh(é(a — X)) _ exp(gq(a — x)) — exp(—q(a — x)) o i
¥ (0) Bsinh(ja) exp(qa) — exp(—qa)

(5.60)

or an exponential suppression as one penetrates into the nonclassical region.
This behavior can be written in the form

. 1 h
V() Ne = Wwhere =~ = — (5.61)

O 7 2m(Vo—E)

> For example, see Griffiths (1998).
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and L is a penetration depth. This effect is seen to be quantum mechanical in
origin in a variety of ways:

® This form immediately implies that if we formally let 2 — 0 as an effective
limit of classical physics, then L — 0, and the particle is constrained to stay in
the left side of the well.

® The form of the penetration depth can be understood from a simple heuristic
argument using the energy-time uncertainty principle. A particle with energy
E < Vp can “fluctuate” to one having energy E 2 Vjp, which is then “above”
the potential step; this is only plausible provided it does so over a time interval
consistent with the uncertainty principle, AE- At 2 h. Given this “excursion,”
the particle will necessarily have an uncertainty in its measured energy of
AE = |Vy — E|, so the fluctuation can only last a time At ~ h/|Vy — E|. It
can then, very roughly, go “into” the classically disallowed region and “back”
again for half this time, that is, Atoye ~ Atpack ~ /2| Vo — E|. If we associate

a classical velocity of |V — E| = mv?/2 during this “motion,” giving v =
/2| Vo — E|/m, the particle could travel a distance
h 1
L ~ Axoue ~ Atopt v ~ ——xs ™~ (5.62)

JZmVo—E| §

While not to be taken as a rigorous proof in any sense, this argument (or
mnemonic device) does point out one useful way of thinking about the length
scale in the quantum evanescent wavefunction.

We note that the penetration into the classically disallowed region in Fig. 5.7 is
clearly larger for the n = 4 (smaller g value state, hence less “cheating” required)
than for the n = 1 ground state.

5.4 Time-Dependence of General Solutions

5.4.1 Two-State Systems

In all of the variations of the infinite well problem we have discussed, we
have focused on the stationary state solutions and their physical interpreta-
tion. Because of the linearity of the Schréodinger equation, the most general
time-dependent solution will consist of a linear combination of any, or all, such
solutions. In the case of the standard well, for example, this implies that

Y1) =Y anuty(x) e /0 (5.63)
n=1
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while for the symmetric well,

o0
() ig()
Y(x, t) = Z (afl“L) u,(f (x) e En th 4 a,(f)uﬁl_ (x) e En t/h) (5.64)
n=1

where the a,, or a,(1 ) are, at the moment, simply arbitrary (possibly complex)

numbers.

As a simple example of the more complicated time-development possible with
such general solutions, we consider a simple two-state (2S) system consisting
an equally weighted combination of the ground state and first excited state
wavefunctions of the symmetric well, ¥ s(x, t), that is,

1 () - (=)
Vasn 1) = —= (uP e B T 4D (e BN (5.65)
V2
that is, a(+) = a% ) = 14/2. The consistency of this choice of normalization will

become clear shortly. We note that such states can be produced experimentally
when two closely spaced energy levels of a system are simultaneously excited (say

by a laser pulse.)
Recall first that
2.2 2.2
+ _ () _ A'w
E = ) E = 5.66
! 8ma? ! 8ma? ( )
and
1
u§+) (x) = ﬁ cos (%) )(x) ﬁ sin (ﬁ:) (5.67)

The probability density for this solution has nontrivial time-dependence, since

Pas(x, 1) = |yas(x, )|
1

AE
5{[u§+)<x)]2 (7 (012 4 206 (o1~ %x)]cos( ht)}

(5.68)

where AE = E; =) —E; ) = 3p252 /8ma? so this it not a stationary state solution,
but one with per10d1c1ty given by t = 2w h/AE.
It is easy to show that this state is correctly normalized for all times, since

i LT 1
Pzg(x,t)dx_z (1,7 (x)] dx+2 [ 7(x)]° dx

+a
+ cos (%) / [u§+)(x) ug_)(x)] dx

1 1
=—+-4+0=1 5.69
5+ 3 (5.69)
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since the two eigenfunctions are individually normalized, and the integral con-
taining the cross-term is found to vanish; this last fact could, in this case, be
argued as being due to the integrand being an odd function integrated over
a symmetric interval, but we will see in the next chapter that it has a deeper
significance.

A straightforward calculation (P5.16) shows that the average position of the
particle described by this wavefunction oscillates, alternating between being
more or less localized on the right and left sides of the well, specifically

_ [ 2 g a2 AEt -
<x>t—/u x| Ys)(x, 1) x_a<ﬁ> cos(T) (5.70)

which arises solely from the cross-term in Eqn. (5.68). The corresponding average
value of the momentum operator can be calculated in the standard way, and one
finds

. +oo . . 4h\ . (AEt
B = f dx Yo, 1) b Yas(a ) = — (5;) sin (T) (5.71)

—00

which is also consistent (p); = md(x),/dt, as it must. The corresponding

momentum space probability density for this state, obtained via taking the
. .. (+) .. .

Fourier transform of each position-space u;; ’ (x), shows similar structure, since

1

7

¢25(p’ t) — <¢{+) (X) e*iElH')t/ﬁ + ¢§_)(X) e*iEl(_)t/ﬁ) (572)

which gives
Pys(p, 1) = |¢has(p, )1

1 _ _ AE
=2 ['¢§+)(")'2 +1¢1” (I + 2Relof P (p)* 61 (p)] sin (Tt)]
(5.73)

Finally, the probability flux can be calculated using Eqn. (4.32), and one finds

. . AEt
J2s(x, 1) = Fs(x) sin (T) (5.74)

where

Fs(x) = — Z}ZZ[Z {cos <%) cos (?) + % sin (%) sin (?)} (5.75)
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[Uos(X.t)% versus X |dos(p.B)l2 versus p fog(X,t) versus x

t=0

t=0.17

t=0.27 /\

t=0.37

t=0.47 /\

t=0.57

+a —a +a

Figure 5.8. Time-development of two-state wavefunction in Egn. (5.65), in the symmetric infinite well.
Position-space probability density (| (x, t)|2 versus x); momentum-space probability density (|¢ (p, t)|2
versus p); and probability flux (j(x, t) versus x) are shown for various times during the first half-cycle. The
time-dependent expectation values of (x); and (D); are shown (as vertical dotted lines) in the respective
figures.

The resulting time-dependent position-space and momentum-space prob-
ability densities, Pys(x, t) versus x and P,s(p, t) versus p, as well as the flux,
are shown in Fig. 5.8 for various times during one half-cycle. The dotted lines
indicate the location of the average position ({x);) and momentum ({p),) values
on the respective plots. As the probability density “sloshes” from right to left,
the flux is everywhere negative (corresponding to probability flow to the left),
while the average value of momentum (the vertical dotted line) is also indicat-
ing “motion” to the left, since (f))t < 05 this behavior then reverses itself over
the second half-cycle. Clearly, more dynamic behavior is allowed for general
time-dependent states than for stationary states.

5.4.2 Wave Packets in the Infinite Well

In earlier discussions of the free particle, we made heavy use of the concept of
a wave packet, a localized solution of the Schrodinger equation with a beha-
vior similar to that of a classical free particle, but which inherently included
the concept of spreading due to dispersion. One can construct a similar time-
dependent solution in the standard infinite well® constructed from the solutions
of Eqn. (5.24).

S For a early pedagogical example, see Segre and Sullivan (1976).
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Motivated by the Gaussian wave packet of Section 3.2.2, we can write a solution
involving stationary states of the standard infinite well given by

Ywp(x, 1) = Y ayuiy(x) e 0 (5.76)

n=1
where we choose coefficients of the form

ay = e~ (Pi=p0)*a?/2) p=ipuxo/h (5.77)

Here p, = hnm/a is the analog of the continuous momentum variable and py =
hnyr /a defines some central value of n, while this form also allows for arbitrary
values of the central peak position, xy. (For a more complete discussion, see
Example 6.4 below.) The solution in Eqn. (5.76), with these ay,, can be evaluated
numerically (cutting off the infinite sum at some large but finite value of n)
for various values of the parameters to illustrate the time-dependence. We note
that the largest contribution to the summation will come from states with E,, ~
p3/2ma* = R?nk/2ma?, so that the classical speed of the wave packet is roughly
v = po/m =~ hng/ma with a corresponding classical period T = 2a/v =
2ma?/hng. The spreading time (by analogy with Eqn. (3.40)) is tp = mha?;
in the examples that follow, we will use parameters for which t and t; are
comparable.

We first show in Fig. 5.9 (left side) the time-dependence of |yrwp(x, t)|> over
a single classical period, 7; the initial wave function is constructed so as to be
slightly off-center. The “back-and-forth” motion is obvious (to be compared
to the classical trajectory indicated by the dashed line), while the “bounces” at
the wall (with the same quantum interference seen in Fig. 3.4) are also con-
sistent with earlier discussions. As with the free-particle Gaussian wave packet,
quantum spreading should also be present, and with t ~ t;, we see significant
spreading even after one classical period. The subsequent longer time behavior
of |Yrwp(x, t)|? is also illustrated in Fig. 5.9 (right side), now over 10 classical
periods. Because of the confined nature of the potential, the spreading wavefunc-
tion increasingly fills the well, seemingly approaching the classical probability
distribution, Pcr(x) = 1/a, shown as the horizontal solid line and arrows for
the times t = (5 — 10)%.

However, because of the quantized nature of the energy eigenvalues, this
spreading behavior can actually become “undone” and structure can reappear
in the quantum probability density, as suggested for the latest times shown in
Fig. 5.9. Most dramatically, after a time (called the revival time) defined by

4ma?
hm

(5.78)

Trey =
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Figure 5.9. Time-development of | (x, t)|2 versus x for a Gaussian-like wave packet in the standard
infinite well, over one classical period (left) and 10 classical periods (right); the classical periodicity and the
spreading time (tp) are chosen to be comparable. The classical trajectory is shown as the dotted line. The
classical probability density, Pci (x) = 1/a is shown on the right as the horizontal solid line, indicated by
the arrows for later times.

the initial wave packet is exactly reformed, since

o0
Ywp(, £+ Trey) = ) agtty(x)e EnHTre)/R

n=1

00
— § :anun(x)e zEn/he 2mwin

n=1

Ywp (X, t + Trev) = Yrwp(x, t) (5.79)
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since the exp(—2min®) phases are all unity. The same argument (using an
expansion in momentum-space eigenstates) can be shown to imply that
(P, t + Trev) = ¢(p,t) as well. This phenomena, most often described as a
quantum revival or quantum recurrence, is exact for the infinite well, but approx-
imate revival behavior of wave packets produced by ultrashort laser pulses has
been experimentally observed in many atomic and molecular systems.

5.4.3 Wave Packets Versus Stationary States

We have now been able to analyze (either analytically or numerically) examples
of wave packet solutions to the Schrodinger equation for several simple cases,
namely, the free and accelerating particle and the particle in a box. We have argued
that these solutions are the closest representation of something like the classical
motion of a particle that we will find in quantum mechanics; they exhibit all
of the expected dynamics in the classical limit,” but still have quantum features
such as spreading.

They have been constructed from energy eigenstate solutions, which are, in
some sense, more natural in the context of quantum physics. The Vg (x) e /7
solutions give information on the quantized energies of the bound state system,
one of the most important features of quantum mechanics. One might think that
these solutions could contain no interesting information on the dynamics of the
system as |/g(x, t)|? for such states is independent of time for stationary states.

We have seen, however, that the shape of {g(x) does make contact with the
classical dynamics of the particle; the local magnitude and “wiggliness” of the
wavefunction is correlated with the local speed of the particle in a meaningful
way. Furthermore the quantum probability density can be used to approach the
classical distribution of probability so that information on the particle trajectory
is obtained, in a time-averaged sense. Assured of these connections, we will
henceforward concentrate on the physical meaning and mathematical properties
of energy eigenstates.

5.5 Questions and Problems

Q5.1. If one made many measurements of the position of a particle in the standard
infinite well, and binned the results to estimate Pcyp (x) (as in Section 4.2 and

7 For a review of quantum wave packet revivals, see Robinett (2004). Saxon (1968) discusses this
effect in an older textbook, but (correctly) argues that for macroscopic systems the revival time is
immeasurably long.

8 See the discussion by Brown (1973) on the classical limit of quantum wave packets.
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Q5.2.

Q5.3.

Q5.4.

Q5.5.

Q5.6.

P5.1.

P5.2.

Fig. 4.4), what would the result look like? What would it look like for a particle
that was undergoing simple harmonic motion? or a ball bouncing vertically
under the influence of gravity?

In the quantum version of the infinite well, the energy eigenvalues are, in prin-
ciple, precisely determined. The energy is all in the form of kinetic energy,
E = p2 /2m, and so, classically, the magnitude of the momentum should be
exactly known as well. But the peaks in ¢(p) have a finite spread (as seen in
Fig. 5.5.) How can this happen?

Comment on the statement made in the text that it is usually the boundary
conditions on ¥ (x) at x = £o00 that determine the quantized energy levels. In
what sense is this true for the infinite well examples in this chapter?

For the standard infinite well, one could try a solution of the Schrédinger equa-
tion corresponding to E = 0. What mathematical form do the resulting solutions
have? Can they satisfy the boundary conditions?

Referring to Fig. 5.3, why is the energy of the first excited state of the symmetric
well identical to the ground state energy of the “standard well,” that is, why is
E, = El(_) ? Will there be any other such “degeneracies”? What do “degeneracies”
such as these have to do with the relative size (i.e. width) of the well? Would
there be such patterns of symmetry if the symmetric well was of width 4a?

To explain the physics behind wave packet revivals, as in Eqn. (5.79), some
authors have invoked the picturesque image of numerous runners on a circular
track, beginning at the same starting line, but with different speeds. Can you use
this analogy to explain both wave packet spreading and wave packet revivals?

Classical probability density for momentum in the standard infinite well. Using
the classical Pc (p) in Eqn. (5.7), evaluate (p)cr, (p?)cL, and Apcr.

Classical probability density for the harmonic oscillator. The harmonic oscil-
lator potential is conventionally written in quantum mechanics in the form
Vix) = mw2x2/2.

(a) For a fixed total energy E, find the classical turning points of motion.

(b) Use the expression in Eqn. (5.9) to find the classical period as a function of
E. Do you get the answer you expect?

(c) Show that the classical probability density in Eqn. (5.13) can be written in
the form
1 1
PoL(x) = —— (5.80)
T A2 — x2
and identify A. Show that this distribution is properly normalized and plot
this for two values of E, say E,, Ep), satistying E, = 4E,. Contrast this
behavior to that of Pcy (x) for the infinite well.

(d) Use Pcp(x) to evaluate (x)cr, (x?)cL, and Axcr. Use this result to evaluate
the classical expectation value of the potential energy, (V (x))cL-
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(e) Use the energy relation T'(x) + V(x) = E to evaluate (T'(x))cr and show
that
E

(V@)e = (T@)eL = 5 (5.81)

so that, on average, the kinetic and potential energies are shared equally.
(f) What is (p)cr? Use the fact that T = p?/2m to evaluate (p*)cr and then
Apct.

(g) Finally, evaluate the uncertainty principle product Axcr - Apcr and show
that it can be made arbitrarily small in classical mechanics.

P5.3. We solved the Schrodinger equation for the standard and symmetric infinite
wells using sin(kx) and cos(kx) solutions. A general solution of the form

V(x) = Aet ™ 4 Be~kx (5.82)
is, of course, just as acceptable.

(a) Use this solution for the standard infinite well and re-derive the quantized
energies and normalized wavefunctions in Eqns (5.22) and (5.24).

(b) Do the same thing for the symmetric infinite well to reproduce the results in
Section 5.2.3.

P5.4. Placement of the infinite well. Consider a particle of mass m moving in an

infinite well potential of width 2a, centered not at the origin, but rather at
x=d.

(a) Find the solutions of the Schrédinger equation, apply the appropriate
boundary conditions and show that the resulting quantized energies are
identical to those found in Section 5.2.3.

(b) Show how the wavefunctions in this well are related to those discussed above.

(c) Discuss why the positioning of the well at different locations should have no
effect on any important physical observables.

P5.5. Classical limit of infinite well eigenfunctions. Consider a particle in the standard
infinite well in an eigenstate 1, (x).

(a) Calculate the probability that the particle will be found in a finite interval
of length b < a located at some arbitrary point, x = ¢, in the well, that is,
in the interval (¢, ¢ 4+ b) within the well.

(b) Show that as n — oo, this reproduces the classical result we discussed in
Section 5.1, that is, that the particle is equally likely to be found anywhere
in the well.

P5.6. We have shown (in Section 4.4) that the average value of the momentum oper-
ator, (f)), vanishes when evaluated in any position-space wavefunction, u(x),
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which is purely real. In this problem, we will show the same thing, but will use
momentum space methods.

(a) Use the momentum space representation

o(p) = dx u(x) e~ 'Px/ (5.83)

1 +00

V2mh /;oo
to show that when u(x) is real, one can write ¢ (p) = f(p) + ig(p) where
f(p) and g(p) are real functions, which are also even and odd functions of
p respectively. Show that this means that |¢ (p)|?> will be symmetric under
p — —p, which, in turn, implies that (p)qm = 0.

(b) Discuss what happens to your results if #(x) is multiplied by an arbitrary
complex number (even a function of time such as the standard time-
dependent factor, exp(—iEt/h)) so long as it has no spatial dependence.

(c) Discuss how either of these proofs fail if the spatial wavefunction, u(x),
is allowed to be complex, for example, a plane wave solution of the form
exp(ipox/h).

(d) Show that the flux, j(x, t), also vanishes for any purely real state.

P5.7. Show that the u,(x) eigenfunctions of the standard infinite well in Eqn. (5.24)
have a generalized parity property, namely that they satisfy

up(a —x) = (=), (x) (5.84)

corresponding to simple symmetries under reflection about the center of the
well. Verify this for the first few eigenfunctions in Fig. 5.3.

P5.8. Properties of momentum-space wavefunctions for the infinite well. Consider
the momentum-space wavefunctions, ¢, (p) given in Eqn. (5.32) corresponding
to the standard infinite well solutions, u,(x), in Eqn. (5.24).

(a) Show that the ¢, (p) are appropriately normalized, namely that

1 +00
— [ P dp=1 (5.:85)

(b) Show that the Fourier transform of the ¢, (p) returns the standard infinite
well position-space wavefunctions in Eqn. (5.24), namely that

—00 J2/asin(nwx/a) for0 < x < +a
(5.86)

/-+oo¢ ® —ipX/hdp {0 forx <Oorx > +a
n [ =
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P5.10.

P5.11.
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You will likely find the following integrals useful:

/‘+°° sinzz(q) do=n and /+°° sin(q) cos(mq) da
q

o q 0
0 for [m| > 1
=7n/2 for|m|=1 (5.87)
b4 for |m| <1

Momentum-space wavefunctions for the symmetric infinite well. Using the
u£,+) (x) and u,(l_)(x) solutions of the symmetric infinite well, evaluate their
Fourier transform momentum-space counterparts, ¢,(1+) (p) and 455,_) (p). How
are they related to those in Eqn. (5.32) for the standard infinite well. Compare
your answers here to the very general results for the Fourier transforms of even
and odd functions discussed in P2.16.

Classical limit of momentum-space probability distributions. Use the expres-
sion for the standard infinite well ¢,(p) in Eqn. (5.33) to show that the
corresponding momentum-space probability density approaches

1
Pe(p) = S18(p = po) + 8(p + po)] (5.88)
in the limit that Ap — 0. Hint: Use the representation of the §-function in
Appendix E.8.

Classical probability distribution for the asymmetric infinite well. Consider a
particle of mass m and energy E moving in the asymmetric infinite potential
well in Eqn. (5.47), namely

+oo for |x| > a
Vix)=1{0 for —a<x<0 (5.89)

Vo for0<x<a
for the case where E > V.

(a) Sketch graphs of the classical trajectory variables x(¢) and v(t) versus ¢.

(b) Use the expression in Eqn. (5.9) to find the classical period as a function of
E. How does t(E) behave for E 2 V; and E >> V;? Show that it reduces
to the expected values when Vj — 0.

(c) Use the expression in Eqn. (5.13) for the classical probability distribution to
write an expression for Pcr(x) and confirm that it is properly normalized.
Use it to find the probability that a measurement of the position of this
particle would find it with 0 < x < a? Give a numerical answer in the cases
E=1.1Vy,E=2Vy,and E = 10V}

(d) Sketch the classical probability density for E = 1.1V}, 2V}, 10Vj.

(e) Using the classical probability density, evaluate (x) as a function of E.
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P5.12.

P5.13.

P5.14.

P5.15.

P5.16.

(f) What would the classical distribution of velocities (or momenta) look like
for a particle in this potential?

Zero-curvature solutions for the asymmetric infinite well. In finding the solu-
tions for the asymmetric infinite well in Section 5.3, we considered solutions
with E > V; (oscillatory for 0 < x < +a) and with 0 < E < V{ (exponentially
decaying for 0 < x < +a).

(a) Show thatitis possible, with special values of the parameters of the problem,
to have solutions with E = V. For what values of Vy, m, h,a can this
happen?

(b) For such solutions, find the (unnormalized) solutions for 0 < x < +a in
two ways, namely, (i) by taking the ¢ — 0 (E — Vj) limit of the solutions in
Eqn. (5.51) and (ii) by solving the appropriate Schrodinger equation (which
is what?) directly for this special case.

(c) Can you sketch such a solution?

Normalization of asymmetric infinite well wavefunctions. Consider the solu-
tions of the asymmetric infinite well, for the case of E > V;, as in Eqn.
(5.51).

(a) How does one normalize these wavefunctions?

(b) Find explicit expressions for A and B in Eqn. (5.51). Show that they reduce
to the appropriate limits when Vy — 0.

(c) Repeat for the case of E < V).

Momentum-space wavefunctions for the asymmetric infinite well. For the
E > Vj position-space wavefunctions in Eqn. (5.51), evaluate the corresponding
momentum-space wavefunctions. Discuss the correlations between the peaks at
p = £hk, £hq and the coefficients A, B.

Tunneling solutions for the asymmetric infinite well. Consider the asym-
metric infinite well in the case when E < V. Show that the solutions for
0 < x < +a can be obtained from those for the E > Vj case by the substitution
q — iq. Namely, continue the standard trigonometric functions into hyperbolic
functions, using, for example, the results of Appendix C.

Properties of two-state systems I. Consider the two-state solution of the
symmetric well in Eqn. (5.65).

(a) Explicitly confirm the results in Eqns (5.70) and (5.71) by direct calculation.
You will find the necessary integrals in Appendix D.1, but you might find
the following integral useful

+1

TYyN . 32
g dy y cos (7> sin (my) = o2 (5.90)
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P5.18.

P5.19.

P5.20.
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(b) Confirm the result in Eqn. (5.74) for the time-dependent probability flux,
J2s(x, 1).

(c) Evaluate the time-dependent expectation value of the energy operator in
this state, (E),.

Properties of two-state systems II. Consider two variations on the two-state

solution in the symmetric well in Eqn. (5.65), obtained by slightly different

choices of the coefficients a§+), ai_).

(a) Let a§+) = cos(f) and ag_) = sin(0). Confirm that the wavefunction is still
correctly normalized for all times. Evaluate (x);, (p);, and the probability
flux, jos(x, t). Are your results consistent with expectations when 6 = 0 or
6 = 7 /22 To what limits do those cases correspond?

(b) Repeat part (a), but for the case aﬁ) = 1/«/5 and aif) = ei"’/ﬁ. What
role does the phase ¢ play in the time-development of the two-state system?

Properties of two-state systems III. Consider the two-state system in the
symmetric infinite well described by the initial wavefunction

1
— [uiﬂ (x) + ué‘”(x)] (5.91)

V2

namely, a linear combination of the ground state and the second-excited state.

wzs (X, 0) =

(a) Whatis y¥s(x, t)?

(b) What are (x); and (p);? (Before you calculate, look at the symmetry
properties of ¥5(x, ).

(c) Whatis (E)t?

Timescales for quantum revivals. We can estimate the hierarchy for the various
timescales for quantum mechanical bound states, comparing the spreading time
(%), the classical period (7), and the revival time (Trey), using Eqn. (5.78).

(a) Consider a 1 kg mass bouncing elastically between walls 1 m apart, with
its position determined to within an experimental error of roughly 1 pm.
Estimate both #) and T, and compare them to the classical period. Is
quantum mechanical spreading or revival behavior observable in such
macroscopic systems? Assume a kinetic energy T = 17].

(b) Recall the discussion in Example 3.1 comparing the classical period and
spreading time of wave packets in large # atomic orbits. As an approxima-
tion, let us use Eqn. (5.78) to estimate the revival time for this system, where
we can associate L = 27, = 2(agn?) with the size of the quantum “box.”
Compare the relative sizes of ty, 7, Trey for such microscopic systems.

Mirror revivals in the infinite well. Consider a general wave packet state in the
standard infinite well, as in Eqn. (5.76), evaluated at half a revival time, namely,

WP(’Q t+ Trev/z)-
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P5.21.

P5.22.

(a) Using the results of P5.7, show that

Y (%t + Trev/2) = =Y (a — x, 1)
sothat | (x,t + Trev/2)|> = |W(L — x, )| (5.92)
and the shape of the initial wave packet is reformed exactly, but mirrored

about the center of the well. Hint: You might want to confirm to yourself
that (=1)" = (—1)”2 for integral values of n.

(b) Show that two applications of the equation above reproduces Eqn. (5.79),
namely that

Yt + Trev/2 + Trev/2) = Y (X, 1) (5.93)

(c)) Show that the momentum-space wavefunction satisfies

DDyt + Trev/2) = —e P/ My(—p, 1)
sothat  [p(p,t + Trev/2)|* = |9 (—p, )| (5.94)

and the momentum-space probability density is also flipped in sign, so that
the particle is at the “other corner of phase space,” centered at L — x and
going in the opposite direction.

Classical forces. A classical particle rattling around in a one-dimensional box
would exert a force on the walls and the same is true in quantum mechanics.
To evaluate it, consider a particle in the ground state of the standard well (with
walls at (0, L)) with energy E and imagine moving the right-hand wall very
slowly (sometimes called adiabatically) to the right by an amount dx. It can be
shown that any such slow change will leave the particle in the ground state of
the evolving system.

(a) Calculate the new ground state energy, E’, and the difference in energies
AE = E — E. This difference in energies is associated with the work done
by the wall on the particle, which we can write dW = F,,) - dx; it can be
used to evaluate Fy,.

(b) The force of the particle on the wall is then the same in magnitude, but with
the opposite sign by required by Newton’s second law. Use this force to
calculate the work done on a particle by the walls if the right wall is slowly
moved from L to 2L and show that it agrees with the change in energy.

Properties of the Wigner distribution for energy eigenstates. Assume that
you have an energy eigenstate representing a bound state system, so that the
position-space wavefunction is given by ¥ (x, t) = u,(x) e Ent/h where u,(x)
is real. Show that the Wigner distribution, Pw (x, p; t), defined in Eqn. (4.149),
is independent of time so that Pw(x, p; t) = Pw(x, p) and that it also satisfies
Pw(x, —p; t) = Pw(x, +p; t); discuss the significance of the last property.
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P5.23. Wigner distribution for infinite well eigenstates. Evaluate the Wigner quasi-
probability distribution defined in Eqn. (4.149) for the case of the standard
infinite square well solutions, u,(x), in Section 5.2.1. (You have to think a bit
carefully about how to split up the integration region appropriately to handle
the limits of integration.) Plot your result for the n = 1 state in the simplest
way possible to show that while it is mostly nonnegative, it is not completely
positive-definite. Plot Py (x, p) versus (x, p) for a value of n >> 1 and discuss
the rather intricate structure you find.



SIX

The Infinite Well: Formal
Aspects

In the previous chapter, we concentrated on the most important physical aspects
of the solutions of the Schrodinger equation in various versions of the infin-
ite well, namely, the quantization of energy levels in a confining potential,
the connection between the quantum wavefunctions (in both position- and
momentum-space) and their classical counterparts, and wave packets.

We now turn to an examination of the more formal properties of energy
eigenstate solutions, namely, the eigenfunctions of a Hamiltonian operator. Many
of these properties can be immediately generalized to include the eigenfunctions
of other Hermitian operators. We begin, however, by introducing a simple but
useful notation.

6.1 Dirac Bracket Notation

Motivated initially by the notation for average values used before, we define the
Dirac bracket of a position-space wavefunction via

400
W) z/ e Y (o £) Y (0 1) (6.1)

—0o0
A properly normalized wavefunction will then have (y|¢) = 1. This is easily
extended to include the overlap integrals of two different wavefunctions, namely
+00

(W) = / dx G 1) Yo (6, 1) (6.2)

—00
We note the simple connection
(Y11¥2)" = (Y2ly1) (6.3)

since such overlap integrals are not necessarily real; on the other hand, (y|¢)
is manifestly real and positive-definite for any |1/). An equivalent definition for
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the momentum-space representation is

+00
{#1192) E/ dp ¢1 (ps t) 2(p, 1) (6.4)

—00

and Parseval’s theorem (Eqn. (3.24)) guarantees that the Dirac bracket of two
different wavefunctions, whether evaluated in position- or momentum-space,
will be equal since

+00
(P1l2) = f dp @1 (p, 1) 2(p, 1)

—00
+00

_ f dx Yt (x, ) Yo x, )

= (Y11¥2) (6.5)

Expectation values of operators are written as
A A +CXJ A
(0) = (¢¥10ly) E/ dx Y™ (x, 1) O (x, 1) (6.6)
—00
so that, in this simplified form, an operator is Hermitian if

(¥101y) = (¥|Oly)* (6.7)

From Eqn. (4.73), we also know that Hermitian operators will satisfy

(Y1101¥2)* = (Y2 Olyry) (6.8)

Besides being of typographical convenience, the Dirac bracket notation has a
geometrical significance, which will be discussed in Chapter 12.

6.2 Eigenvalues of Hermitian Operators

The basic equation of quantum mechanics, the time-independent Schrodinger
equation,

Hyp(x) = Eyp(x) (6.9)

requires one to find the eigenvalues of a Hermitian operator, namely the Hamilto-
nian (recall P4.19). The energy eigenvalues so obtained are real, which is an
example of a general result:

® The eigenvalues of a Hermitian operator are real numbers.
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This is easily proved by considering a Hermitian operator A satisfying

AYra(x) = apra(x) (6.10)

where we work in a position-space presentation for definiteness. If we multiply
both sides of Eqn. (6.10) by ¥ (x) (on the left) and integrate, we find that
+00

(A) = (YalAlYa) = / e Y25 (x) A Yra(x)

—0o0

+00
= / dx g (x) ara(x)

—0o0

a{Val¥a) (6.11)

so that

_ Waldl) 6.1

(Val¥ra)

which is obviously real since A is Hermitian. Not surprisingly, then, the eigen-
values associated with operators corresponding to physical observables are
real; familiar examples considered so far include the momentum and energy
operators.

6.3 Orthogonality of Energy Eigenfunctions

Starting with the standard infinite well, we found that we had to normalize the
energy eigenfunctions by hand, because the relation

(11 1) = /g o) P = 2 fasinz <@> k=1 (6.13)
0 0

a a

was not an automatic property of solutions of the Schrédinger equation. We
now note that the overlap of two different solutions of this problem, that is,

(ittt} = /0 [16n () T* ()

2 /“  /ATX\ . /MTX
= — sin < > sin ( ) dx
aJy a a

sin[(m — n)w]  sin[(m + n)mw]

(m—n)m (m+n)m

= 8pm (6.14)
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s Uo(x) u3_(x)
Figure 6.1. The product um(x) un(x) versus x for the standard -t
infinite well for (n, m) = (2, 3) The up,m(x) are normalized, but I/\ J
the overlap integral is zero because of cancellations; the total “area
under the curve” vanishes. Up(X) U3(X)

vanishes if the eigenfunctions correspond to different eigenvalues, that is, if
n # m. In contrast to Eqn. (6.13), this fact is seemingly a consequence of the fact
that the eigenfunctions satisfy the Schrodinger equation. We can visualize how
this occurs by examining the integrands for a pair of states with n = 2, m = 3in
Fig. 6.1; this figure illustrates how the total “area” under the product u, (x) 1, (x)
somehow conspires to vanish.

A similar result can be seen to hold for the symmetric infinite well,

(u,(1+)|u£n_)) =0 forall n,m, (u,(1+)|u,(ﬂ+)) = 8p,m>» and
W1y = 8, (6.15)

where the first condition also follows from the fact that the integrand is the
product of an even times an odd function.

From Eqn. (3.24), we know that the equivalent overlaps of the momentum
space wavefunctions will also satisfy this orthonormality condition; for example,
for the standard infinite well we must have

Dalbm) = f [0 (P)T* G () lp

+a
- / [t ()T ()
0

= (upltm) = Snm (6.16)

The momentum space integrals can also be done analytically (P6.1) as a further
check.

Finally, we also note that the infinite well is not special in this regard as we
can show (P6.2), after some algebra, that the position-space wavefunctions of
the “asymmetric” well corresponding to different energies also have vanishing
overlap.

We can then say that

¢ Two functions are orthogonal if their overlap integral vanishes,

and we need not specify whether we work with position-space or momentum-
space wavefunctions because of Eqn. (3.24). We are finding that
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® The energy eigenfunctions form an orthonormal set, that is, they are mutually
orthogonal and normalized (or can be made so) under a generalized form of
dot- or inner-product (namely, the overlap integral).

This conceptis very similar to the case of a set of unit vectors in an N-dimensional
vector space, {€;,i = 1,..., N}, where &; - &; = §;; or the more familiar %, 7, z
mutually perpendicular unit vectors of three-dimensional geometry.

To see that this phenomenon is not restricted to solutions of the Schrodinger
equation, that is, eigenfunctions of a Hamiltonian operator, consider the
eigenfunctions of the momentum operator,
hodyp(x)

PYp(x) = P

= p¥p(x) (6.17)

with solutions

Yp(x) = e'Px/h (6.18)

V2mh

for any real value of the variable p. These solutions have overlap integrals given by

w|¢»=/*m(_i_ﬂwﬂ*(_L_ﬂMM)@
prve -0 2mh 2mh

1 [t
=— e P Px/h gy
2h J_o
=8(p—p) (6.19)

which also vanishes if the eigenvalues are different. In this case, the normalization
condition is appropriate for a continuous label.

Thus, this generalized orthogonality is seemingly not a specific property of
either the position-space or momentum-space representation, or even of eigen-
functions of a Hamiltonian, but a more general result. The functions above all
share the property that they are eigenfunctions of some Hermitian operator, and
the most general result we can derive can be stated simply as

® The eigenfunctions of a Hermitian operator corresponding to different
eigenvalues will be orthogonal,

which we can prove as follows: Consider two eigenfunctions of a Hermitian
operator, A, corresponding to two distinct eigenvalues,

AYa(x) = apra(x) and Ay (x) = br(x) (6.20)

where a # b are both real (from Section 6.2) since A is Hermitian; we work
with position-space functions for definiteness. We know from Eqn. (6.8) that



6.4 EXPANSIONS IN EIGENSTATES 171

any Hermitian operator will satisfy the relation

(VIAlp) = (plAly)* (6.21)
SO we can write
A +OO A
Waldion) = [ dxuieo [dno]
+o0
= f dx Y (x) brp(x) = b(Yalp) (6.22)

while

watda® = ([ axvio [Awam])*

—0

+oo *
= <f dx Yy, (x) al/fa(x)>

+o00
= a*/ dx Yz (x) Yy (x) = a(Palp) (6.23)

o0

since a is real. Comparing these two quantities we see that

0 = (ValAlYp) — (YplAlYa)* = (b—a) (Yalyy) (6.24)

so that (Y,|Y¥p) = 0if b # a and the eigenfunctions are indeed orthogonal
if their corresponding eigenvalues are different. (We note that if there is more
than one eigenfunction corresponding to the same eigenvector, the set of such
eigenfunctions can be made orthogonal “by hand.”)

The use of Hermitian operators, which naturally correspond to physical
observables, automatically induces a rich geometrical and algebraic structure
on the solutions of the Schrodinger equation and other systems, and we will
make extensive use of these properties.

6.4 Expansions in Eigenstates
Starting with our canonical example of the standard infinite well, we saw that the

general, time-dependent solution of the Schrodinger equation could be written
as a linear combination of energy eigenstates via

Y1) =Y anuty(x) e /0 (6.25)
n=1
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where the a, are (at the moment) arbitrary and possibly complex constants. We
wish to explore the physical interpretation of the “expansion” coefficients, a,,.
We first note that if the solution is properly normalized, we must have

1= (¢[) :./o Y DY (x, t)dx

a w . * w .
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and the expansion coefficients must satisfy their own normalization condition.
Thus, we see that

® For an expansion in eigenstates of the form in Eqn. (6.25) to be properly
normalized, the |a,|* appearing in the expansion must sum to unity.

While a particle in any particular energy eigenstate will have a uniquely defined
energy, this general solution has an expectation value for the energy given by

(WIElY) = fo U (x, ) EY (x, t)dx

a [ . * 9 e .
= / (Z Ap Un(x) e_’E”t/h> (iha—> ( A U (X) e_’E’”t/h) dx
0 n=1 t m=1

(o oluNe ¢}

. a
Z Z a5 amEpm e_Z(E’”_E")t/h/ U (%) Uy (x)dx
0

n=1 m=1

o o0

Z Z ayamEy, e~ {(Em—En)t/h Snm

n=1 m=1

(E) = Enlan|? (6.27)
n=1

independent of time. So, while many important properties of such a general state
may vary in time, for example, average values of x and p, the average value of
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the energy operator, E, does not. Similar results can be obtained for any power
of the energy operator,

(%) = (wE*|y) = Z(E) || (6.28)
and this allows one to calculate the energy spread, given by

AE =/ (E?) — (E)? (6.29)

for any state. A general state such as Eqn. (6.25) will have AE # 0, unless of
course a, = §,,.k, so that it is actually an energy eigenstate.

Taken together, these results imply that the squares of the expansion coeffi-
cients are related to the probability of “finding” the particle in one of the given
energy eigenstates. Because the measurable quantity associated with the solu-
tions of the Schrodinger equation is their energy eigenvalue, we have the more
precise statement,

* Inan expansion of a wavefunction v (x, t) in terms of energy eigenstates, |a,|?
is the probability that a measurement of the energy of the particle described
by ¥ (x, t) will yield the energy E, as a result of such a measurement.

This definition is consistent with the expression for (E) in Eqn. (6.27) as an
average value of a discrete probability distribution. Since the |a,|> are themselves
actual probabilities (in contrast to, say, | (x, ) |2, which isa probability density),
they must be dimensionless.

Example 6.1. Average energy in an eigenstate expansion

Consider the unnormalized state in the standard infinite well given by
vx,t) =N (2u1 ) e Eth (121 yuy e 3jus (x) e_’E3r/h) (6.30)

where £, = h2m?n? /2ma?. The normalization factor N is determined by the fact that

o0
1:Z|an|2=N2(4+5+9)=18N2 (6.31)

n=1

s0 N = 1/+/18. Repeated measurements of the energy of an ensemble of such states would
onlyfind the values E1, E;, and E3 with probabilities 2/9, 5/18,and 1/2, respectively; the aver-
age value of energy after many such measurements would be (£) = (35/12)(hx?)/ma?
or roughly 5.83£7.
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This same interpretation for the expansion coefficients will hold for any expan-
sion in terms of energy eigenstates (i.e. solutions of the Schrodinger equation)
but, once again, is far more general. For example, we have seen that the eigenstates
of the momentum operator can be written as

Yp(x) = \/%ieipx/h (6.32)

and we can write a general function as a weighted (continuous) sum of such
solutions via

+00

v = 6@ v dp
L [Ty ering (6.33)
N 27TFL —0o0 P P .

which is simply the Fourier transform. The expansion coefficients in this case
are the ¢ (p) and have a continuous label, so that the probability of making a
measurement of the physical observable (in this case momentum) is given by

Prob[(p, p + dp)] = |p(p)|*dp (6.34)

as expected. We are thus led to argue:

o If we expand a function in terms of the eigenstates of a Hermitian operator,
f\, 1e.

Y(x) =Y caalx) where Ay, (x) = ay(x) (6.35)

the square of the expansion coefficients, |c,|?, give the probability of observing
that state with the value of the observable, a; such expansion can be either
discrete or continuous.

This discussion points up again the usefulness of having many different rep-
resentations of the same quantum mechanical system. We have already argued
that the position-space wavefunction, ¥ (x), and the momentum-space wave-
function, ¢ (p), are equivalent in their information content, and we can now
add to that list the expansion coefficients of a quantum system in terms of
some set of energy eigenstates, namely, the {a,}. These three sets of numbers
give complementary information on the probabilities of measuring the position,
momentum, and energy, respectively, of the particle described by them.
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The different descriptions have an equivalent geometrical structure, as their
norms satisfy

e 2 e 2 - 2
| wawrac= [ sl =Y laf =1 (630
—00 —00 n=1
and generalized inner products are related by
+0o0 +00 00
viwwd= [ eleapd =Y ab, 637
—00 —00 n=1

if
Va() =) agun(x) and  yp(x) = ) byt (x) (6.38)
n=1 n=1

We have explored in Chapter 4 how average values of the position and
momentum operators can be obtained in the ¥ (x) and ¢ (p) representations;
Section 10.4 explores how such information is obtained from the a,,.

6.5 Expansion Postulate and Time-Dependence

We have now seen that an arbitrary linear combination of energy eigenstate
solutions (each with its trivial time dependence) will also be a solution, and
we have found an interpretation of the corresponding coefficients. We wish to
examine whether we can invert the process, namely, if we are given an arbitrary
(but physically acceptable) initial state, ¥ (x,0), whether we can expand it in
terms of the energy eigenstates.

This procedure, if possible, would then allow us to solve the general ini-
tial value problem, as the resulting time-dependence would be simply that of
Eqn. (6.25). For the infinite well, this is the quantum mechanical analog of pluck-
ing a stretched string in some initial configuration and asking about its future
vibrations.

If we formally write

Y(x,0) =) aptin(x) (6.39)
n=1
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we can try to “invert” this to find the a, by multiplying both sides by u,(x) dx
and integrating. We find

/a u, (%) Y (x,0) dx = Z a, /‘a U (%) Uy (x) dx
0 = Jo

o0
= Z Andnm = am (6.40)
n=1

We have dropped the complex conjugation in this case because the u,,(x) can be
made real. Thus, the contribution of the mth eigenstate (u,,(x)) to the expansion
of the initial wavefunction, ¥ (x, 0), is given by their mutual overlap, defined by
the integral in Eqn. (6.40).

Another immediate similarity with a complete set or basis set of unit vectors
is thus apparent. If we write a general vector as A = ), A; é;, we can extract the
expansion coefficients via the inner product as

A-ej= (ZAi éi) -ej = ZAi (éi- &) = ZAi 8ij = Aj (6.41)
i i i

With some trivial changes, this expansion also works for the symmetric well,
where we write

o0

Y(x,0) = Z (afﬁ ufl“L)(x) + afl_)u,g_)) (6.42)
n=1
with
+a
ald = f u® () ¥ (x,0) dx (6.43)

This particular expansion can be seen to be formally identical to the Fourier series
expansion discussed in Section 2.2.2. The only differences are that the constant
term is not allowed due to the boundary conditions at the walls of the well, and
that the series expansion is defined to vanish outside the well.

In general, the wavefunctions can be complex, so that for an arbitrary
expansion

Y1) =) aga(x) e Bt/ (6.44)

the overlap integrals giving the expansion coefficients must be carefully written
as

+00
a, = Vr(x) ¥ (x,0) dx (6.45)

—00
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Lastly, this inversion process is not limited to sums of energy eigenstates as
the expansion in momentum eigenstates

1 Foo ,
Vo= / b(p) P/ (6.46)
—00
has the well-known inverse
1 oo —ipx/h
p) = —— x)e x .
o (p) NirT V(x) e P"q (6.47)
—00

Taken together, and generalized to include general Hermitian operators, these
results are examples of the so-called expansion postulate, which states that

® The eigenfunctions of a Hermitian operator form a complete set

since any admissible wavefunction can be expanded in such eigenfunctions.

Example 6.2. Why bad wavefunctions are bad

Let us now turn to some examples. Consider first the initial waveform, defined inside the
symmetric infinite well, (—a, +a), by
1//a for|x| < a/2
vx) = / / (6.48)
0 for |x| > a/2
While normalized appropriately, this is not an acceptable wavefunction due to its discontinu-

ities, and we will use this opportunity to examine the physical consequences of such behavior.
The expansion coefficients are easily calculated, giving

+a
at?) = / u$ 00 Y (x,0)dx =0 (6.49)
—-a

because of symmetry considerations (even function times odd function integrated over
symmetric interval), while

+a
ast = / uSt 00 ¥ (x, 0) dx
—a

+a/2 _
= z/ cos <—(n 1)/27”() ax
aJo a

. 4sin[2n—"1)m /4]

Qn—Nr (6:50)

which is dimensionless as it should be. The convergence is similar to that in Example 2.1 and
is shown in Fig. 6.2, We can now use these expansion coefficients to address a more physical
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(Continued)
i/ X
N=8
| |
N=16
Figure 6.2. Generalized Fourier series expansion for a ;! I
square wave in the symmetric infinite well for Example 6.2. -a a2 al2 a
question, namely, to evaluate the energy of this state. We find
o
WIEW) = Y {1at 1267 + o 1E7 |
n=1
B i 8 hlm?(2n — 1)
B —~\(2n— 1272 8ma?
-~

which is divergent. The kinetic energy corresponding to this state, measuring the “wiggliness”
of ¢, is infinitely large due to the discontinuity. This can also be seen directly from the position-
and momentum-space wavefunctions from a calculation of (T) = (p?)/2m (P6.8).

Example 6.3. The expanding box

As a further example, let us consider the case of a particle in the symmetric well, known
somehow to be in its ground state. Very suddenly, at t = 0, the walls are pulled apart
symmetrically to a new width 2b (where b > a). (This is in contrast to P5.21 where slow or
adiabatic changes were discussed.)

The initial wavefunction of the particle in this new well (see Fig. 6.3 for the situation at
t = 0), defined via

By oy
5x,0) = ig1 (x;a) = cos(mwx/2a)//a for|x| <a (6.52)

fora < x| <b
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(Continued)

Figure 6.3. Initial state wavefunction of the
“expanded well” state of Example 6.3 where the walls
are suddenly moved from +a to +b.

Figure 6.4. Expansion coefficients squared (lan|?) for
first three even levels versus b/a from Example 6.3.

can now be expanded in terms of the energy eigenstates of its new “universe” (the new well),
that is, in terms of the u )(x b). The result is that

4ab? <cos((2n - 1)na/2b))
m/ab \ (b? — (2n — 1)2a?)

Once again, the odd state expansion coefficients vanish because of symmetry considerations.
We plot the probabilities of finding the particle in the ground state, and first and second excited
even states of the new well versus b/a in Fig. 6.4; as b/a— 1, only the original ground state
is required.

Having once calculated the expansion coefficients for the given initial waveform, the
future time-dependence of each term is dictated solely by the exp(—iES™t/h) factors. The
wavefunction at later times is then given by

ai? =0 and &P = (6.53)

1 n=1/Dmax\ _ir
(+) iEn” (b)t/R
= —_— 6.54
Y, t) = Za ( 5 ) e (6.54)
and we plot in Fig. 6.5 the resulting probability density (given by |y (x, t)|2) for various future
times. Because of the simplicity of the infinite well (specifically its energy eigenvalues), the
behavior is periodic, and we plot various times during the first half-cycle only; it need not be
exactly periodic in a general potential.
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(Continued)

t=0 t=0.17 t=0.27

AN

t=0.37 t=0.47 t=0.57

Figure 6.5. Time-development of “expanded well” system illustrated by plots of |y (x, t)|? versus x
for various times in the first half-cycle.

If this problem seems somewhat artificial (suddenly moving the walls of an
infinite well in a microscopic system is admittedly somewhat difficult to imagine
realizing experimentally), it is representative of a class of interesting real-life
problems in which some parameter of the potential undergoes a sudden change;
we will see a more realistic example in P17.8. We next show how a Gaussian wave
packet can be constructed (approximately) in the standard infinite well using the
expansion postulate.

Example 6.4. Gaussian wave packets in the standard infinite well

While the general Gaussian wave packet discussed in Chapter 3 (especially as defined in
Eqn. (3.35)) is a very useful example, it is not strictly an allowable quantum state in the standard
infinite well, since it does not satisfy the boundary conditions that ¥ (0, t) = ¥ (a, t) = 0.
However, for a sufficiently narrow initial wave packet, far enough from either wall, the error
made in neglecting the “tails” of the Gaussian wave packet outside the well can be made
arbitrarily (exponentially) small. In order to extract the expansion coefficients of a Gaussian
initial state (with b = ha) given by

w(G) (X, 0) = e_(X_XO)Z/zbZ eiPO(X_XO)/h (655)

1
VbJm

placed inside the standard infinite well, we require the overlap integrals

a
an = / Un(X) ¥G(x, 0) dx (6.56)
0

where we again use the fact that the up,(x) are real. Since the integral is assumed to be
exponentially small outside the (0, a) interval, we can extend the region of integration to
(—00, +00) with negligible error. This is important since the resulting Gaussian integrals can
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(Continued)
be done in closed form, giving

+
1 / > \/?Sm (@) o= (—x0)2/267 oo (x—x0)/h gy
Jbym J-w [Va  \a

_ ( 1 ) 4br |:eimr><o/ae—b2(po+rmh/a)2/2h2 _ e—innxo/ae—bz(po—nnh/a)z/th:|

2i )\ aym

dn ~

(6.57)

(Note that in Section 5.4.2 we used an approximate, unnormalized version of this more
precise result; the plots in Fig. 5.9 were obtained using the values in Eqn. (6.57).) The general
time-dependent wavefunctions, in position- and momentum-space can then be written as

Ywp(, D) =Y antn() e M and  gup(p, ) =) angn(p) e "
n=1 n=1

(6.58)

and while the sums are formally infinite, the contributions are peaked about values of n for
which pn, = nhimr/a &~ py. We can also make use of this connection to estimate the number
of states necessary to approximate the state by noting that

h h wh a
Ap=—An or An

L — = 6.59
2A0x0  A/2b a 27 AXg (6:59)

so that the narrower the initial wave packet, the larger the number of states required to
reproduce it faithfully.

6.6 Parity

We have concentrated our attention so far on Hermitian operators which have
familiar classical analogs; the momentum, the energy, and the Hamiltonian oper-
ators all have recognizable classical counterparts. In this section, we study a
somewhat more abstract operator which arises because of a symmetry.

We have seen that the energy eigenfunctions for the symmetric well can also
be characterized in terms of their evenness or oddness, that is their symmetry
properties under reflections; these properties are obviously connected to the
symmetry of the potential itself. To formalize this notion, and to extend our
experience with the properties of Hermitian operators, we are led to study the
parity operator, defined via

Pf(x) = f(—x) (6.60)
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Figure 6.6. (a) Parity operation applied to a generic real function 7 (x) and (b) its expansion in even (fg (x))
and odd (fp (x)) functions.

which has the effect of taking the mirror reflection of a function about the origin
as illustrated in Fig. 6.6(a).
This operator is easily seen to be Hermitian since

+o0 . +00 R *
(/ dxw*(x)Pllf(x)>—</ dxw*(x)Pw(x))

+00 +0o
:/ dxl/f*(x)t//(—x)—/ dx Yy (—x) ¥ (x)

—0o0 —0o0

+00 +oo
_ / e Y () P (=) — / dy ¥ () ¥ (=)

—0o0 —00

=0 (6.61)

where we have simply changed variables (x — —y) in the second integral.
This implies that the eigenvalues, Ap, of the parity operator will be real (from
Section 6.2). We can see that the definition

Pf(x) = Apf (x) (6.62)

can be used twice to obtain

f(x) = Pf(—x) = P*f(x) = PApf(x) = ApPf(x) = A3f(x) (6.63)

implying that Ap = =£1. Thus the eigenfunctions of the parity operator are
simply even and odd functions with

fe(=x) = Pfg(x) = +fp(x) and fo(—x) = Pfo(x) = —fo(x)  (6.64)

The orthogonality of eigenfunctions belonging to different eigenvalues is trivially
evident as

+o0o

{felfo) = / dx fg (x) fo(x) = 0 (6.65)

—0
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for any even and odd functions. The expansion postulate can also be confirmed
in this case as we can always write a generic function in terms of even and odd
solutions as

F) = f® +2f(—x) n f ) —zf(—X)

= fg(x) + fo(x)
= cgfp(x) + cofo(x) (6.66)

where fg,0(x) are obviously even and odd, respectively, but are not necessar-
ily normalized properly. This expansion is illustrated in Fig. 6.6(b). If we write
feo)(x) = CE(O)fE(o) (x) where ]?E(o) is normalized, then the expansion coeffi-
cients, namely, the cg(0), when squared, give the probability of finding the state
with positive or negative parity (See P6.11).

6.7 Simultaneous Eigenfunctions

We have seen that the solutions for the symmetric infinite well problem are
simultaneously eigenfunctions of both the Hamiltonian operator for that of
system and of the parity operator; that is, they have precisely determined values
of both the energy and the parity. On the other hand, the content of the standard
uncertainty principle, Ax Ap > h/2, is to say that it is not possible to know
simultaneously the values of both the position and momentum to arbitrary
precision.

We are naturally led to ask under what conditions two different Hermitian
operators can share eigenfunctions. The general result can be stated as:

¢ Two Hermitian operators, A and B, can have simultaneous eigenfunctions if
and only if they commute with each other, that is,

[A,B]=AB-BA=0 (6.67)
or their commutator vanishes.
Before proceeding with the proof, we note that the commutator satisfies
[A, Bl = —[B, A] (6.68)

as well as

[@A + BB, C] = a[A, C] + B[B, C] (6.69)
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Let us first assume that A and B commute and that we have found the eigen-
values and eigenfunctions of the operator A, which we denote via Ay, = av,.
We assume for simplicity that the eigenvalue spectrum is not degenerate, that
is that there is only one v, for every eigenvalue a. (The case of degenerate
eigenvalues is a straightforward extension.)

We then note that

A <1§1ﬁa> = BA% (since A and B commute)
=B (ara)  (since Y, is an eigenstate ofA)

—a (B¢u> . (6.70)

Thus, B, is a function which, when acted upon by A, returns the same function
multiplied by the number a; this is just the definition of ¥, so that By, must
be, up to a multiplicative constant, the same as ¥/, that is, Bwa o 4. But this,
in turn, is just the definition of an eigenfunction since

B% XY, = Bwu = by, or IAW,I; = blﬁf (6.71)

so that 1, is also an eigenfunction of B.
To complete the proof, we assume that we have found the simultaneous
eigenfunctions of the operators A and B which satisfy

Ayl =ay? and Byl =1by? (6.72)

Clearly A and B commute on the common set of eigenfunctions since
[A, Bly!t = <A1§ - BA) ylb = (Ab — Ba> Yl = (ab—bayyl =0 (6.73)

Since we are dealing with Hermitian operators, we know that the wé’ form a
complete set so that an arbitrary wavefunction can be writtenas ¢ = ) ¢, wf ;
this implies that

(AB BA)w an[(AB BA) ] an[o 1=0 (6.74)

and the commutator of A and B vanishes when acting on an arbitrary
wavefunction.

Because [x, p] = il # 0, we now understand why we can never have sim-
ultaneous eigenfunctions of these two variables. For the case of the symmetric
infinite well, the two operators are the Hamiltonian, H = p?/2m + V (x) and
parity operator, P. Their commutator, acting on a general state, can be written
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in two pieces,

[p? 2 = _h_z a . d_
P /2m, Pl (x) = PP ) v
_ h2 d? d*y (—x)
T 2m (d AL )
=0 (in general) (6.75)

and
Ve, Py (0 = (VP = PV) v

= (V(x) = V(=x)) ¥ (—x) (6.76)
=0 onlyif V(x) = V(—x)

that is, if V(x) is symmetric.
Because eigenfunctions provide such detailed information on the quantum
state, one strategy is to search for

* A maximally large set of mutually commuting observable operators, that is,
the largest possible set of operators, A,’, which represent observables (i.e.
Hermitian operators) and which all commute with each other, namely,
[A; f\j] = 0. Such a set is guaranteed to have simultaneous eigenfunctions.

6.8 Questions and Problems

Q6.1. Give an example of an operator which is not Hermitian and show that its
eigenvalues are not necessarily real.
P6.1. Consider the momentum-space wavefunctions, ¢,(p) for the standard infin-

ite well, given by Eqn. (5.33). In P5.8 we showed that these were properly
normalized.

(a) Show that ¢, (p) are actually orthonormal, namely that

+00
<¢m|¢m> = / dP [¢m(p)]* [¢m(P)] = 8n,m (6-77)
—00
Hints: (i) Use the integrals cited in P5.8 and (ii) use partial fractions to rewrite
the products found in the denominators.

P6.2. Orthogonality of asymmetric infinite well states. Consider stationary state solu-
tions of the asymmetric well discussed in Section 5.3 for the E > Vj case.
Show that two such solutions, ¥ (x), Y2 (x), corresponding to different energy
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eigenvalues are mutually orthogonal, that is, their overlap vanishes

+a

(V) = dx Y1 (x) Y2 (x)

—a

0
= dx A1 A; sin(ky (x+a)) sin(ky(x+a))

—a

+a
+ / dx B1 B, sin(q; (x—a)) sin(qa(x—a))
0

(Y1lY2) =0 (6.78)

Hints: Make repeated use of the boundary conditions at x = —a, a as well as the
definitions of k, q. You may also find it useful to use the fact that k? —k = g —q3
but you should prove it first. Do you need to have normalized the solutions first
before you check whether they are orthogonal? Repeat for the 0 < E < Vj
solutions.

A particle in a symmetric infinite well is described by the wavefunction
¥ (x,0) = N[ + 2™ (%) — 27 (%) + 30l (x)] (6.79)
where the ufli) (x) are the infinite well wavefunctions.

(a) Find N so that ¥ (x, 0) is properly normalized.
(b) Whatis vy (x, t)?

A

(c) Evaluate (E); and AE.

(d) What is the probability that a measurement of the energy of the particle
would find E = h27?/8ma’? E = 6h*w? /8ma*? E = 9h*n? /8ma*?

Coordinate system choices in quantum mechanics. Suppose that you have solved
the Schrodinger equation for some arbitrary potential and found the generic
eigenstates, for example, u,(x) exp(—iE,t/h) so that the general solution is

V(1) = Y ayity(x) exp(—iEt/h) (6.80)

(a) Assume that you suddenly decide to change what you call the origin of
coordinates along the x-axis, i.e. letting x — x + d, so that the new spatial
solutions are ¥ (x, £) = ¥ (x + d, t). Show that corresponding momentum
space wavefunction is only changed by a phase factor, so that |¢ (p, t)|? is
not changed at all. Discuss why this should be so.

(b) Suppose now that you decide to relabel the zero of your potential energy
function via V(x) — V(x) 4+ V. Find ¥ (x,t) in terms of the original
solution and show that observables depending on P(x,t) = | (x,t)|?
are unaffected by a different choice of zero of potential. How is |¢ (p, t)|?
affected?
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Wavefunctions in the symmetric infinite well I. Consider an initial wavefunction
in the symmetric infinite well defined by

—N for —a<x<0

,0) = 6.81
V0 :—}—N for0 < x < +a ( )

(a) Find N so that ¥ (x, 0) is properly normalized.
(b) Calculate the expansion coefficients, a,(f), for this wavefunction.

A

(c) Use them to evaluate (E). Is your answer consistent with what you know
about this waveform?

Wavefunctions in the symmetric infinite well II. An initial wavefunction in the
symmetric infinite well is given by

¥(x,0) =N <1 - ﬂ) (6.82)

a

(a) Answer the same questions as for P6.5. What is different about this waveform
than that in P6.5 and Example 6.1.

(b) Try to evaluate AE in this state.

Wavefunctions in the symmetric infinite well III. Consider two wavefunctions
in the symmetric infinite well defined by

1///a for—a<x<0

(6.83)
0 for0 < x < +a

Yi(x) = {

and

0 for-a<x<0
Va(x) = (6.84)
1/J/a for0<x<+a
that is, waveforms which are completely localized within the left and right halves
of the well.

(a) Show that the two states are normalized properly and that they are
orthogonal, i.e.

+a

(V1ilyn) = Yy (%) Yo (x) dx = 0 (6.85)

—a

(b) Calculate the corresponding momentum-space wavefunctions, ¢12(p), and
show explicitly that

+oo
/ dp ¢ (p) ¢2(p) =0 (6.86)

and that they are normalized as well.
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P6.8.

P6.9.

P6.10.

(o)

Expand both wavefunctions in energy eigenfunctions and show that their
overlap vanishes, that is,

o0
Z alb, =0 (6.87)
n=1

Hint: Be sure to include both a,ﬁi) in the expansion and overlap summation.

Consider again the (unacceptable) wavefunction defined in Example 6.2.

(a)

(b)

(b)

Write the position-space wavefunction, ¥ (x), in terms of step-functions,
0 (x) (as in Section 2.4). Evaluate the average kinetic energy (which is the
total energy since the potential vanishes inside the well) using the form

22 2
Oy AT

2

= — 6.88
2m 2m dx ( )

You may have to use some “seat-of-the-pants” mathematics to handle the
Dirac §-functions you encounter.

Evaluate the momentum-space wavefunction, ¢ (p), and use

2 1 +o0
=20 _ L / dp 07 16 (D) (6.89)

2m 2m J_oo
to find the kinetic energy.

In Example 6.3, show that the expansion coefficients are appropriately
normalized, that is, that

o
> laPP =1 (6.90)
n=1

in the case where b = 2a.

The energy of the initial state is definitely known to be E1(+) = h*m?/8ma’.
Evaluate (E) after the walls have expanded for a general value of b. Show
explicitly for the case b = 2a that your answer agrees with the initial value.
Hint: The summations in Appendix D.2 may be useful.

The dissolving infinite well. A particle is in an energy eigenstate, u,(x), of the
standard infinite well. At t = 0, the walls of the well at x = 0, a are suddenly
removed, so that the wavefunction evolves in time as a free particle.

(a)

(b)

()

What are the + = 0 position and momentum-space wavefunctions for this
state, ¥ (x, 0) and ¢ (p, 0)?

What is the time-dependent momentum-space wavefunction, ¢ (p, t)? What
is Y (x, t)?

Using the results of P4.31, write down explicit formulae for the time-
dependent (x); and (x?); for the state after the walls are dissolved. Hint: You
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can evaluate any t = 0 expectation values using either position- or
momentum-space wavefunctions, whichever is easier.

(d) If you were to define a spreading time, ty, for ¥ (x, t) using the free-particle
result in Sections 3.2.2 or 4.3.1 as a model, how would it depend on the
initial state, u, (x) used.?

P6.11. Expansion in parity eigenstates. Consider a real-valued function expanded in
terms of even and odd functions as in Eqn. (6.66).

(a) Show that the probability that the wavefunction is in an even state is given by

+00d _
2 % (1 +f_oimxﬂx)f( x)) ©on)
S22 dx (f(x))?
and an odd state by
+ood B
4=1 (1 _ e IS x)> 69
JZo dx (f(x))?

(b) Show that c}% = land cé = 0 for an even function.

(c) Consider the (unnormalized) function f (x) = N exp(—ax?/2—bx/2). First
normalize f(x) and then evaluate the c% and cé as a function of a, b? Are

your results consistent with your expectations based on what this function
looks like?

(d) Repeat part (c) for f(x) = Nx exp(—ax?/2 — bx/2).

P6.12. Generalized parity operator. If one wants to “reflect” a function in a point other
than the origin, show that the generalized parity operator, defined via

P, f(x) = f(2a—x) (6.93)
reflects the function about the point x = a.

(a) Show that P, is Hermitian, find its eigenvalues and eigenfunctions and
interpret them.

(b) The standard infinite well potential is symmetric about the point x = a/2.
Show that the energy eigenfunctions for this case are eigenfunctions of P(,/»)
and find their eigenvalues.

P6.13. Consider the initial wavefunction in P6.3.

(a) What is the average value of the parity operator, P, for this state? Does it
depend on time?

(b) What is the probability of measuring the particle described by this
wavefunction to have positive parity? negative parity?
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P6.14.

P6.15.

Pé.16.

P6.17.

P6.18.

The complex conjugation operator. Define the complex conjugation oper-
ator via

Cf(x) = f*(x) (6.94)

(a) Show that this operator is not Hermitian by finding a wavefunction for
which (C) = (¢ |C|¥) is not real.

(b) Try to find the eigenvalues of this operator by modifying the derivation in
Section 6.7.

(c) Show that any complex number z = a + ib is an eigenfunction of C and
find the corresponding eigenvalue.

Which of the following pairs of operators can have simultaneous
eigenfunctions?

(a) pand T = p/2m
(b) pand V(x)
(¢) E and p

Consider the translation operator, i}, defined via

Tof (%) = f(x+a) (6.95)

(a) Is T, a Hermitian operator? Can you find an example where its expectation
value is not real?

(b) What is [T,, p2/2m]?
(¢) Under what conditions is [i"a, Vi(x)] =02

Gaussian wave packet at rest in the infinite well. Consider the expansion coeffi-
cients for the Gaussian wave packet in the standard infinite well in Eqn. (6.57)
in the special limit of py = 0. This is as close as one can come to trying to have
a wave packet “at rest.”

(a) For the case of xp = a/2 (center of the well) discuss which of the a, are
nonvanishing and explain why. For a general wave packet in the standard
infinite well, we know from Section 5.4.2 that there will be wave packet
revivals at a time Ty, = 4ma®/hm. Is the revival time different for the
po = 0and xy = a/2 case?

(b) Repeat part (a) for the case of xp = a/3,2a/3.

Feynman—Hellman theorem. Suppose that the Hamiltonian of a system depends
on a parameter A in some well-defined manner, I = H()), with energy eigen-
values satisfying H (MY = E(L)y. Remember that the eigenstates, (1), will
also depend on A.
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(a) Show that the dependence of the energy eigenvalue of a specific state on A
is then simply given by

(6.96)

IE()  [9HO)
ar | oA

Hint: Use the fact that probability is conserved.

(b) Check this result explicitly for the infinite well energy eigenstates, using the
mass m as the parameter.



SEVEN

Many Particles in the Infinite
Well: The Role of Spin and
Indistinguishability

7.1 The Exclusion Principle

The self-consistent inclusion of the wave properties of matter into the dynamical
equations of motion, via the Schrodinger equation, is an important aspect of any
attempt to understand the structure of matter. This aspect of microscopic phys-
ics, which we might dub “A-physics,” cannot be underestimated, as it accounts
for much of the observable phenomena we attribute to quantum mechanics.
The discrete sets of spectral lines in bound state systems (atomic, molecular,
nuclear, quark/antiquark), for example, arise from quantization of energy levels.
Even macroscopic quantities, such as the densities of ordinary matter, can be
understood using simple quantum arguments as in Section 1.4.

Many physical systems, however, require us to understand the organiza-
tion of collections of large numbers of seemingly indistinguishable particles.
The “building blocks of matter,” the electrons of atomic physics, the protons
and neutrons (nucleons) which form nuclei, and the quarks which, in turn, are
bound together to make the nucleons and other strongly interacting particles
are all in this category. These particles all share a common feature, namely
their intrinsic angular momentum or spin. The notion of “spin-up” and “spin-
down” corresponding to such spin 1/2 particles will be an important additional
degree of freedom which must be considered when constructing the multiparticle
wavefunctions of such particles. The behavior of such particles is restricted by
powerful constraints which do not arise from the machinery of wave mechanics
but which, nonetheless, have a profound impact on the macroscopic properties
of such systems. We will discuss this ‘indistinguishability-physics’ in much more
detail in Chapters 14 and 17, but we wish to emphasize its impact as soon as
possible.
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The most familiar manifestation of such effects comes from the Pauli exclusion
principle, which states roughly that

¢ No two electrons (or any two indistinguishable spin-1/2) particles can occupy
the same quantum state.’

The fact that each atomic energy level can then accommodate only two electrons
(one “spin-up” and one “spin-down”) leads to the shell structure of atomic
physics and is therefore arguably responsible for much of chemistry and biology;
similar shell structure occurs in nuclei as well. In this chapter, using the infinite
well potential as a model, we will examine the dramatic effects this restriction
can have on macroscopic numbers of particles, applying it to condensed matter,
to nuclear, and to astrophysical systems.

7.2 One-Dimensional Systems

We begin by considering N. electrons in the standard infinite well (in one
dimension, here with width L) with energy spectrum

R 2n?

EH—W, n=1,2,3,... (71)

For particles not required to satisfy the exclusion principle, the total energy of
such a system would simply be

22

Eiot = (h—ﬂ> N, (without exclusion principle) (7.2)
2mlL?

since we would just sum up the ground state energy for each one. For electrons,

however, to be consistent with the exclusion principle, one has to “fill up” the

energy levels, two at a time, to a state characterized by Npax = N¢/2, as in

Fig. 7.1. The total energy is then

Nmax hznz Nmax
— — 2
Eiot =2 ng_l E, = L2 ng_l n (7.3)

! Like any other physical law, the Pauli principle should be amenable to experimental verification,
and it is natural to ask “How well do we know that the exclusion principle is satisfied?.” It turns out to
be extremely difficult to construct logically self-consistent theories of quantum mechanics in which the
Pauli principle is only violated by a small amount. Nonetheless, various experiments (e.g. see, Ramberg
and Snow 1990) have been taken to imply that the probability that a multielectron system will be in a
configuration which violates the exclusion principle is less than roughly 1072,
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] ' Eq
bt
! j E
Figure 7.1. Filling of one-dimensional infinite well energy levels with spin-1/2 L £
particles. 7y !
The summation can be done in closed form to yield
Nmax 3
Z n? = ~ (7.4)
n=1 6 3

when Npax >> 1. In this case, the labeling of states and energy summation is
trivial, but in a more realistic three-dimensional example, the enumeration of
states will be more complicated, so we also do the “counting” in a slightly more
formal manner. We can write

Nmax Nmax Nmax
Ng:221=ZZAn%2f dn ~ 2Nmax (7.5)
n=1 n=1 1
and
Nmax Nmax Nmax N3
Z n’ = Z n’An f“v“f n*dn ~ —max (7.6)
n=1 n=1 1 3

We have identified An = 1 with dn and used a simple version of the more
general relation between a discrete sum and continuous integral, namely, the
Euler—Maclaurin formula, which is discussed in Appendix D.2.

In either case we find

FLZ 2 N3 FLZ 2
Eiot = mzz ( I;ax> = 24”7;2 N2 (with exclusion principle) (7.7)

The average energy per particle, E, is simply

2.2
Etot_hn 2

E= =——N
N, 24mL? ¢

(7.8)
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while the energy of the last state to be filled, the so-called Fermi energy, is

22772 2.2
Efermi = Ep = h ;TmIZrznax = ::m722 Nez (79)
Taken together, the electrons in this configuration consistent with the exclusion
principle are sometimes colloquially said to constitute the Fermi sea, so that Ep
is the energy of an electron at the “top of the sea.” From Eqns (7.8) and (7.9) we
also note that the average energy is given by

_ 1
E=_F (7.10)

The role of the exclusion principle can be seen by noting that the ratio of total
energies with and without this constraint is roughly

Eiot (with exclusion) _N 62

Eiot (without exclusion) 12

which can be an enormous difference if No >> 1.

(7.11)

We are accustomed to cases in which if we get all the dimensional factors
right, then the estimate of the physical observable is usually wrong by less than
an order-of-magnitude or so, in either direction. In this case, the “h-physics”
has predicted the dimensional factors correctly, but the exclusion principle can
still play just as important a role in determining the actual state of the physical
system.

7.3 Three-Dimensional Infinite Well

The one-dimensional example makes it clear that the exclusion principle can
play a very important role. In order to make a plausible connection to a real
system of spin-1/2 particles, however, we require a three-dimensional model, so
we consider particles in a three-dimensional cubical box of volume V' = L3, that
is, a potential given by

Vix) = 0 for|x|,|yl,|z] < L (7.12)

0o otherwise

Either by “fitting de Broglie waves into the box” or via explicit solution of
the three-dimensional Schrodinger equation, we can easily find the quantized
energies, using

p?  Pitpy P

7.13
2m 2m ( )
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Figure 7.2. Filling of three-dimensional infinite well n,
energy levels with spin-1/2 particles.

namely,

E(n) = E(ny, ny, n;)

W’ 2 2 2

= ") <nx + 1, + nz)
h2m?

= 5 L2n2 where ny, ny,n, =1,2,3 ... (7.14)
m

The quantity n = (ny, n,, n;) can be considered as a vector in the (abstract)
three-dimensional number-space pictured in Fig. 7.2. Two electrons can be
accommodated at each discrete point of the first quadrant (since ny, 1y, n, > 1)
of this n-space. The expression for the energy levels depends on n in a “spher-
ically symmetric” way as it involves only n? = n2 + nﬁ + n2, so we must fill up
the energy levels “radially” outward to a “radius” in n-space which we call Ry.
The enumeration of states is then best done using the integral approximations
discussed above, and we find first that

[n|=Rn [n|=Rn
N, =2 Z 1=2 2 AncAn,An,
fx,ty, =1 Ty, My, Nz =1

R 2 fdnxdnydnz

RN
= 2/ nzdn/dQn
1
_ R?\, 4
I 8

T
A gRg (7.15)
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where d2,, is the generalized solid angle in n-space, and we integrate only over
the first octant (hence the 477 /8 factor). This implies that

3 1/3
Ry = (—Ne> (7.16)
T

The total energy of the system is then

[n|=Rn
Eot=2 Y  E()
nx,ny,nzzl
[n[=RNn 2772 , , ,
=2 PR (ny + n, + n;) AnyAn,An,
nx,ny,nz_l

R’ RS

10mL?" N

a3 3\
ot = {012 (E) NP 717

or
Rl 3\°/3 5
_ 2 /3
E’[Ot - 10mV2/3 <7T) Ne (718)

where we have used L> = V. The average energy and Fermi energy are obtained

as before and one finds

— Rgd [3)\ 3
E=— (= N3 = ZE 7.19
10mL2 (n) ¢ 5 F (7.19)

This form is useful as it implies that

3 5/3 2

- 7 3 h

EZI_O() P (7.20)
e

T

where n, = N,/L?> = N,/V is the number density of electrons in the system.
Once again, because of the exclusion principle, the total energy for a system

of electrons is larger than for distinguishable particles, in this case by a factor

of roughly Ne2 / 3 For the electrons in a white dwarf star, for example, where
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N, &~ 10”7, forgetting about the constraints imposed by the exclusion principle
would mean an error of roughly a factor of (10°7)%/® 2 10%8 in an estimation of
the total zero-point energy in the star due to electrons. There is a sense in which
the universe covers roughly 60 orders-of-magnitude in length (from the smallest
length scales to the largest). It is hard to imagine any other physical system in
which leaving out a single physical effect, in this case the exclusion principle,
could give rise to an error which is “2/3 the size of the universe.”

7.4 Applications

In this section we will examine the role that the exclusion principle plays in some
important physical systems.

7.4.1 Conduction Electrons in a Metal

Metals, with their observed large electrical and thermal conductivity, are char-
acterized by the presence of quasi-free electrons which can move in response to
electrical or thermal gradients. These conduction electrons can be modeled as a
noninteracting gas in a three-dimensional box just as in Section 7.3.

Typically, one or two electrons per atom are available so that number densities
of the order n, ~ 3 x 10*2 cm™3
energy of EF ~ 4 eV; this in turn gives an average electron kinetic energy due
to zero-point motion of roughly E ~ 2 eV instead of the thermal energy of
kgT ~ 1/40 eV expected at room temperature on the basis of classical statistical
mechanics.

This difference can be observed clearly in the behavior of the electronic con-

are appropriate. This implies (P7.6) a Fermi

tribution to the heat capacity of the metal. Classical kinetic theory would say
that the thermal energy of N, electrons would be E ~ N.kgT, so that the heat
capacity due to electrons would be

0E
Ceq ~ — ~ N,k 7.21
el 3T eXB ( )

independent of temperature. This is inconsistent with experimental results which
find an electronic heat capacity that varies linearly with T and which is smaller
than this value by a factor of 0.01 or less.

In the quantum electron gas picture, only electrons in the Fermi sea in quant-
ized states within roughly kpT of the Fermi energy can be thermally excited
to new states (see Fig. 7.3) and so participate in the interactions required for
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Unoccupied

states
e ——— | kT
[z q\ AE
Er [i:
Figure 7.3. Filled energy levels in an electron gas picture of E [, Occupied
conduction electrons; electrons within a “distance” kgT of the [ states
Fermi surface can be excited (with an energy increase AF) to ==
unoccupied states and fully participate in thermal or electrical [--------opooos
conduction. Yy [rroooeemeees

conduction. Thus, only a fraction kg T/ EF of the electrons are available, and the
heat capacity is more properly

Cel ~ i (kB—TNeka) ~ NekBkB—T (7.22)
aT \ Ef Ef
The linear temperature dependence and resulting magnitude are then consistent
with experiment.

Further experimental evidence for the electron gas picture comes from another
macroscopic property of metals, namely, their compressibilities. The change in
volume (AV) of a solid with applied pressure (A P) is often characterized by its
bulk modulus, defined via

AV . opP
AP = —B—— orequivalently B=-V— (7.23)
V Vv
The appropriate pressure for an electron gas is
9 Ero
P(V)=— 7.24
V) T, (7.24)
so that from Eqn. (7.18), we find that (P7.6)
3 5/3 52
T (3 h
Po=— (—) —n/3 (7.25)
15 \nw M,
which implies that
5
B, = gPe (7.26)
Using a value appropriate for sodium, n, = 2.6 x 10?2 cm™, we find that

B, ~ 9 x 10° N/m? which is of the same order as the observed value of 6.4 x
101% N/m?; this suggests the important role that the exclusion principle plays in
the compressibility of ordinary matter.
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7.4.2 Neutrons and Protons in Atomic Nuclei

The nuclei of atoms are bound state systems of spin-1/2 protons and neutrons.
The fact that protons are electrically charged, while neutrons are not, clearly
makes them distinguishable from each other; the individual protons, however, are
indistinguishable from each other, as are the neutrons, so the exclusion principle
can play an important role in the structure of atomic nuclei.

One of the important problems of nuclear structure is to understand which
combinations of Z protons and N neutrons will be stable for a given value of the
atomic number, A = Z + N. Given the Coulomb repulsion between electrons, it
would seem that a nucleus composed solely of neutrons, thatis, N = A, Z =0,
would have the least energy; this is in marked contrast to the observed pattern
where most light nuclei have N ~ Z ~ A/2.

If we model a nucleus as a three-dimensional infinite well, the total energy of a
system of Z protons and N neutrons will be obtained by filling up energy levels,
consistent with the exclusion principle with a Fermi sea for each species; this is
shown in Fig. 7.4(a). If, for a given value of A, we were to have all neutrons instead
of protons to minimize the Coulomb potential energy, the resulting quantum
zero-point energy of the system would be much larger as in Fig. 7.4(b). The
energy cost to do this is called the symmetry energy and is discussed in P7.7.
The incorporation of this effect into the so-called semiempirical mass formula
for nuclei is discussed in many textbooks.”

7.4.3 White Dwarf and Neutron Stars

We are used to thinking of the gravitational force, described via classical mech-
anics, as playing the dominant role in determining most of the structure of large
astrophysical systems, that is, the solar system, galaxies, and beyond. The fact
that stars use thermonuclear reactions as their energy source already implies

(@) (b)

Figure 7.4. Filling of nuclear energy levels with
protons and neutrons. Case (a) corresponds to **** """"""" **
Z = N = A/ and minimizes the zero-point energy, **** .......... **

while (b) corresponds to Z = 0and N = A to
attempt to reduce the electrostatic or Coulomb
energy.

Protons Neutrons Protons Neutrons

2 See, for example, Krane (1988).
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that the nuclear force, necessarily described by quantum mechanics, is also
important in stellar evolution. The need to understand quantum tunneling
effects (Chapter 11.4.4) and scattering and reaction cross-sections (Chapter 19)
implies that “A-physics” plays a key role in the structure of stars during the
period when they are burning via fusion. It is perhaps not surprising then
that “indistinguishability-physics” can have just as important an effect in the
determination of the ultimate fate of stars.

In this section, we present an extended essay on the role played by the exclusion
principle on the structure of compact astrophysical objects, namely, white dwarf
and neutron stars.” To simplify matters, we will consider a highly simplified
model of a star, namely a constant density, spherical object. We will also use the
three-dimensional infinite well as a model for the quantum zero-point energy.

During its lifetime, a star is supported against gravitational collapse by the
thermal pressure of the hot gas, with the energy being supplied by thermonuclear
fusion reactions and radiated away in the form of electromagnetic radiation (and
neutrinos). When the fusion reactions cease to be exothermic (no longer produce
energy) the star will naturally begin to collapse. This can be seen by examining
the total gravitational potential energy of a constant density, spherical object
(P7.8) of mass M,, namely

Vg(R) = —=——= (7.27)

which obviously favors smaller radii. The corresponding gravitational pressure,
Pg, can be obtained from the corresponding force via

Fo(R)  —dVG(R)/dR  dVa(S)

P~ (R) = = = 7.28

aR)=—) AT R2 o) (7.28)
where = 47 R3/3 is the (spherical) volume. Using Eqn. (7.27), we find that
by — L (4T 3 Gm2 20

c@=-2(5) o (7.29)

which is radially inward, favoring collapse. If thermal pressure is no longer suf-
ficient to balance this, we need to look for a new source of energy or pressure,
which increases with decreasing radius to compensate.

One such source is the zero-point energy of the (ionized and hence free)
electrons in the star. We can estimate this using the infinite well model as

5/3
h27T3 i 5/3 Ne/
10m, Q2/3

Eior = (7.30)

g

3 For more details, see the excellent survey by Shapiro and Teukolsky (1983).



202 CHAPTER 7 SPIN AND INDISTINGUISHABILITY

where we have used Eqn. (7.18) and equated V = 2 with the volume of the star.
(For sufficiently large numbers of particles, one can argue that the exact shape
of the infinite well should be unimportant; see P7.4 for an example.)

As R (and hence €2) decreases, this (positive) energy increases at a faster rate,
proportional to 1/ Q2%/3, than the (negative) gravitational potential, which goes
as1l/Rox 1/ 173, for small enough radii, it can therefore be the dominant source
of energy. Equivalently, we can calculate the corresponding pressure to find

Prpp = (7.31)

dEo(Q) _ Pn’ (3)5/3 Ne”?

aQ  15m, \ 7 Q5/3

We note that:

® We label this contribution as electron degeneracy pressure (EDP) as it arises
from the zero-point energy of a degenerate electron gas.

® Weignore (for the moment) the similar contributions from protons, neutrons,
and other heavier nuclear species as their masses are at least m,/m, ~ 2000
times heavier and give a much smaller contribution to the zero-point energy.

The total pressure, Pror(£2) = Pg(€2) + Pepp(£2), will vanish at some value of
Q as shown in Fig. 7.5. The value of R at which this happens will constitute a new
stable configuration as a small decrease (increase) in R will cause a net positive
(negative) pressure driving the system back to equilibrium. This can also be seen
by examining the total energy, Vg (€2) + Eiot(€2) versus €2, and noting that it has
a stable minimum (positive curvature or “concave up”) when the total pressure
(the derivative with respect to £2) vanishes. The dependence of Pgpp on & implies
that is a quantum effect balancing a macroscopic gravitational force. We might
well then imagine that the resulting balance could only occur at microscopically
small values of R.

! Pressure versus radius

Figure 7.5. Gravitation pressure (Pg(R)), electron
degeneracy pressure (Pepp(R)), and total pressure
(ProT(R)) versus stellar radius, R. The value of
ProT(R = Ryp = 0 gives a stable minimum of the
total energy corresponding to a white dwarf star.
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To find the radius of the new stable object, we simply set

PG (€2) + Pppp(2) =0 (7.32)
or
1 /47 \? gMm?2 B3 /3\%/3 N5/3
A=) ss=o12) o5 (7.33)
5\ 3 QY3 15m, \ & Qr/3
to find
9\ /3 theS/3
R=|— N (7.34)
4 me GM?

If we assume that the star was initially made of only hydrogen, that is, equal
numbers of protons (N;) and electrons (N,), we can take M, = N,m, (since
me K M,) or Ne = My /myp. Then Eqn. (7.34) can also be written as

o \ 23 K2 9 \ 23 K2
R=(—) —:(_) " s
4 memI%GNel/3 4 memg/3 GM*I/3

showing that larger initial masses imply smaller final radii.
If we assume, for example, a two solar mass star, that is, M, = 2 Mg =~
4 x 10°° kg, we find N, = N, ~ 2.5 x 10° and (P7.9)

Rwp = 1.8 x 10" km ~ 1.8 x 10*km (7.36)

to be compared with the radius of the earth, namely, R, = 0.6 x 10* km.
This new type of compact astrophysical object is called a white dwarf star
(hence the label WD) and is characterized by the following properties:

e Its small size and the fact that it is still hot (typical surface (interior)
temperatures of roughly 8000-10,000 K (107 K)) justify its name.

e Typical densities are pwp ~ 2 x 10° gr/cm’ compared to average stellar
densities of 1-3 gr/cm’.

¢ Such higher densities imply that the electrons are more closely packed than
in “normal” matter; one can estimate the typical electron separation to be
d ~ 0.02A ~ 2000 F which is roughly half way (on a logarithmic scale)
between typical atomic and nuclear length scales.

® The average electron energy from Eqn. (7.19) is

_ 3
E = ZEp ~ 0.044 MeV (7.37)
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which is significantly smaller than the electron rest energy of 0.51 MeV. This
implies that

— With this energy, the electron speeds are roughly v/c & 0.4 or (v/c)? &~
0.15 which helps justify, a posteriori, the use of a nonrelativistic approxima-
tion. For only somewhat heavier initial stellar masses, however, the white
dwarf radii will be smaller, the zero-point energy larger, and the effects of
relativity must be taken into account;

— The classical thermal energy of electrons in the core is kgT ~ 0.08—
0.8 keV << E so that the electronic kinetic energy is indeed dominated
by its zero-point motion.

® The important role of the exclusion principle in the determination of Ryp
is now obvious, as the final numerical answer would have been a factor of
N¢ /3~ 2 x 10 smaller had we neglected its effects, giving

Rwp ~ 107 cm  (without the exclusion principle) (7.38)
instead.

These derivations seem to imply that every star will eventually collapse and
stabilize as a white dwarf star. To see under what circumstances these arguments
must be refined, we first note that we can combine Eqn. (7.19) and (7.34) to
see that

1|: 2 :|1/3 mem§/3G2Mf/3

E=-|—
372 h?

5 (7.39)

This implies that a roughly six-fold increase in M, in our example will give
E ~ 0.51 MeV ~ m,c? implying that the electrons are now relativistic and the
original assumptions of “non-relativity” are invalid.

We should then use the most general energy—momentum relation

E? = (po)* + (mec?)? (7.40)

but we can understand the qualitative changes by employing the ultrarelativistic
limit where

E = |p|c (7.41)

In this case, the quantized energies are given by

hc hcin|  hc|n|
— ) 2 2 —
E(n) = i ne+ny 4 n; = . = Qs (7.42)
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With this form, the total energy can be calculated in the same manner as
Eqn. (7.18) (P7.10) and we find

72 (3\*? he
m@=T(7) gt (7.43)
which implies a degeneracy pressure of the form
2 4/3
el _ T 3 he 4/3
Pgpp = o (;) oI/ N, (7.44)

In this limit, the electron degeneracy pressure has the same Q (volume) depend-
ence as the gravitational pressure, so an equilibrium state can no longer be
guaranteed by simply varying R. The fate of the star relies, instead, on the relat-
ive magnitudes of the coefficients of the 1/ Q43 terms in Eqns (7.29) and (7.44),
namely

2 4/3 1/3
g 3 1 /4n
Cepp = I (;) thf/3 versus Cg = B (?) GMf (7.45)

Since Cgpp N‘;1 P x Mf/ 3 while Cg Mf, the gravitational pressure will

always win for sufficiently large initial stellar mass, causing continued collapse.
The critical value beyond which a white dwarf star will not be stable can then be
roughly estimated by letting Cgpp = Cg to find

3/2 2 3/2

wie _ (5\PT9m]Y? (he P 1

Mt = (= - —) = & 66xM; (7.46)
4 4 G m;

where Mg is a solar mass.
This limit on the maximum mass of a white dwarf star is called the
Chandrasekhar limit and a more sophisticated analysis finds that

MSt A 1.4 Mg (7.47)

The fact that we are within less than an order-of-magnitude from the “right
answer” is now consistent with our belief that we have included much of the rel-
evant physics, especially the exclusion principle, in however simplified a fashion.
We note also that the Chandrasekhar mass depends only on the fundamental
constants h, ¢, G, and my, in such a way that

M:rit x

3
£ (7.48)
"

where Mp is the Planck mass discussed in P1.19,

h
Mp = \/g (7.49)



206 CHAPTER 7 SPIN AND INDISTINGUISHABILITY

If M, > Mfit, then the star will continue to collapse, but another stable
configuration is possible. In this case, it can become energetically favorable for
the electrons to interact with the protons via inverse §-decay, that is, via the
reaction e~ +p — n—+v,. The electrons and protons “disappear,” leaving behind
only the neutrons, as the weakly interacting neutrinos escape the star completely.
This occurs when the average electron kinetic energy becomes greater than the
energy cost of the reaction, namely, Q = (m, — m;, — me)c ~ 0.78 MeV
which is (coincidentally) at roughly the same point at which the nonrelativistic
calculation breaks down.

This leaves a gas of indistinguishable spin-1/2 neutrons, a neutron star, and
the same analysis as for white dwarf stars can be performed. The radius of this
new configuration is given by Eqn. (7.34), but with m, replaced by mj, so that

Rns = —R —1 R 10 km (7.50)
= ~ ~ .
NS ; ‘WD 1800 ‘WD

Typical densities are now

3
~ (M ~ 10!
PNS A (-) pwp ~ 10" gm/cm’ (7.51)
me
which is similar to the density of atomic nuclei. We leave it to the interested
reader to examine the phenomenology of such interesting astrophysical objects

as well as the path leading to the most intriguing final configuration, namely,
black holes.

7.5 Questions and Problems

Q7.1. We have applied a simplified picture of noninteracting spin-1/2 particles in a
box to model various physical problems. In each case (conduction electrons in
a metal, neutrons and protons in a nucleus, etc.) we have ignored the mutual
interactions between the particles. How do the exclusion principle results and
the Fermi sea picture help make this approximation more plausible? Hint: If two
particles in the Fermi sea were to interact, thereby changing their momentum
and energy, to which energy levels could they go?

Q7.2. Discuss why the exact shape of the infinite well potential should make no
difference to the total zero-point energy if there are many particles.”

Q7.3. By how much would one side of a piece of metal one meter long increase in size
if it were put into a vacuum so that atmospheric pressure were no longer acting
on it? How does this depend on A?

4 See Balian and Bloch (1970).
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Q7.4. Discuss the following statement: There are two regions of stable nuclei

Q7.5.

P7.1.

P7.2.

P7.3.

P7.4.

® onewith A = 1 to &~ 200 with a balance between the strong attractive nuclear
force and the Coulomb repulsion and

® one with A & 10°” with a balance between the attractive gravitational force
and quantum zero-point energy.

We estimated the cut-off mass beyond which a star no longer can become a
white dwarf, the so-called Chandrasekhar limit. Real stars are initially rotating
and often have nonnegligible magnetic fields. As the star collapses, the rotation
rate must increase (to conserve angular momentum) and the energy density
in the magnetic field also increases (same number of field lines in a smaller
volume). What qualitative changes would the inclusion of such effects make on
estimates of the upper limit on masses of white dwarf stars, that is, would the
limit go up, down, or not change at all?

Spin counting. A system of indistinguishable spin § = 1/2 particles can accom-
modate two states in each energy level, “spin-up” and “spin down,” that is, with
S; = £1/2. A particle with spin S = 3/2 can have four states with the same
energy, S; = —3/2, —1/2, 1/2,and 3/2 in each level. Calculate the total, aver-
age, and Fermi energy of N such particles in a three-dimensional infinite well.
Can you generalize your results to spin 5/2,7/2,... and so forth where the
degeneracy per level is given by 25 + 1?

Fermi energy in two dimensions. Consider a two-dimensional system of elec-
trons confined to a box of area A = L?. Calculate the total energy of N, such

electrons as well as the average and Fermi energies. Can you show that in d
dimensions that the total energy should scale as Eyor o< Ne(d+2)/ da
Spin and energy levels for the harmonic oscillator.

(a) The quantized energy levels of a particle of mass 1 in a harmonic oscillator
potential in one-dimension are given by

E,=(m+1/2hw n=0,1,2,... (7.52)

where w = /k/m is the classical oscillation frequency. Find the total,
average, and Fermi energy of N, (noninteracting) electrons in this potential.

(b) Can you derive the same quantities for the three-dimensional harmonic
oscillator for which the energy levels are

E(n) = (ny +ny +n, +3/2)hw  ny,ny,n, =0,1,2,--- (7.53)

Instead of assuming a cubical three-dimensional infinite well as in Sec. 7.3,
assume that the electrons are in a box of dimensions Ly, Ly, L, so that
V = LLL,.

(a) Find the allowed energy levels as in Eqn. (7.14).
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(b) Calculate the total energy of the system and compare to the expression in

Eqn. (7.18).
Hint: The volume of an ellipse governed by the formula
2 2 2
x* oy oz

is given by V = 4mabc/3.

P7.5. Density of states.

(a) Using Eqn. (7.19), show that the number of states with energy between E
and E + dE is given by

dN
5 VE=CVE (7.55)

which is applicable in the interval E € (0, Er).
(b) Normalize this to find C by using the fact that

Er an
N, = —dE 7.56
. /0 = (7.56)
(c) Use this expression to evaluate (E) and show that it agrees with Eqn. (7.19).

(d) What fraction of the particles have energy less than 0.1Ep? less than 0.5Er?

P7.6. Electron gas model of metals. Consider the model of conduction electrons in

Section 7.4.1.

(a) Foran electron density r, = 3 x 10> cm ™2, evaluate the Fermi and average
energies.

(b) Derive Eqn. (7.25).

(¢) Confirm the numerical values for the bulk modulus for Na discussed in
Section 7.4.1.

P7.7. Spin and energy levels in nuclear physics.

(a) Consider a heavy nucleus consisting of Z = N, protonsand N = N, neut-
rons so the total atomic number is A = Z + N. If the nucleons have volume
Vo and are bound so that they are “just touching,” show that the volume
of such a nucleus will go as V. = VA so that its radius will be given by
R = RyAY/3. With Ry &~ 1.2 — 1.4 F. This form works well for many nuclei.

(b) Instead of considering all the many nucleon—nucleon interactions, model
this system as A nucleons in a three-dimensional infinite well of radius R.
Using Eqn. (7.18), find the total zero-point energy of asystemof A = Z+N
nucleons, that is, E(Z, N), recalling that both protons and neutrons are
spin-1/2 particles and are distinguishable from each other. For simpli-
city, assume that the neutron and proton have the same mass, roughly
mc? 940 MeV.
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(c) For fixed A, minimize this energy and show that equal numbers of neutrons
and protons are favored.

(d) Assumingthat A = N — Z << A, show that the zero-point energy can be
approximated by an expression of the form

AZ
E(Z,N) = Enin(A) + Esme + - (7.57)

and find an expression for Egym. Using the values above, show that the
numerical value of Eyn is roughly 40 MeV. Note: This contribution to the
total nuclear energy (or rest mass) is often called the symmetry contribution
and is part of the well-known semiempirical mass formula of nuclear physics.

Classical gravitational potential energy. Consider a uniform sphere of mass M
and radius R. Find the total gravitational potential energy stored in this config-
uration, namely, Eqn. (7.27). Hint: Consider a uniform sphere of mass M (r) of
some intermediate radius r and calculate the work, dW, required to add a layer
of thickness dr brought in from infinitely far away; then use W = [ dW.

Verify the numerical values in Eqns (7.36) and (7.50).

Relativistic electron degeneracy pressure. Repeat the calculation of the total
electron energy in the extreme relativistic case and confirm Eqn. (7.43).

We argued that the white dwarf configuration was stable against small perturb-
ations in radius since the total energy was a minimum at R = Rwp. Expand
Eiot (R) as a function of R around this minimum and show that it is of the form

_ 1 d*Eiot(R = Rwp)
Eiot (R) = Eiot(Rwp) + T

which is like a harmonic oscillator potential. Use this connection to find

(R—Rwp)>+---  (7.58)

the frequency of oscillations around the stable minimum configuration using
T = 2w /m/K where K is the effective spring constant in the problem.



EIGHT

Other One-Dimensional
Potentials

Our study of the infinite well family of potentials has provided us with an array of
insights into the physical meaning and mathematical structure of wave mechan-
ics. There are other quantum mechanical properties which do not appear in such
systems, and in this chapter we study several model potentials which illustrate
many new aspects, both formal and intuitive, which have wide applications. We
consider smoothness conditions on v (x) and its derivatives, singular potentials,
periodic potentials, and applications to models of band structure (Section 8.1),
quantum mechanical tunneling and the large |x| behavior of quantum wave-
functions (Section 8.2), and the application of one-dimensional problems to
three-dimensions (Section 8.3).

8.1 Singular Potentials

8.1.1 Continuity of ¥’ (x)

We have argued that the identification of |y (x, t)|> with an observable prob-
ability density requires that v (x,t) be continuous in x. It is natural to
ask about further smoothness conditions on the position-space wavefunction
and their meaning. As an example we discuss below under what condi-
tions we can demand that the spatial derivative of ¥ (x), namely, ¥'(x) be
continuous. We note that we can rewrite the Schrodinger equation in the
form

d? 2
;f;“ = Z (V@ - By (8.1)
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and in order to examine the derivative at a point x = a, we note that we can
integrate Eqn. (8.1) over the narrow interval (a — €, a + €) to obtain

‘/f/(a+) . 1///(61_) — dyr(a+e) _ dy(a —e)

dx dx
/tl+€ dZW(X)
= dx ———
a—e dx
2m a-+te
= ﬁ/ dx (V(x) — E) ¥ (x) (8.2)
a—e
where at = a % € are x values which approach a infinitesimally closely from

either side ase — 0.

Since the E yr(x) term is everywhere finite, its contribution to the integral
vanishes as € — 0, and we need only worry about the behavior of V(x) near a.
Even if V(x) is discontinuous at x = a (say a step- or f-function as in Fig. 8.1)
the integral [ :j: dx V(x) ¥(x) will still vanish as € is made smaller, as the
“area” under V (x) ¥ (x) still decreases; this implies that ¥/ (a™) = v/(a™), that
is, ¥'(x) is continuous.

If, instead, the potential has a §-function singularity at x = a4, then the area
under even an infinitesimally small region around a will be finite. Specifically, if
V(x) = £¢8(x — a) (where g is a constant with the appropriate units), we find
that the appropriate boundary condition on ¥/ (x) is

v(ah) —y(a7) = i%l//(a) when V(x) = £¢8(x — a) (8.3)

We can summarize these statements by saying that

® The spatial derivative, ¥'(x), is everywhere continuous except at points where
the potential is singular, where it then satisfies Eqn. (8.3).

The potential has to be this “badly behaved” in order for ¥’'(x) to be
discontinuous. The smoothness of higher derivatives of v (x) is explored in P8.1.

V(x) versus x

Figure 8.1. Simplified model of a smooth potential
energy function (solid curve) using discontinuous step
functions (dashed curve).




212 CHAPTER 8 OTHER ONE-DIMENSIONAL POTENTIALS

8.1.2 Single §-function Potential

While a singular potential of the §-function type is unphysical, it can provide
a model system with a highly localized attractive (§ < 0 or repulsive (g > 0)
force; combinations of such potentials can then be used as simple models of both
diatomic molecules and one-dimensional solids. Modern materials’ fabrication
techniques allow for the deposition of different atomic compounds providing
“potential spikes” mimicking the effect of a §-function’ potential.

We first examine the bound state spectrum (E = —|E| < 0) for asingle attract-
ive §-function potential of the form V(x) = —g§(x) by looking for solutions of
the Schrodinger equation

G 4 5))
2m  dx?

since V(x) = 0 everywhere except at the origin. This differential equation has

= Ey(x) = —|E|Y(x) forx #0 (8.4)

the general solution

AetKx 4 Be=Kx  forx <0

V(x) = { (8.5)

Ce ™™ 4 Det®* forx >0
where K = /2m|E|/h%. Imposing the conditions that the wavefunction be

square-integrable and continuous at x = 0 gives the physically acceptable
solution
500 AetKY forx <0 (8.6)
xX) = .
Ae K forx >0
The final boundary condition available to determine the quantized energy
eigenvalues is the “discontinuity” requirement in Eqn. (8.3), which implies that
2 2
YO —y07) = —AK—AK = —=F A= -ZFy0 ()
which gives

mg2

_ g
2h?

K=

or E=—|E|=— (8.8)

We note that:

® There is a single bound state energy, and the normalized wavefunction is
Y (x) = vVKe KW (8.9)

! See, for example Salis et al. (1997)
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which was discussed as an example in Section 3.4. The presence of the cusp
at x = 0 in this wavefunction is now understood as arising from the singular
potential. The fact that the expectation values of high powers of p are ill-
defined (P4.6) is also plausible given the discontinuous behavior of higher
derivatives of ¥ (x).

¢ The momentum-space wavefunction for this solution was also derived in
Section (3.4) and in P4.7 by Fourier transform and has a Lorentzian form

[2po Po
¢ p) =,/ — 8.10

where py = hK; this also shows that (p*) (and expectation values for higher
powers of p) are not well defined.

® This problem can be also solved (P8.3) in momentum-space directly, giving
the correct form of ¢ (p) first, and with the quantized energy level determined
in a novel way.

® Thereisadiscrete bound state spectrum for E < 0 (actually only one state), but
there is also a continuum of unbound states with E > 0; this is similar to the
spectrum of, say, the hydrogen atom. The discrete and continuous states, taken
together, form a complete set from which any admissible wavefunction can be
constructed; the bound state solution(s), by themselves, are not sufficient.

8.1.3 Twin §-function Potential
The problem defined by a twin-§-function potential, namely
Vx) = —g[(x+a)+8(x—a)] (8.11)

is a simple generalization of the problem above and can be used as a toy model
for a one-dimensional diatomic ion’; it describes two attractive centers separated
by a distance 2a, which we can imagine being varied. As there is another natural
length scale in the problem, namely, L = /?/mg, we expect the physical results
to depend qualitatively on the ratio of these two quantities.

Because of the symmetry of the potential, we can restrict ourselves to the study
of even and odd solutions. For example, for even solutions we can write

AetKx forx < —a
lﬁ(+)(x) = { Bcosh(Kx) for—a <x < +a (8.12)
Ae Kx for +a < x

2 See Lapidus (1970).
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where we have applied the boundary conditions at infinity, as well as the sym-
metry to take the even combination of e~%* and e™X*. Because of the symmetry
of the wavefunction, the boundary conditions on v and ¥/" at x = —a give the
same constraint as those at x = a, which we use to write

Bcosh(Ka) = Ae K2

2mg
72

arising from the continuity of ¥ (x) and “discontinuity” (Eqn. (8.3)) of ¥//(x),

respectively. These can be combined to yield the eigenvalue equation

(—AKe X% — (BK sinh(Ka)) = ——= A¢— K@ (8.13)

2
(even eigenvalue condition) fr(y) =y (1 + tanh(y)) = :éga =4 (8.14)
ap
where we have defined
hZ
y=Ka and ay=— (8.15)
2mg
The odd solutions, written as
—AetKx forx < —a
1//(_)(x) = { Bsinh(Kx) for —a <x < +a (8.16)
+Ae Kx for +a < x
have the corresponding eigenvalue condition,
(odd eigenvalue condition) fo(y) =y (1 + coth(y)) . (8.17)
ap

The energy eigenvalues can be determined from Eqns. (8.14) and (8.17) by
plotting the functions on the left-hand side versus y and looking for intersections
with horizontal lines corresponding to values of a/ay, as shown in Fig. 8.2. For
comparison, in that diagram we also plot the eigenvalue condition for the single
8-function potential, namely

mg

(eigenvalue for single §-function) K = = (8.18)
written in the form
T L WL
f(y)=2y_2Ka_2<h2)a_a0 (8.19)

for comparison. Plots of the position-space wavefunction for three values of
a/agp are shown in Fig. 8.3. We note several important features:

® In the limit of large separation, a >> 4y, there is one even and one odd
solution, with energy identical to the single §-function case; the two energy
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Figure 8.2. Energy eigenvalue condition for a twin 8-function potential. Intersections of the dotted (dashed)
curves with horizontal lines of constant a/ag give the values of y for the odd (even) bound states. The solid
line is the result for a single §-function potential. For a < ag there are no odd solutions.

Figure 8.3. Position space wavefunctions for the twin
§-function potential. The solid (dotted) curves correspond to the
even (odd) states, respectively. Results for a/aq corresponding to
4,1.5,and 1.01 are shown from top to bottom. Fora/ag > 1,
we can see the odd state begin to "unbind” as it ceases to be
localized.

levels are said to be degenerate in energy. In this limit, the wavefunctions are
simply related to those for the single §-function case (P8.4).

® The odd solution (when it exists) always has a smaller value of y and hence is
less bound than the corresponding even solution.

e For a/ay < 1, there is no odd solution, which we attribute to the increas-
ing kinetic energy of the state as required by the node in the antisymmetric

wavefunction at the origin.

® We can see in Fig. 8.3 the odd solution ‘unbind’ for a/ay — 1 where
the position-space wavefunction is becoming spatially uniform, indicating
no localization near the origin; when |E|, and hence K, approach zero, the
localization scale of the wavefunctions, L = 1/K — oo.
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® The (unnormalized) momentum-space wavefunctions can be obtained by
direct Fourier transform (or as in P8.6), and we find

cos(ap/h)

p? + (hK)?

sin(ap/h)

)
¢ (p) 7+ (hK)2

o™ (p) (8.20)

8.1.4 Infinite Array of §-functions: Periodic Potentials and the
Dirac Comb

We can continue in this vein and discuss an infinitely long array of equally spaced
attractive §-function potentials, defined by

400
Voolx) = —g Y 8(x — na) (8.21)
n=—00
which can be taken as a very simplified model of a one-dimensional solid.” The
periodicity of this potential gives rise to many new features and we begin by first
discussing the general form of solutions in the case when we have a periodic
potential satisfying

V(x4 a) = V(x) (8.22)
We recall from P6.16 that the translation operator, T,, defined by
T.f(x) = f(x +a) (8.23)

commutes with both the kinetic energy operator as well as any periodic potential
of the form in Eqn. (8.22), and thus commutes with the Hamiltonian for this
problem, [I:I , i“a] = 0. From the discussion in Section 6.7, we know that H and
i‘u can therefore have simultaneous eigenfunctions, and the allowed solutions of
the Schrodinger equation for this problem can then also be assumed to satisfy

Y (x +a) = Tap(x) = Ao ¥ (x) (8.24)

Since f‘a is not a Hermitian operator, its eigenvalues need not be real, but we
can write quite generally that A, = |4, exp(i¢,) for any complex number. If we
repeatedly apply Eqn. (8.24) to ¥ (x), shifting either to the left or to the right,
we obtain arbitrarily high powers of |1,|"; these would diverge if |A,| > 1 and
we go to the right, or if [A,| < 1 and we go to the left, so we clearly must have
|Aq| = 1since, if not, ¥ (x) would not be square-integrable. Thus, we can assume
that the A, eigenvalue is simply a complex phase, which we write as

Aa =€ sothat Y(x+ a) = ey (x) (8.25)

* This particular example of a periodic array of potential wells is often called a Dirac combs this type
of simplified model of a one-dimensional solid is most often associated with Kronig and Penney (1931).
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This result is called Bloch’s theorem and we see that it is certainly consistent with
the expectation that

1Y (x + a)|? = |1y (x)]* = | (x))? (8.26)

We note that while no real solid actually extends to infinity, the finite boundaries
of a macroscopic sample should have little effect on the interior many lattice
spaces away. One standard method of taking this effect (or lack thereof) into
account is to assume that the one-dimensional lattice actually satisfies periodic
boundary conditions, namely that

Y(x+ Na) = y(x) forsomeN >>> 1 (8.27)

in which case we obtain the allowed values of g given by

. N i
(ﬂﬂ Y@ =yx+Na)=yx) or M =1 (8.28)

so that

2
q= (%) (%) where n = 0,1,2,...,N (8.29)

Assuming a macroscopically large value for N, we see that the allowed g values
range almost continuously from 0 to 27.

Considering bound state (E < 0) solutions as before, we first write the
solutions in the interval (0, a) in the form

¥ (x) = Asinh(Kx) + Bcosh(Kx) for0 < x < +a (8.30)

and using Eqn. (8.25), we can automatically write down the corresponding
solution in the “unit cell” directly to the left, as

¥ (x) = e " [Asinh(K(x + a)) + Bcosh(K(x + a))] for—a<x<0
(8.31)

Application of the appropriate boundary conditions on ¥ (x) and ¥'(x) need
then only be done once, say at x = 0, giving the conditions
¢~ "% [ A sinh(Ka) + B cosh(Ka)] = B (8.32)

[AK] — [AK cosh(Ka) + BK sinh(Ka)] = —%B (8.33)

We can the eliminate A and B to obtain the energy eigenvalue condition

a ) sinh(Ka)

cos(qa) = cosh(Ka) — (% Xa (8.34)
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where ay = h?/2myg as before. We can write this in a form which is similar to the
even and odd eigenvalue conditions for the twin §-function case in Eqns (8.14)
and (8.17), namely

2y(cosh(y) —z) a

Joo(ys2) = BT (8.35)

where y = Ka and z = cos(qa), with —1 < z < +1. We plot in Fig. 8.4 a
number of representative example z values in the range (—1, +1) of the eigen-
value function fo (y, z) versus y and can note the obvious similarities to Fig. 8.2.
For a/ap >> 1 (large separations) the solutions are all degenerate and equal to
the single é-function result. As a/ay is reduced, the z = cos(qa) = —1 solu-
tions unbind first, which is consistent with the fact that these are the most “odd”
in the sense that ¥ (x + a) = A,¥(x) = —¥(x) and therefore has the most
kinetic energy. Thus, as isolated bound states are combined to form a solid, we
might expect the degenerate energy levels to split and form bands, with some
higher-energy states in the band becoming unbound.

Motivated by this last fact, we should also discuss positive energy (E > 0)
solutions which would be relevant for any states which unbind. Instead of redoing

10
---- fly)=2y(single 8-function)
T R RTINSy SR alag>>1
f(y.=1) (odd)
o 6
o -
>
&2
()
>
N
>
2 Z =— f(y,+1)(even)
7
A alag=1
0 1 l l |
0 1 2 3 4 5

Figure 8.4. Plot of the energy eigenvalue function, foo (v, Z) versus y in Eqn. (8.35), for values of
—1 < z < +1 illustrating how the energy eigenvalues for the Dirac comb change as the attractive §-
function centers are brought together. Fora/ag >> 1, there is a huge degeneracy, and as a/ag is decreased
the degeneracy is lifted and many states become unbound. The eigenvalue condition for a single, isolated
8-function potential from Eqn. (8.19), f(y) = 2y, is shown as the dashed line.
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the problem from scratch, we note that we can simply make the changes

—2mE 2m|E| 2mE
forE<0 K= = 72 — k= T2 =iK (for E > 0)
(8.36)
and the relations
cosh(iz) = cos(z) and sinh(iz) = isin(z) (8.37)

so that the energy eigenvalue constraint for positive energies can be obtained
from Eqn. (8.34) directly to be

sin(y)

cos(qa) = cos(y) — (i) = F(y) (8.38)
2a9

where y = ka. For an otherwise free particle we would expect that any values of
k would be allowed, but if we plot F(y) on the right-hand side of Eqn. (8.38),
we note that in intervals where |F(y)| > 1 that no solutions are possible since
the fixed left-hand side of Eqn. (8.38) is bounded by the —1 < cos(qa) < +1
term. The periodicity of the potential thus gives rise to allowed bands where free
particle-like solutions are possible (shown as the hatched regions in Fig. 8.5) and
disallowed gaps where such standing wave solutions are not supported.

0 5 10 15
2 T T T T T T T T T T T T
{ {
1 ‘ ‘ ‘ — = cos(qa) = +1
| | | | pol
0o VAR L L
! \ | | | b
|
-1 . ‘ S - cos(ga) =—1
-2 —
-3 \ F(y) versus y
4
Band Band Band Band
Q. Q Q Qj
© © © ©
O O O ©)

Figure 8.5. Plot of the energy eigenvalue function, F(y), in Eqn. (8.38) showing that some values of y are
not allowed since the function must fall in the range —1 < F(y) < +1.This gives rise to the allowed energy
bands (hatched areas) with an almost continuous range of states available, and the disallowed energy gaps.
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This simple soluble model usefully illustrates some of the physics responsible
for the wide variety of properties which materials can exhibit when large numbers
of atoms are brought together to make solids. A typical electronic energy level
diagram for an isolated atom is shown in Fig. 8.6; when N such atoms are well-
separated, we can think of each level shown as being N-fold degenerate where
N >>> 1 for a macroscopic number of atoms. As the atoms are brought closer
together, the degeneracy splits, with some levels becoming more or less strongly
bound. When the atoms reach their equilibrium positions, the energy levels then
can exhibit bands of energy levels, regions where the energy levels are very closely
spaced, separated by well-defined energy gaps where no electronic states are
allowed, as shown in Fig. 8.6. We note that overlapping energy bands are possible.

The allowed energy levels are then filled with electrons, consistent with the
exclusion principle as in Chapter7, and the position of the Fermi energy relative
to the band gaps has a profound influence on the macroscopic properties of the
material as shown in Fig. 8.7. If there are many unoccupied energy levels just

Gap
Isolated electronic — £ band
energy levels Interatomlc nergy bands
separation
decreases

Figure 8.6. Schematic representation of origin of energy band and gaps in solids. The large N > 1
degeneracy of the energy levels of isolated atoms is split as they are brought closer together.

Empty Empty Empty
states states states
I

Figure 8.7. Energy bands and gaps for various types of

materials. The shaded regions indicated filled electron
bands. Insulator Metal ~ Semiconductor
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above the Fermi surface into which electrons can easily be scattered, they are free
to respond to relatively small external electric fields and thermal gradients and
thus exhibit metallic behavior. If, on the other hand, there is a large energy gap
which would inhibit such transitions, one has an insulator. In this case a large
electric field would be required to excite the electrons across the gap; this is the
equivalent of a “spark” or “breakdown.” The case of a very narrow energy gap
corresponds to a semiconductor for which small but finite changes in the external
parameters, such as the temperature or applied field, can cause excitations.

8.2 The Finite Well

8.2.1 Formal Solutions

While useful as a model system, the infinite well has at least one very unrealistic
feature, namely, the fact that the particle cannot escape, that is, be “ionized”
by the addition of a sufficiently large amount of energy to the system. A more
realistic version, which also illustrates several new features of quantum physics,
is the finite well, here defined as

—Vo for—a<x<—+a
V(x) = 0 . (8.39)
0 otherwise
and we wish to examine bound states with E = —|E| < 0 as shown in Fig. 8.8.
At first glance, it might seem more appropriate to use the form

- 0 for—a<x<+a
Vix) = . (8.40)
+Vy otherwise
which has the symmetric infinite well as its limit when Vj — oo, but the
latter choice is trivially related to the conventional one of Eqn. (8.39) via
V(x) = V(x) + Vo. This simple relation ensures (P6.4) that the two systems
will have the same observable physics. The standard choice, V (x), is often used

V(x) versus x for finite well

Figure 8.8. The finite potential well. -a +a
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as it is conventional to pick the (arbitrary) zero of potential energy to vanish at
infinite separations (e.g. the Coulomb potential, V(r) = Kq1q/r). To facilit-
ate comparisons with the infinite well limit, we note that the quantity Vo — |E|
measures the difference between the energy levels and the bottom of the well;
this then should equal the usual quantized energy levels E® of the symmetric
infinite well in the limit that Vi — oo.

With this choice of potential, the Schrodinger equation in the two regions is
given by

h? d?
Xl <a:- o V) Vw0 = — B () (8.41)
m dx
G A6)) _
x| >a:— ET— = —|E|Y¥(x) (8.42)
or
2
x| < a: % = —qZW(x) (8.43)
x
2
> a:® ng) — 12 (x) (8.44)
dx
where

2m|E| 2m(Vo — |E))
k:,/T and q:,/%—2 (8.45)

The most general solution can be written as

x<—a: Detkx + Fekx
—a < x < +a: Acos(gx) + Bsin(qx)
+a < x: Ce k& 4 Eethx (8.46)

and one can immediately apply the boundary conditions at x = %00 (i.e. that
the wavefunction be square-integrable) to insist that E = F = 0. The fact that
the potential is symmetric can be used to infer that the energy eigenfunctions will
also be eigenstates of parity, that is, even and odd functions, so we can specialize
and note that for the even states we must have

Cetkx forx < —a
1//(+)(x) = {Acos(gqx) for—a <x<+a (8.47)

Cekx for +a < x
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while for odd states
—Cet®™  forx < —a
W(_)(X) = | Bsin(gx) for—a <x < +a (8.48)
+Ce R for +a < x

Despite the discontinuous nature of the potential at x = 44, the wavefunction
and its derivative are still continuous there and these conditions provide the
required boundary conditions to determine the quantized energies. For the even
states, for example, these continuity conditions applied at x = a give

V(a~) =Y (at) = Acos(qa) = Ceka
W/(a_) = lﬁ/(a"") _— — qA Sin(qa) — _kCe—ka (8.49)

and the symmetry ensures that the same conditions are obtained at x = —a.
These can be combined to yield the condition

even eigenvalue condition: g tan(qa) = k (8.50)

which depends on the energies (through the g, k), but not on the yet to be deter-
mined constants A, C; these coefficients can only be completely determined using
the overall normalization condition and Eqn. (8.49) (See P8.9.) The appropriate
energy eigenvalue condition for odd parity states is easily found to be

odd eigenvalue condition: —q cot(qa) = k (8.51)
The equivalent eigenvalue conditions for the symmetric infinite well were

even states: cos(ka) =0

odd states: sin(ka) = 0 (8.52)
respectively. These are also equations which involve transcendental functions,
but which can be solved analytically. In the present case, however, Eqns (8.50)

and (8.51) must be solved numerically, and a change to dimensionless variables
is a useful first step. If we define

2mVod?
y=gqa and RE,/% (8.53)

we can use the defining relations for g, k to write the eigenvalue conditions as

even states /R? — y? = +ytan(y) (8.54)

odd states R2 — y2 = —ycot(y) (8.55)
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(a) (Even case, y tan(y)) (b) (Odd case, -y cot(y))
R2 | : RQ I :

i i | i
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Figure 8.9. Energy eigenvalue conditions for the finite well for (a) even and (b) odd solutions. The vertical
dashed (dotted) lines correspond to asymptotes of tan(y) (cot(y)). Solutions corresponding to two different

sets of model parameters, that is, values of R = /2mV(a? / k2 are shown; for the value R, there are three
even and two odd solutions.

A standard method of visualizing the solution space of such equations is to plot
both sides of say, Eqn. (8.54), versus y and look for points where the two curves
intersect, as such points correspond to the discrete solutions y. We illustrate this
in Fig. 8.9 for both the even and odd cases for two values of the dimensionless
parameter R (which in turn depends on the dimensionful parameters of the
problem). We note that:

® The number of intersections, and hence the number of bound states, is always
finite but increases without bound as the values of V and a increase. Thus,
deeper (and hence more attractive) and wider potentials have larger numbers
of bound states.

e For a fixed value of g, as V; — oo the “radius” R increases without bound and
the intersection points for even solutions approach the asymptotes of tan(y),
thatis, y — (n — 1/2)m where n = 1,2,3. ... This implies that

% (n—1/2)?

" — EP (8.56)

Vo — |E| —
in agreement with the infinite well result. The normalized wavefunctions can
also be shown to have the appropriate limit as well (P8.9); the odd solutions
approach the u,(f) (x) in this limit.

® The number of even bound states can be easily determined by comparing the
value of R with the various zeroes of tan(y) and noting that there will be n+ 1
even bound states if

nr <R<m+Drm (8.57)
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There will be n odd solutions provided
(n—1/2)r <R< n+1/2)mw (8.58)

e The values of

h2 2 h2 2
Vo Bl = = = 22
2m 2ma

(8.59)
in the finite well are always smaller than the corresponding ES® of the infinite
well, and we discuss the origin of this effect below.

® No matter how shallow or narrow the well, there is always at least one intersec-
tion and hence at least one even bound state. It is a general feature that a purely
attractive potential (carefully defined) in one dimension will always have at least
one bound state (see P10.10), but this will not be true in higher dimensions.
In contrast, there exists an odd parity bound state only if R > /2.

The momentum space wavefunctions are also easily obtained (P8.12), and we
will examine many of the physical interpretations of these solutions in the next
section.

8.2.2 Physical Implications and the Large x Behavior of
Wavefunctions

A particle in the finite well described by classical mechanics would still exhibit
periodic oscillatory motion between the turning points, here the two walls,
provided it was in the well to begin with, that is, if it has |E| < 0. Outside
the classically allowed region, the kinetic energy of the particle,

mv?/2=T=E—V(x)=—|E| <0 (8.60)

would be negative, so that situation would not be kinematically allowed by energy
conservation. In the quantum case, however, we have found explicitly that there is
a nonvanishing probability of finding the particle outside the classically allowed
region since the wavefunction is nonzero (albeit exponentially suppressed) in
that region. This phenomenon will have important implications in the area of
quantum tunneling in Chapter 11.
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A remnant of this classical discrepancy can be seen by evaluating the average
value of kinetic energy for, say, an even state using the standard definition, namely

. 400 132
(T) = f dxw(“(x)z—w(*)(x)

00 m
B2 oo d2w(+) (%)
- _ d (+) - r
2m J_o *Y ) dx?
h2 2A2 a hZ k2 C2 +0o0
21 |:f cos? (gx) dxi| — |:/ dx e_ka] (8.61)
m 0 m a

which shows that the contribution to (T) from the region outside the well
is indeed negative; the total value, which is what corresponds to a classical
observable, is of course positive as it should be.

This behavior is similar to the tunneling wave solution found in Section 2.5.3
for plasma waves, and especially to the exponentially suppressed solution for the
asymmetric square well in Section 5.3. where it was argued to be a general feature
of quantum mechanical wavefunctions in the classically disallowed region. Sim-
ilar methods can be used to determine the behavior of bound state wavefunctions
for large |x| in more realistic potentials. Imagine, for example, a particle bound
in an arbitrary one-dimensional potential, V (x). The Schrodinger equation can
be written in the form

d? 2
Y 2 v - By (8.62)

which one can integrate approximately (twice) to give

Y (x) ~ exp (:l:,/ ZH—T /x VvV Vi(x)— de) (8.63)

For the finite well case, where V (x) is constant, this solution is, in fact, exact. Of
most interest is the case when |x| is very large and we have V(x) > E, in which

case we find
2m [*
Y ~exp|x ﬁ/ v Vi(x)dx (8.64)

which can be a useful approximate result for the large x behavior of a one-
dimensional wavefunction.
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Example 8.1. Large x behavior of the harmonic oscillator wavefunction

As an example, consider a particle moving in a harmonic oscillator potential defined as

2
V(x) = %kx2 = mwaz (8.65)
so that
X 2 X 2 42

/ ‘/V(x)dx=,/mTw/ xa/x:JmT“’X7 (8.66)

S0 we expect

—+o00 m X2

Yoo TET exp (—7“)7> (8.67)

which is indeed what is obtained from an exact solution. These arguments are also useful in
that they show the rapid convergence of most realistic wavefunctions, justifying a posteriori
the assumptions made previously about the “good” behavior of quantum wavefunctions at
infinity.

Example 8.2. Large x behavior of wavefunction for uniform accelerating
particle

In Section 4.7.2 we considered time-dependent wave packet solutions corresponding to a
particle undergoing uniform acceleration, subject to a constant force F(x) = +F or potential
V(x) = —Fx.We can also use the ideas above to obtain information on the energy eigenvalue
or stationary state solutions of the Schrodinger equation for this problem, for large x > 0,
now corresponding to unbound wavefunctions. The time-independent Schrédinger equation
in position-space in this case is given by

W d*y ()
T Ak Fxyr (x) = Eyr () (8.68)
and, for simplicity, we will specialize to the case of £ = 0 (but see Q8.3), namely
a2y (%) 2mF
= ( - )x v (X) (8.69)
Integrating this twice we obtain the approximate solution
2mF 2x3/?
O () — L 8.70

The increasingly oscillatory (“wiggly”) behavior of this solution as x — +o0 is indicative of
the increasing speed as the particle accelerates to the right, but no information on the relative
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(Continued)
spatial probability has appeared in this form. To obtain information on the magnitude of the
wavefunction, we try an improved solution of the form

3/2
v D00 =x* yQx) = x¢ exp (:i:i,/ Z;in—zFZXT) (8.71)

and substituting this form into Eqn. (8.69) we find

dy 00 (2FN T i 2T 12 [0
T__<7)x[¢ (X)]:I:/ Qe+ 1/2)x [w (x)]

+ate—x [y V0] (8.72)
The new solution will therefore satisfy Eqn. (8.69) to the next order, provided we choose

(2 +1/2) = 0 or @ = —1/4.Thus, we have the approximate large x > 0 solution
W”(X) - L e:t/«/sz/hz(Zx3/2/3) (8.73)

N
which corresponds to a spatial probability density
1

P = ¥V 01 oc —= 8.74
oM (X) Ilﬁ()ldﬁ (8.74)

The corresponding classical probability distribution makes use of the classical trajectory
information via
2

x(t) = at and v(t) =at = v(x) =+ 2ax (8.75)

so that from Section 5.1 we have
1 1
— d —
vix) X
as well. While these probability densities are not normalizable (similar to those for plane wave
solutions of the free particle Schrédinger equation) they do illustrate both the ability to extract

information on the large x behavior of quantum wavefunctions (bound or unbound) and to
be able to make comparisons with classical probability notions.

P (8.76)

Returning now to the finite well, we illustrate in Fig. 8.10 the energy spectrum
of the infinite well and a finite well which has the same width, but only three (two
even and one odd) bound states. The finite well is scaled up in energy by adding
Vo for comparison and we note again that the corresponding energy levels are
lower in energy in the finite well. A look at the corresponding (normalized)
wavefunctions in Fig. 8.11 helps illustrate the origin of this effect. The finite well
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Figure 8.10. Comparison of energy levels for L B bbbt -
finite versus infinite wells of the same width.
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Figure 8.11. Position-space (left) and momentum-space (right) wavefunctions for the symmetric infinite
well (solid) and finite well (dashed) energy levels in Fig. 8.10. On the left, the vertical sold lines show the edges
of the well at +a. On the right, the vertical lines indicate the value of p corresponding to +pg = +./2mVy;
p values larger than this magnitude would classically allow the particle to escape the well.

solutions, while very similar in structure (i.e. numbers of nodes, parity, etc.), are
allowed to tunnel into the classically disallowed region making for a “smoother”
overall waveform and hence reducing its overall kinetic energy. Related effects
are seen in the corresponding momentum-space wavefunctions (Fig. 8.11) where

one sees that:

® The distributions are somewhat narrower (Ap smaller) consistent with the
fact that finite well position-space wavefunctions are allowed to tunnel (giving
Ax larger).

e The average values of (p?) for the finite well are correspondingly smaller
(implied by the smaller spread in p values), consistent with less kinetic energy.
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Using the fully normalized wavefunctions (P8.9), we can also calculate the prob-
ability that a position measurement would find the particle outside the potential,
using

Prob(|x| > a) = / dx | (x))? (8.77)

|x|>a

For this particular example, we find that

0.028 for E
Prob(|x| > a) = 10.127 for E (8.78)
0.493 for E{™

This is seen in Fig. 8.11 where the solid vertical lines indicate the position of
the well boundaries; clearly the higher energy states “spend more of their time
outside the well.”

The corresponding calculation in momentum-space can be performed to give
the probability that a measurement of |p| would yield a value of p?/2m larger
than necessary to “unbind” the particle, namely

prob (Ip| > v2m1) = [ 6P (879)
Ipl>+/2mVy

The numerical values corresponding to Fig. 8.11 are

0.00134 for E

Prob <|p| > \/ZmVo) = {0.031 for El(_) (8.80)
0.115  for E{7

In this case, the solid vertical lines indicate the values of ++/2mV.

8.3 Applications to Three-Dimensional Problems

8.3.1 The Schrodinger Equation in Three Dimensions

The extension of the one-particle Schrodinger equation to three dimensions is, in
many ways, straightforward. A case of particular interest is when the interaction
potential is a function only of the radial distance, that is, V(r) = V(r,0,¢) =
V (r) alone; that is for so-called central potentials. In this case, it is natural to use
spherical coordinates and consider ¥ (r) = ¥ (r, 6, ¢). Specializing even further
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to the instance where there is no angular momentum® we find (Chapter 16) that
the wavefunction can be written in the form

Vr6.9) = win="0__ (5.81)
r0,0) =yY(r) = — .
4w
where u(r) satisfies a Schrodinger equation of the form
R d%u(r)
- + V(r)u(r) = Eu(r) (8.82)
2m  dr?

which is identical to the one-dimensional Schrodinger equation. The differ-
ence arises in that the radial coordinate is only defined for r > 0, and, because
the wavefunction ¥ (r) should be well-defined at the origin, one must also have
u(0) = 0. Such solutions are then like the odd solutions of a typical one-
dimensional problem with a symmetric potential.

Furthermore, the normalization condition, derived from an integration over
the full three-dimensional position-space, is given by

1=/d3r|w<r,e,¢>|2

o
:/ rzdr/dQ
0

= /OO lu(r)|? dr (8.84)
0

2

u(r)

ra/4m

(8.83)

The obvious identification of u(r) in three dimensions and v (x) (especially
odd solutions) in one-dimension, with their many similarities, is an example
of how a relatively simple one-dimensional problem can have applications in
a realistic three-dimensional system. We examine one specific example from
nuclear physics in the next section.

8.3.2 Model of the Deuteron

The hydrogen atom, the two-body system consisting of an electron and pro-
ton interacting via the electromagnetic interaction, provides the simplest case
in which to study realistically the effects of quantum mechanics in the atomic
physics domain. The analogous system in nuclear physics, the deuteron, which
consists of a neutron and proton bound by the strong nuclear force, plays some-
what the same role; it is experimentally known, however, to have only one bound
state, so its spectrum is far less rich. Nonetheless, it provides some information

* The special case of no angular momentum (I = 0) is a highly nontrivial one, as the ground state

solution, which falls into this category, is important for the determination of the ultimately stable
configuration of most systems.
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on the strength and range of the nucleon—nucleon potential and is amenable to
study using the ideas of the last section.

This two-body system in three-dimensions can be described by an effective
one-particle, one-dimensional Schrodinger equation provided that

o we use the reduced mass, u, of the two-body system (to be discussed in
Chapter 14) defined by

My m m
p=—"" =~ P ~ 480 MeV/c? (8.85)
My + My 2
¢ and identify the coordinate r = r; — r; with the relative coordinate of the two
bodies.

A model potential which captures some of the salient features of the nuclear
force, especially its finite range, is the half-finite well, namely

—Vy forO<r<a
V() =V(rn —nl) = (8.86)
0 forr>a
where, a priori, the depth (V) and range (a) of the potential are unknown. Since
we demand solutions which satisfy the boundary condition u(r) = 0, we focus
on the relevant odd energy eigenfunctions of the symmetric finite well, which
are simply given by Eqn. (8.48), namely,

_ Bsin(gr) forO<r<a
u(r) ~ () = (8.87)
v Ee™kr fora<r
with appropriate matching conditions at r = a. We must also satisfy the

eigenvalue constraint for odd states, namely

/R? — y2 = —y cot(y) (8.88)

where R? = 24 Vya? /h?. We would then like to “fit” experimental data to deter-
mine the parameters of the potential; even in the context of a crude model, these
give some indication of the properties of the true nuclear force.

Experiments find that it requires a gamma ray of energy roughly E, =
2.23 MeV to disassociate the deuteron, so that it has one bound state with
E = —|E| = —2.23 MeV. With only this constraint, one cannot uniquely
determine Vj and a simultaneously, but some additional information is avail-
able. Scattering methods (Section 19.3) can be used to calculate the mean value
of the radius-squared of the system, namely

(r) = f dr|r)? |y (r,0,¢)|* = / T lu(r)|* (8.89)

0
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and the corresponding experimentally measured value is roughly (r?) ~ (4.2 F)?.
For the appropriate quasi-odd wavefunctions, this condition reduces to

a o0
(r*) = B / dr r* sin?(kr)r + E* / dr 1?2 ek (8.90)
0 a
where B, E are further constrained by the normalization condition
a o
1 = B? / dr sin®(kr) dr + E? f dr e 2k (8.91)
0 a

and the boundary conditions at r = a. These constraints can be fit numerically
and one finds

a~24F and Vy~27MeV (8.92)

which do give a reasonable indication of the range and strength of the nuclear
force as determined from other experiments. We note that:

® The depth of the potential also satisfies another plausible constraint, namely
that the attractive nucleon—nucleon potential at these distances is much larger
than the corresponding proton—proton repulsion due to their electrostatic
interaction. Specifically, we find that
v Ke*  1.44MeVF
Coul(r=a) = — = T
¢ The fact that | E| is so close to zero (compared to the value of V4) implies that
the state is extremely weakly bound. The two particles, in fact, spend roughly
60% of the time outside the range of the potential. This is also clear from the
fact that m > a. The approximate deuteron radial probability density,
|u(r)|? versus r, is shown in Fig. 8.12.

~ 0.6 MeV « Vp =27 MeV  (8.93)

V(r) versus r
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,VO
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Figure 8.12. Radial probability density, [u(r)|2 £ l
versus r, for the finite well model of the deuteron. The = |
single bound state energy level is shown on the V(r) = i

versus r plot, as well as the Coulomb potential (solid
curve) for comparison.
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8.4 Questions and Problems

Q8.1.

Q8.2

Q8.3.

Q8.4.

P8.1.

P8.2.

If you constructed a wave packet for the finite well representing a bound particle,
that is, one with (E) < 0, would you ever measure it with E > 0?

What is wrong with this picture? Figure 8.13 shows an energy level in a generic
potential well. One of the position-space wavefunctions below it is the real
solution. Identify the wrong solution and describe as many things wrong with
the purported solution as you can; focus on the magnitude and “wiggliness” of
¥ (x) and its behavior in the classically disallowed region.

How would you generalize the results for the large x wavefunction for the

uniformly accelerating particle in Example 8.2 for the case of E # 0.

How would you use the information in Fig. 8.12 to quantitatively confirm the
statement made in Section 8.3.2 that the neutron and proton . .. spend roughly
60% of the time outside the range of the potential. . .? Would having a mesh of
grid lines added to the figure help?

Show directly from Eqn. (8.1) that " (x) will be discontinuous if V(x) is
discontinuous. Can you calculate 1"’ (x) and discuss the connection between
its continuity and that of V(x)?

For the single 8-function potential, show that the average values of kinetic and
potential energy satisfy

E= (V) =~(D) (8.94)

V(x) versus x

Figure 8.13. Energy levels in a generic potential well B\ /
(top) and two purported solutions (a) and (b). Which one Classical
is right, and why? turning points
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using the position-space wavefunctions. You might wish to use the expression

A hZ +o00 dw(x)
m=5f. %

2
dx (8.95)

—00
for the kinetic energy averaging to avoid problems with higher derivatives.

Single-delta function potential in momentum-space. One can solve the prob-
lem in Section 8.1.2 directly in momenturn—space5 in a way which illustrates,
in a manner not seen so far, how boundary conditions give rise to quantized
energy levels.

(a) Asin Section 4.7.1, take the Schrodinger equation for this problem

~

2
2 x) - g8 () = ~IElY () (8.96)
m

multiply both sides by (1/v/27 k) exp(—ipx/h), and then integrate over x
to directly obtain

_ 2mg ¥ (0)
o(p) = Ny (p2 n (hK)Z) (8.97)

which immediately gives the Lorentzian form in Eqn. (8.10).

(b) To obtain the position-space wavefunction, Fourier transform back to
obtain

mgyr(0) oK

Y = T (8.98)

which is also seen to be the correct form.

(c) Self-consistency demands that ¥(0) be well-defined. Show that this
condition gives the correct condition for the energy eigenvalue, namely
2

m m
k="8 o p=_1¢

2 Sy (8.99)

in agreement with Eqn. (8.8). Does this approach imply that we must have
normalized the wavefunction before determining the energy eigenvalue?

(a) Find the normalized position-space wavefunctions for the even and odd
state (when it exists) for the twin §-function potential in Section 8.1.3.
Show that for large separation (namely, a >> ay) they can be written as

1
V2

where 11 (x) is the solution for the single §-function potential in Eqn. (8.9).

vF ) — [¥1(x — a) £ Y1 (x + a)] (8.100)

5 For a similar derivation, see Lieber (1975).
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P8.5.

P8.6.

P8.7.

P8.8.

(b) Say one tries to localize a particle around one or the other §-function spikes
by taking the initial wavefunction

_ o )
¥ (x,0) = ﬁ[w ) + v O] (8.101)

Does the particle stay localized for later times? What is the natural timescale
for the problem? Hint: How does the energy difference, AE, between the
two states scale when a/ay >> 12

Three §-function potential. Find the energy eigenvalue conditions for even and
odd states for the three §-function potential given by

Vix) =—g((x—a)+56(x)+5(x+a)) (8.102)

Discuss the energy spectrum as a/ ay is varied from large values to small. Is there
a critical value of a/ag for which some states ‘unbind’?

Find the form of the momentum-space wavefunctions for the twin §-function
potential in Eqn. (8.11) by using the methods of P8.3. How do you obtain the
energy eigenvalue condition? Would this work for a more complicated set of
§-function potentials as in P8.52

Consider the wavefunction in P4.15, defined over the range (0, a), which has
acuspat 0 < x = ¢ < a. If this wavefunction is to be a solution of the
Schrodinger equation in an infinite well, show that there must also be a §-
function potential present in the well, and find its strength, g. Do you need
to normalize the wavefunction first in order to be able to extract g? With the
appropriate strength §-function added to the infinite well, what is the energy
eigenvalue associated with the wavefunction in Eqn. (4.178)? Calculate the
expectation values of both the kinetic and potential energies and confirm that
they reproduce this energy eigenvalue.

Infinite well plus §-function potential. Consider the hybrid potential6 consisting

of the sum of symmetric infinite well potential

0 for|x|<a
Veo(x) = (8.103)
oo for|x|>a
and a §-function at the origin, namely
V(x) = Voo + £6(x) (8.104)

where we make no assumption about the sign of g.

(a) Show that the potential is symmetric so that the solutions will be eigenstates
of parity.

(b) Using that fact, solve the Schrodinger equation inside the well for both
positive and negative parity states for nonnegative energies E. Apply the

6§ Some aspects of this problem are worked out in Lapidus (1982b).
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appropriate boundary conditions (being especially careful at x = 0) and
determine the energy eigenvalue conditions. Show that the negative energy
states are unchanged by the presence of the potential.

(c) Repeat assuming negative energy states, that is, E = —|E| < 0.

(d) Plot the eigenvalue condition for even solutions, expressed as a function of
the dimensionless parameter y and discuss how the even energies vary as
the value of g is varied in the range (—00, +00).

(e) Find the value of g for which there is a zero energy ground state. Find and
sketch its wavefunction, and compare to P4.15.

(f) Show that for g — +00, the even energies approach those of the odd states
directly above them. How do their wavefunctions compare?

(g) Repeat for the case g — —oo using the form appropriate for negative
energy solutions.

P8.9. Normalization of the finite well eigenfunctions.

(a) Show that the appropriate normalization constants for the even states of
the finite well are given by

1 sin(2y)  cos®(y) >_1/2
A=—(1+ +—
Ja ( 2y ysin(y)
1 sin(2y)  cos?(y) -2
- (15 (8.105)
C= Acos(y)ek“ (8.106)

(b) Show that the even finite well wavefunctions approach those of the infinite
well in the limit Vy — oo, thatis, when y — (n — 1/2)7.

(c) Calculate the probability that a measurement of the position of the particle
will find it outside the classical disallowed region.

P8.10. (a) Evaluate the average value of kinetic energy for the even states in the finite
well and show that your result can be expressed in the form

(T) = ey [ ! ] (8.107)
©2m | 14 sin(2y)/2y + cos?(y)/ak '

How does this compare to the kinetic energy in the infinite well?
(b) Show that the ratio of the contribution of the kinetic energy from outside
the well to the total is given by
sin(2y)
2y

(T)out/{Ttotal = — (8.108)
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P8.11.

P8.12.

P8.13.

P8.14.

P8.15.

Show that this increases in magnitude for less-bound states. Show that it
has the appropriate limit for the infinite well.

Suppose you tried to model a hydrogen atom in one-dimension by assuming
that the electron of rest energy m.c?> = 0.51 MeV was in a finite well of width 2a
with a = 0.53 A (which is like the Bohr radius) and of depth Vi = 30 eV (which
is something like the value of the Coulomb potential evaluated at r = a). How
many bound states would you find? Would this be a very realistic model?

Calculate the momentum-space wavefunction, ¢(+) (p), for the finite well
corresponding to the even solutions ¥ V) (x).

Limit of a narrow and deep finite square well. The attractive §-function poten-
tial, V(x) = —gd(x), can be obtained from the finite well potential by taking
the limits Vy — oo while a — 0 in such a way that the “area” under the two
potentials is kept the same, namely, 2Vpa = g.

(a) Show that in this limit, there is only one bound state for the finite well and
that its energy reduces to that obtained in Eqn. (8.8).

(b) Show that the wavefunction approaches Eqn. (8.9) in this limit.

(c) Inone experiment7 a potential well of depth of roughly 10 meV and width
of approximately 600 A is constructed. A “potential spike” is added during
the growth process to mimic a §-function perturbation, with width ~9 A
and strength ~80 meV. Would it be appropriate to consider this addition
as a perturbation to the original well?

Large x behavior for the linear potential. Using Eqn. (8.64), find the large
|x| behavior of the wavefunction for a particle of mass m moving in a linear
confining potential of the form V(x) = C|x]|.

How much lighter would the masses of the neutron and proton (assumed the
same) have to be in order for there to be no deuteron at all, that is, no bound
state? How much heavier would they have to be to have three bound states?
Assume that the parameters of the potential stay the same.

7 Salis et al. (1997).



NINE
The Harmonic Oscillator

9.1 The Importance of the Simple Harmonic
Oscillator

The problem of a particle moving under the influence of a linear restoring force,
F(x) = —Kx, or equivalently a quadratic potential, V (x) = Kx?/2,is a problem
which is studied at all levels of theoretical physics, from elementary classical
mechanics through quantum field theory." One of its most useful features is
that, at every stage of development, it is exactly soluble and so can be easily
used as a closed-form, analytic example. If it had no connection to real physical
systems, however, that fact would be of only academic interest. In this section
we mention two important applications of the harmonic oscillator problem to
illustrate its potential wide-ranging usefulness. In Section 9.2, we will then derive
its solution in nonrelativistic quantum mechanics, using a standard differential
equation approach, and discuss its experimental realizations and classical limits
in Sections 9.3 and 9.4. We also discuss wave packet solutions for the harmonic
oscillator, but later in Section 12.6.2.

In classical mechanics, a conservative system can be described by a potential
energy function, V(x), and states of the system which will be in equilibrium will
be found at the extrema of this potential, that is, places where

dV (x)
dx

=—F(x) =0 (9.1)

X=X

or where the classical force vanishes as suggested by Newton’s law. The stability
of the equilibrium point is governed by the sign of the second derivative with

d*V(x)
dx?

d*V(x)

>0
2
X=X dx X=Xq

<0 9.2)

! For a comprehensive survey of the harmonic oscillator in classical and quantum mechanics, see
Pippard (1978, 1983).
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Figure 9.1. Generic potential with stable, unstable, and neutral
equilibrium points. Neutral

implying stable, bounded, and periodic motion (for V" (xy) > 0) or unstable
(in fact exponentially increasing) and unbounded motion (for V”(xy) < 0),
respectively, as in Fig. 9.1.

We can expand the potential near the point of equilibrium as a power series,

dv (x) 1d*V(x)
dx (x = x0) + 2 dx?

X=X X=Xp

V(x) = V(x0) + (x = x0)” + -

1

where the effective “spring constant” is K = d*V (x)/dx?*|x=x,. Since the con-
stant part of the potential cannot affect the physics in any meaningful way, we
see that:

e The simple harmonic oscillator (hereafter SHO) potential, V(x) = Kx?/2, is
often the “best first guess” for the potential near a point of stable equilibrium.

If the equilibrium point happens to be at xp = 0, we have,

mx(t) ~ —|K|x(t) whenK > 0 (9.4)
mx(t) ~ +|K|x(t) whenK <0 (9.5)
with general solutions
x(t) = A cos(wt) + Bsin(wt) for stable equilibrium (9.6)
x(t) = Ce®" + De™ ! for unstable equilibrium (9.7)

where w = /K /m in both cases; the constants are determined, of course, by the
initial conditions. While the first case is by far the most important, we will also
briefly discuss the quantum analog of unstable motion in Section 9.5.
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V/(r) versus r

Figure 9.2. V/(r) versus r for a Lennard—Jones
potential (solid) and the corresponding SHO
approximation (dashed).

Lennard-Jones potential
— — — SHO approximation

A realization of this idea comes in the study of diatomic molecules” which
interact via a potential of the generic type shown in Fig. 9.2. The particular form
shown is often called a Lennard—Jones or 6-12 potential of the form

(2 2))

and is especially relevant for the interaction of spherical (i.e. noble gas) atoms.
This functional form is not as good a representation of the potential for other
types of bonding (i.e. ionic or covalent), but there will be a stable minimum
in those systems as well. In this case, the potential is a function of the distance
between the two molecules, r = |r; — 13|, and the reduction to relative coordin-
ates (discussed already in Section 8.3.2) implies that the reduced mass of the
system, defined as u = mymy/(m; + my), should be used. A harmonic oscil-
lator potential can be used to fit the potential near the stable equilibrium point
with the classical result that such diatomic molecules will oscillate around their
equilibrium separation with frequency

K a’v
w=_[— whereK = J

. e (9.9)

r=ry

with any amplitude possible. The extent to which this approximation is a good
one depends on the size of the anharmonic terms (the higher-order terms in the
expansion of V(r)) as the amplitude of the motion increases. Classically, it is
always possible to have oscillations with amplitude small enough that the SHO

2 See any good text on modern physics for a further discussion of molecular bonding, for example,
Eisberg and Resnick (1985).



242 CHAPTER 9 THE HARMONIC OSCILLATOR

approximation is a good one. Quantum mechanically, however, we know there
will be quantized energy levels in such a confining potential; the extent to which
an SHO approximation is useful now depends on the size of the energy level
spacing and especially that of the lowest level given by the zero-point energy. We
will discuss this in more detail in Section 9.3.

Another example, which at first seems very remote from classical considera-
tions of vibrating masses and springs, comes from the desire to apply quantum
ideas to the oscillations of the electromagnetic (EM) field. We give a preliminary
discussion here” and return to the subject in Chapter 18.

The total energy contained in a configuration of EM fields is given by an
integral over the respective electric (ug(r,t)) and magnetic (up(r, t)) energy
densities,

Fut = / dr (us(r, £) + up(r, 1) = / dr (E—OIE(r, DI + ——IB(x, r)|2)
2 2100
(9.10)

In a region of space where there is no charge density (so that the scalar potential,
¢ (r, t), can be neglected), the electric and magnetic fields can be written in terms
of the so-called vector potential, A(r, t), via

JA(r, 1)

E(r,t) = — and B(r,t) = =V x A(r, t) (9.11)

We can write the vector potential in terms of its Fourier components via

A(r, t) = / dk Ak, t) e’ (9.12)

(2 )3/2

and the total energy can be rewritten in the form

. k2
Eot = / dk (E—°|A<k, D1 + — Ak, t>|2) (9.13)
2 2100

If we write the energy of a standard harmonic oscillator in terms of its amplitude,
x(t), as

Eiot = lmx (t) + = Kx (1) (9.14)

we can see that there is a very real sense in which the EM field can be considered
as an infinite collection (specifically an integral over dk) of harmonic oscillators,
each with amplitude A(k, t). Comparing the coefficients of the amplitude and

3 For a more comprehensive discussion at this level, see Baym (1976).
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derivative terms gives the appropriate frequency for both cases; for the mass and

w = /K_/Z :\/K (9.15)
m/2 m

while for the EM field case we have

k%/2u, 1
Wy = = kc sincec = (9.16)
V' €/2 Jeéoro

which is indeed the appropriate dispersion relation for photons. One intriguing

spring case we have

implication of this result is that since there is a nonvanishing zero-point energy
for each k mode, the total vacuum energy of the EM field will actually be
divergent.”

9.2 Solutions for the SHO

9.2.1 Differential Equation Approach

We will now apply some standard techniques for the solution of ordinary differ-
ential equations to solve for the allowed energy eigenvalues and eigenfunctions,
corresponding to the SHO potential in the standard form

Kx*  mo*x?

We write the time-independent Schrodinger equation in position-space as

R Y (x)  mo’x
2m  dx? 2

2
Y (x) = E¥(x) (9.18)

and we attempt a change of variables to make Eqn. (9.18) dimensionless. Spe-
cifically, we define x = py where p has the units of length and will be determined
below. Substituting this above we find

Y@y mo’pt
R Y

2mE p?
2y (y) = —%ww (9.19)

* This property of the quantum version of the vacuum electric and magnetic fields has observable
consequences in the so-called Casimir effect, a nice discussion of which is given by Elizalde and Romeo
(1991).
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which reduces to

d*y (y)
:ff — PUG) = P () (9.20)
Y
provided we define
h 2E
p=,— and €= — (9.21)
me hw

where € is now a dimensionless eigenvalue. We note that these are the same
combinations of parameters for length and energy given simply by dimensional
analysis in Example 1.4 and in P4.23.

Because the behavior of ¥ (y) at infinity is important for the existence of
normalizable solutions, we first examine Eqn. (9.20) for large |y|,

d2
;$”~ﬁww (9.22)

which has approximate solutions, ¥/ (y) = e*” ’/2, Choosing only the square
integrable solution leads us to try to “factor out” the behavior at infinity, once
and for all, by writing

V() = h(y)e ) (9.23)
Substitution into Eqn. (9.20) then gives
d*h dh
DD 4 e~ 1yhp) =0 (9.24)
dy? dy

Since the potential V' (x) is symmetric, we know in advance that the solutions
will be eigenfunctions of parity, that is, even and odd states; this implies that the
h(y) can be classified by their parity, and since this simplifies the analysis, we
consider even solutions first.

A standard method of solution which can be applied to this problem is to
assume a power series expansion for h(y) so that in this even case we write

o0
K (y) = Z asy* (using only even powers of y) (9.25)
s=0
which must then satisfy

o o0
D 2525 — Dagy® 4+ Y (e —1—4s)ay* =0 (9.26)
s=0 s=0
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Using our freedom to relabel the dummy summation index in the first term by
letting s — s + 1, we can combine terms to obtain

o 0
[2(s + 125 + Dagp1 + (6 — 1 — 4s)ag] y* = ZBSJ/ZS =0 (9.27)
s=0 s=0

This can only be true for every value of y if all of the coefficients B; vanish
separately, that is,

(9.28)

4s+1—¢€
B = 0= a511 = as

2+ 1)(2s+ 1)
Equation (9.28) is now a recurrence or recursion relation, which implicitly gives

the solution because all of the coefficients are given in terms of the single
parameter agp via

(1—¢) (5—¢€) G—-—€)1—¢)
— . @y = - 9.29
@ =a— @ =a—7> ag 4 (9.29)
and so forth. This gives
) (1) — M2, B4 —y*/2
v =a |14+ =2+ =yt 4 |e (9.30)
aop do

The fact that this solution of a second-order differential equation has only a
single undetermined constant is explained by the fact that while gy can determ-
ine ¥(0), ¥/'(0) = 0 is already determined by the fact that hH)(y) is an even
function.

This solution for h™(y) is a nicely convergent series as a ratio test
(Appendix D.2) gives

2542 2
%—)y—%o as s — oo for fixed y (9.31)

asy*s s

. 2 . . .
We note, however, that the function ¢, which has the series expansion

o0
v ORI IR Y
=14y + 07+ —S;S!(y) (9.32)
has the identical limiting behavior, so that
h(+)(y) — ¢ and w(+)(y) = h(+)(y) e V2 s )2 (9.33)

So, while we have tried to eliminate the divergent behavior by hand, it has
re-emerged in the series solution.

This argument relies, however, on the comparison of ratio tests, that is, on the
assumption that the series solution for h*)(y) has infinitely many terms. This
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problem is avoided if the series is, in fact, finite, that is, if it terminates for some
finite value of s. If a,, = 0 for some value of n, then Eqn. (9.28) guarantees that
all subsequent a,,; will also vanish, so that #*)(y) will be simply a polynomial
in 2. This can happen only if

a,=0=—=¢c=0“4n+1) for n=0,1,2... (9.34)
which implies the quantized energies

ESY = ho(2n+1/2) wheren=0,1,2... (9.35)

We plot in Fig. 9.3 the wavefunction corresponding to the first of these spe-
cial even functions (i.e. € = 1), namely, the ground state, as well as solutions
characterized by values of €, which are only slightly different; each of these wave-
functions are solutions of the Schrédinger equation for the harmonic oscillator,
but only one is square-integrable and therefore suitable as a physical solution. We
note once again how the the requirement of normalizable wavefunctions leads
to quantized energies for bound states. The acceptable even solutions are then

hw )
B = B v V) =ae™”

5hw 2
EY === "0 =al-2hHe
9hiw )
ESY = - Ui () = ag(1 — 4% + 4y*/3) eV /2 (9.36)

e=15

Figure 9.3. Square integrable ground state wavefunction (solid) for the SHO corresponding to € = 1 and
divergent “near misses” (dashed curves) for various € # 1. Each of the wavefunctions are solutions of
the Schrédinger equation for the harmonic oscillator problem, but only the e = 1 satisfies the necessary
boundary conditions at =00 and is allowed.
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The odd states can be obtained in an entirely similar way by assuming a series
solution of the form

o0
W (y) = Z bey* T (using only odd powers of y) (9.37)
s=0

which yields the recursion relation

4s+3 —¢€
bosr = bs [2(5 T 1)2s + 3)} (9:38)

and acceptable energies

ESY) = 2n+43/2)he  withn=0,1,2... (9.39)

9.2.2 Properties of the Solutions

Collecting these results, we find that the two classes of solutions can be combined
with a single label to write

E,=n+1/2)hw n=0,1,2,... (9.40)

with corresponding normalized solutions, which are expressible in the form

Yu(x) = Cyhy(y) e V)2 where y = /%x = % (9.41)

The h,(y) can be recognized as the Hermite polynomials (see Appendix E.3), and
the normalization constants are found to be

_ (v mw/hr 1/2_ 1 12
o= () - Gm) -

Several comments can be made:

® The hy,(y) are polynomials in y of degree n with parity +1 (—1) depending
on whether 7 is even (odd). The first few can easily be obtained from the
recursion relations (P9.2) and are given by

ho(y) =1 h(y) =2y
() =4y> =2 h(y) =8y’ — 12y
hy(y) = 16y* — 48y 412 hs(y) = 32y° — 160y° +120y  (9.43)

* The first few energy eigenfunctions are plotted in Fig. 9.4 and show the usual
pattern of increasing numbers of nodes and alternation of even and odd states.
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Figure 9.4. SHO wavefunctions for
the lowest-lying energy levels, n =0, 1, 2, 3.

¢ The nodeless ground state has a zero-point energy of Ey = hw/2 consistent
with the uncertainty principle discussion of P1.14. In this case, ¥o(x) is a
familiar Gaussian waveform implying that its Fourier transform, ¢o(p), is
as well Gaussian. It can be shown that this wave packet has the minimum
uncertainty principle product AxAp = h/2 (Section 12.4).

® Because of parity, we have the expectation value

+00
(Walieln) = / dx x [ () = 0 (9.44)
while
A +Cx> A
Wralpln) = f d §* () Py (x) = 0 (9.45)

as usual for energy eigenfunctions for bound states. Other average values will
be more easily obtained using the operator formalism in Chapter 13; we list
here for convenience the results

2 h
(WYl |Y) = —(n+1/2) (9.46)
maw
(Yl ¥n) = hmo(n+1/2) (9.47)
4 3( Y 2
(YUulx*|ry) = = < ) 2n 4+2n+1) (9.48)
4 \ mw
Wl 1Y) = S (imw)?@n + 204 1) (9.49)

h
Wl i) = | 5 — (Suior vV + SV +1) (9.50)
maw

n h
Walplv) = =i\ == (SusrVE =SV +1)  (95D)

¢ The solutions form a complete set of states so that any acceptable wavefunction
can be expanded via ¥/ (x) = Y 2 an¥»(x) in the usual way
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Finally, the harmonic oscillator problem is the only one where the potential
energy enters quadratically and this implies a complete symmetry between x
and p representations; recall P4.23. For example, the Schrddinger equation in
momentum-space reads

n*maw* d*¢ (p)
2 dp?

p2
() - = E(p) (9.52)

which is of the same form as Eqn. (9.18) in position-space. The solutions are
easily obtained by the same methods, and one finds

p
~ mwh

dn(p) = Dnhn(q)e_q2/2 where g = (9.53)

with normalization constants

1 1/2
D, =|——— (9.54)
" (n!Z”«/ mwhn)

The momentum-space probability densities, plotted as a function of the scaled
variable g, therefore have the same form as in Fig. 9.4.

9.3 Experimental Realizations of the SHO

Several aspects of these quantized vibrational states are clearly evident in the
study of diatomic molecules; they include:

* Approximately evenly spaced energy levels
¢ Vibrational contribution to the heat capacity of diatomic gases

® The variation of the zero-point energy with the constituent masses

and we (briefly) discuss each in turn.

The validity of an SHO description of the quantized energy levels in a
Lennard—Jones potential is illustrated in Fig. 9.5 for both relatively light (Ne—
Ne) and heavy (Xe—Xe) molecules; clearly the approximation of the potential
near the minimum is much better for the heavier molecules which sit ‘further
down’ in the potential well. In the case of NaCl, for example, where the (ionic)
binding potential is much larger, there are roughly 20 such levels which can be
detected spectroscopically. As the quantum number is increased, however, the
potential becomes more anharmonic, and the level spacings decrease somewhat
(Can you argue why?). Since diatomic molecules which vibrate can also rotate,
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V(r) (ineV)

Figure 9.5. Lennard—Jones interaction potentials
for pairs of noble gas atoms. The horizontal
dashed lines indicate the first few energy levels
using the SHO (dashed) approximation.

the energy spectrum also contains rotational levels, which we discuss in more
detail in Chapter 16.

The vibrational motion can also contribute to the heat capacity of a system of
diatomic molecules. Classically, each degree of freedom will contribute kg T'/2 to
the thermal energy. For a monatomic gas, with only three translational degrees
of freedom, this would yield a specific heat per mole given by

Cy = % = % (%NAkBT) = %R (9.55)
where R = Njk is the gas constant.

An additional vibrational degree of freedom would then contribute an extra R
to this value. For this mode to contribute, however, the temperature must be large
enough that such energy levels can actually be excited; thus this contribution
becomes important only when kT 2 Ey = hw/2. For H,, for example, this
temperature is so high that the molecule disassociates before the vibrational
states can contribute fully.

Finally, the zero-point energy can be seen to scale with the reduced mass, u, as

1 1 K
E() =-ho=-h|— (9.56)
2 2 w
If we consider two atoms corresponding to different nuclear isotopes (i.e. the
same nuclear charge but different mass), the effective interatomic potential
between them should be identical (same K) since this is determined by the
arrangements of the atomic electrons; the reduced mass, p, which appears in
Eqn. (9.56), however, will differ. This implies that the ground state energy (and
hence the energy required to disassociate the molecule) will be different for dif-
ferent isotopes. This is most clearly seen using hydrogen and deuterium where
the H-H, H-D, and D—D zero-point energies are in ratios 1 : \/4/3 : v/2; the
energy required to disassociate H—H is then less than for D-D (as in Fig. 9.6)
and this effect is observed experimentally.
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Figure 9.6. Schematic description of interatomic
potential for H—H, H—D, and D—D pairs (solid curve)
and ground state energies (horizontal dotted lines) for ~ Dissociation

molecules of hydrogen (H) and deuterium (D). The energy -
zero-point energy (dissociation energy) for the heavier

D-D pair is smaller (larger) than for the lighter Zero-point
H-system, due to the dependence on the reduced energy

mass of the system. —— _____yN_\/_____

Advances in both materials science and atom trapping have allowed the
construction of artificial harmonic traps, both in solids and for isolated
atoms. Computer-controlled molecular beam epitaxy, for example, allowed
the construction of Remotely-doped graded potential well structures’ including
symmetric parabolic potentials. With such techniques, even asymmetric wells,
consisting of two half-parabolas with different curvatures have been studied; one
such experiment® used a sample which was roughly 3000 A wide and had effective
left/right spring constants of K, g = 5.1, 6.2 x 107> meV/AZ, respectively.

In magnetic or optical traps, atoms or ions can be stored and even cooled
to the ground state of the harmonic potential, at which point the Generation of
nonclassical motional states of a trapped atom’ is possible. This includes suddenly
shifting the center of the trap to initiate wave packet motion, or even rapidly
changing the effective spring constant (as discussed more abstractly in P9.6).

9.4 Classical Limits and Probability Distributions

The classical limit of the quantum oscillator can be approached in several ways;
for example, wave packets constructed from the solutions can be shown to oscil-
late with the classical oscillation period, T = 27 /w, and we consider this in
Section 12.6.2.

One can also examine the connection between the classical and quantum
mechanical probability distributions discussed in Section 5.1. For the SHO, we
found (P5.2) that

1

PerL(x) = ———= (9.57)
TV A% — x?

> The title of a paper by Sundaram et al. (1988); see also Shayegan et al. (1988).
6 See Ying et al. (1992).
7 The title of a paper by Meekhof et al. (1996).
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Figure 9.7. Classical (smooth, diverging curves)
versus quantum probability distributions (oscillatory ‘
curves) for (@) n =0, (b) n =1, (c) n = 10, and i i
(d) n = 20. The vertical dashed lines are turning ‘ ‘
points for the classical motion.

where A is the classical turning point defined by Eyo; = KA?/2. We plot in Fig. 9.7
the quantum and classical results for the position-space probability densities for
the cases n = 0,1, 10, and 20 and note that the quantum mechanical result,
when locally averaged, does approach the classical result for large values of n.
The form of the classical result is easy to understand, as the particle spends more
time near the turning points where it must slow down and come to rest before
reversing direction, while near the origin it has its largest kinetic energy (spring
is unstretched) and so spends little time.

We can also inquire about the classical distribution of both kinetic and poten-
tial energies. We can consider the potential energy density, simply V (x) weighted
by the classical probability density, given by

K x2

T A2

1
Ver(x) = Per(x) V(x) = Pep(x) (EK"Z) (9.58)

The similar weighted value of the kinetic energy, the kinetic energy density, is
then

1 K
Tcr(x) = Per(x) T(x) = Per(x) <§mv(x)2> = A2 —x2 (9.59)

where we have used the fact that E = mv?/2 + Kx?/2. The integrals of these
quantities yield the average potential and kinetic energies, and we find

+A I<A2
(T(x)) = f Pt TG ds = - (9.60)

+A KAZ
(V(x)) = f ) Ve dr = (9.61)
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that is, (V(x)) = (T'(x)), so that the energy is, on average, shared equally. This
result is familiar from classical mechanics where

2 2
V(x(t)) = Kxét) = K‘%cosz(wt —9) (9.62)
242
T(v(1)) = mvz(t) = m“;A sin?(wt — 8) (9.63)

and when these are averaged over one period (P9.13), the same result is obtained.
In a position-space representation, the quantum mechanical probability
density times the potential,

Vam(x) = V) |y (x)]? (9.64)
most closely resembles Eqn. (9.58). In addition, Eqn. (4.66) showed that

Y (x)
0x

h2 2
TQM(?C) = ﬁ

(9.65)

when integrated over all space, gives the average kinetic energy, so that we can
take this as a quantum mechanical equivalent of the classical kinetic energy
density, the quantum version of Eqn. (9.59). In Fig. 9.8, we compare the classical
and quantum versions of both the potential and kinetic energy densities. We
see again that the quantum results, when locally averaged, approach the classical
predictions.

The form of the quantum mechanical momentum-space probability density,

Pom(p; 1) = |én(p)|? (9.66)

must necessarily have the same form as Pqm(x; 1), which at first might seem
somewhat surprising. One might argue classically that since the particle spends
most of its time near the turning points where the classical speeds are small,
Pcr.(p) should be sharply peaked for small values of p. Such classical behavior
would then seem to be in direct conflict with the n — oo limit of the quantum
probability densities, which have the same form as Fig. 9.7. The seeming contra-
diction arises from the mistaken assumption that we first “find” the particle near
the classical turning points (i.e. make a position measurement) and then specify
its momentum.

(@) | ! (b)
Figure 9.8. Classical (dashed) and quantum
(solid) probability distributions for the potential .y ]
energy (a) and kinetic energy (b) for the harmonic | '
oscillator for n = 10. $ N
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9.5 Unstable Equilibrium: Classical and
Quantum Distributions

For the case of a particle near a point of unstable equilibrium, we have V(x) =
—Kx? /2, and the dimensionless Schrédinger equation becomes

d*y (y)
dy?

+ 7 () = —ev () (9.67)
The large y dependence can be obtained as done for Eqn. (9.23) giving

V() — e or Y(y) — sin(y?/2) , cos(y%/2) (9.68)

that is, oscillatory solutions consistent with an unbound particle. If we specialize
to the special case of € = 0 for simplicity, we can get more information by
assuming a solution of the form

¥ (y) = y*sin(y*/2) (9.69)

and also noting that

V') + () = Qa + 1)y¥ cos(y/2) + ala — 1)y* " sin(y*/2)

~0 uptoO(y*2) (9.70)

provided « = —1/2. Thus, the next better approximation gives

sin(y%/2) cos(¥%/2)
() sy’ /2) (or cos’/2) (9.71)
V7 V7
which gives a probability density
in2(v2/2
Pom(y) o« Sin"7/2) (9.72)
y

To compare to the classical probability density, we note that for large time,
any unstable solution will be dominated by the increasing exponential term in
Eqn. (9.7), giving x(t) — De®" so that

v(t) = %(t) - Dwe®" x x(t) (9.73)
and

Pcr(x) o L ¢ (9.74)

1
v(x) x
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— Peux)

Figure 9.9. Classical (solid) and quantum (dotted) position
space probability distribution (|1 (x)|2) for the “unstable”
oscillator, corresponding to the case of unstable equilibrium.

Changing this to dimensionless variables and noting that the sin(y?/2) term
averages to 1/2 over many cycles, we can compare the quantum and classical
probability distributions for an unstable particle, namely

s 20,2
Pa(y)d% and PQM(y)ocM (9.75)

which we plot in Fig. 9.9. Once again, the increasing wiggliness as |y| increases
is indicative of increasing kinetic energy, while the decreasing amplitude is con-
sistent with less and less time spent in a given y interval, that is larger speeds.
This, then, is the quantum mechanical “picture” of “falling off a log.”

9.6 Questions and Problems

Q9.1. The vibrational degree of freedom in a diatomic gas does not contribute to the
specific heat until kg T 2 hw because the energies are quantized. The transla-
tional degrees of freedom of a gas when confined to a box (as in a room) are
also quantized. At what temperatures will the translational degrees of freedom
be “frozen out” in the room you are sitting in right now?

Q9.2. In the context of the discussion in Section 9.5, compare Pcy (x) for the cases
of the completely free particle, a particle undergoing uniform acceleration (as
discussed in Example 8.2, and the (exponentially) unstable particle considered
above.

Q9.3. Most solids are characterized by the fact that they expand when heated. Show
that if one models the interactions of the atoms in a solid by simple harmonic
forces, any increase in energy of the individual atoms does not lead to an overall
expansion. What is it about the real interactions of atoms which can lead to the
observed expansion?
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P9.1.

P9.2.

P9.3.

P9.4.

P9.5.

P9.6.

P9.7.

Consider a particle of mass m, which moves in a potential of the form

V() = Vo (cosh (2) =1) (9.76)
a
(a) What is the “best fit” SHO approximation to this potential?
(b) What is the energy spectrum of the SHO fit?

(c) Is the approximation better for large or small a? (You should specify large
or small compared to what.)

(c) For a given value of a, up to what values of n is the SHO spectrum a
reasonable approximation?

Using the recurrence relations in Eqn. (9.28), derive the first three even Hermite
polynomial solutions. Do the same for the first three odd solutions using
Eqn. (9.38).

Linear combination of oscillator states. Consider a state which is a linear
combination of the ground state and first excited state of the SHO, that is

1

I//(X,O) = \/E

(Yo(x) + ¥1(x)) (9.77)
(a) Whatis ¥ (x, t)?

(b) Evaluate (x); and (p),; and show explicitly that d(x);/dt = (p),;/m.

(c) Whatis (E),?

A particle is known to be in the ground state of the harmonic oscillator. What is
the probability that a measurement of its position would find it outside of the
classically allowed region? Hint: You can do the required integral numerically, or
use the results for the Gaussian probability distribution in Appendix B.3 (with
a suitable change of variables).

Evaluate the position- and momentum-uncertainties, Ax, and Apj, in the nth
SHO eigenstate, using the results in Eqns (9.46) and (9.47). What is the prob-
ability that a particle in the ground state of the harmonic oscillator would be
measured to have a momentum larger than +A py?

Changing the spring constant. A particle of mass m is in the ground state of an
SHO with spring constant K. Somehow, the spring constant is suddenly made
four times smaller. What is the probability that the particle is in the ground state
of the new system? in the first excited state? in the second excited state?

A particle of mass m in a harmonic oscillator potential is described by the
wavefunction

¥ (x,0) = L e (9.78)

—c
Vaym
What is the probability that a measurement of its energy would give the value
hw /22 3hw/2? How do these values change with time?
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P9.9.

P9.10.

P9.11.
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Dissolving oscillator. Assume thata particle isin the ground state of a harmonic
oscillator potential. At a time t = 0, very suddenly, the spring is completely
removed. What is the resulting time-dependent wavefunction, ¥ (x, t), of this
suddenly free particle? What are the resulting time-dependent values of Ax;
and Ap;?

Harmonic oscillator in an external electric field. Consider a charged particle

of mass m in an SHO potential, but which is also subject to an external electric
field E. The potential for this problem is now given by

1
V(x) = Ema)zxz — qEx (9.79)

where q is the charge of the particle.
(a) Show that a simple change of variables makes this problem completely
soluble in terms of the standard SHO solutions. Hint: Complete the square.

(b) Find the new eigenfunctions and energy eigenvalues.

(c) Show that for a particular value of E the ground state energy can be made
to vanish. Does this mean that there is no zero-point energy in this case?

(d) Evaluate (x) and (p) in each of the new eigenstates.

(e) What are the new momentum-space wavefunctions? Can you evaluate ()
and (p) in this representation?

Half-harmonic oscillator. (a) Evaluate the allowed energy eigenvalues and cor-
responding normalized wavefunctions for a particle of mass m moving in a
potential given by

~+o00 forx <0
Vix) = L (9.80)
mw-x“/2 for0 < x

Hint: Use the fact that the SHO solutions discussed above are eigenstates of
parity.

(b) For the ground state of this system, evaluate (x), Ax, (p), and Ap.
Lennard—-Jones potentials. Consider the potential in Eqn. (9.8) for pairs of
noble gas atoms.

(a) Show that the minimum of the potential is at 7, = 2!/%0 and that the
depth of the potential there is V (rmin) = —e.

(b) “Fit” the potential near the minimum with a SHO potential and find the
effective spring constant in terms of ¢ and €. (From dimensional grounds
alone, you know that K o< €/02.) What is the energy spectrum of the SHO
potential in terms of these quantities.

(c) A measure of the “quantum-ness” of the system is given by the ratio Ey/e.
Calculate this in terms of the parameters of the problem.
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(e)

P9.12.

P9.13.

(d) Using the numerical values below, evaluate Ej /¢ in each case and comment.

Atom W (amu) € (eV) o (A)
He 2 0.000875 2.56
Ne 10 0.00312 2.74
Ar 20 0.01 3.40
Kr 42 0.014 3.65
Xe 66 0.02 3.98

An approximate criteria for the melting of a solid (assumed bound by harmonic
potentials) is when the RMS amplitude (Ar = /(r — (r))?) of vibration of
atoms about their equilibrium position becomes larger than a certain fraction
of the equilibrium spacing (d). This can be quantified to say that when the
Lindemann constant, yp, is such that

A
v = 7r >0.15 (9.81)

one finds classical melting. Calculate the Lindemann constant in terms of €, i, A,
and € and evaluate it numerically for the ground states of the five systems above.

Molecular vibrational data. The NaCl diatomic molecule has fiw ~ 0.04 eV

(a) Use the atomic weights of Na (~23) and Cl (~35) to estimate the effective
spring constant K. Express this in eV/ A% and N/m.

(b) Estimate the amplitude of the vibrational motion in the ground state (n =
0) and in the last bound state (n ~ 20) by equating E, ~ KA?/2; express
your answer in A and compare to the equilibrium separation of the Na and
Cl, namely, 2.4 A.

(c) Atroughly what temperature will the vibrational degree of freedom of NaCl
contribute to the specific heat?

Classical average values using trajectories.

(a) The average value of a function of position, x(t), in a periodic system can
be defined via

(flx@))) = U fx(@®) dt]/[/ dt} = l/ fx(®) dt (9.82)
0 0 T Jo

Use the fact that v(x) = dx/dt to show that this definition is equivalent the
definition of average value used for functions of x = x(t) in Eqn. (5.11),
namely

b 21
() = / Per(x) f(x) de with Pa(x) = - ——  (9.83)
\ T v (0
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(b) Use the first method to calculate the average values of potential and kinetic
energies using the forms in Eqn. (9.62) and (9.63).
The classical anharmonic oscillator.
(a) Consider the anharmonic oscillator potential given by
V(x) = %sz — AKX (9.84)
and consider A to be small. Show that the resulting classical equation of
motion is
%(1) = —w?x(1) + 30 Ax%(1) (9.85)
(b) Attempt a solution of the form
x(t) = Asin(wt) + By + [Cy cosQwt) + Dy sinQwt)] +---  (9.86)

where A is fixed and By, Cj, D; are all of order A and solve for the
undetermined coefficients.

(c) In contrast to the (symmetric) harmonic oscillator, show that (x) =
3)A%/2 # 0, where the average value is defined via

1 T
(f() =- / f(t)dt (9.87)
T Jo

as in P9.13.
(d) Discuss Q9.3 in the context of your answer.
(e) Evaluate the “anharmonic” term in the SHO approximation to the Lennard—

Jones potential by expanding Eqn. (9.8) to the appropriate order.

Application of the Feynman—Hellmann theorem. Recall that the Feynman-—
Hellman theorem (from P6.18) required that

dE() _ [9HO)
ar | oa

(9.88)

if the Hamiltonian depends on some parameter A in some well-defined way,
H = H()) so that

(EY(A) = (W )HMW|Y (L) (9.89)

Confirm the Feynman—Hellman theorem for the harmonic oscillator eigenstates
by using the mass m and the spring constant K as parameters.

Wigner distribution for the harmonic oscillator eigenstates. Evaluate the
Wigner quasi-probability distribution defined in Eqn. (4.149) for the n = 0
and n = 1 states of the harmonic oscillator. Show that for n = 0 one obtains a
positive-definite result, while for n = 1 one does not.



TEN

Alternative Methods of
Solution and Approximation
Methods

It is a common practice to approach quantum mechanics through the study of
a few, exactly soluble examples using the Schrodinger equation in position-space.
The number of potential energy functions for which such closed-form solutions
are available is, however, quite small. Luckily, many of them actually correspond
reasonably well to actual physical systems; examples include the infinite well as
a model of a free particle in a “box” (Chapters 5 and 7), the harmonic oscillator
(Chapter 9), the rigid rotator (Chapter 16), and the Coulomb potential for the
hydrogen atom (Chapter 17).

Nonetheless, it is important to recognize that other methods can be used to
study the properties of a quantum system. Some of them are quite different from
the Schrodinger equation approach, and many are amenable for use as numerical
and approximation methods in problems for which analytic solutions are not
available.

In this chapter, we focus on several methods which can be used to study
the spectrum of energy eigenvalues and wavefunctions for time-independent
systems and (more briefly) on the effects of time-dependent perturbations, not
only as calculational tools for possible numerical analysis, but also as examples
of very different ways of approaching quantum mechanical problems. We can
make several general comments:

® Many (but by no means all) of the alternative approaches discussed here are
most useful for the study of the ground state of the system. Because the struc-
ture of matter is ultimately determined by the lowest energy configuration,
the determination of the properties of the ground state is arguably the most
important; it is the very clearly “first amongst equals”.

® Any method which is to be used as a numerical approximation technique
should be capable of increased precision (usually at the cost of increased
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calculational difficulty) as well as providing an estimate of the errors made
in the approximation. We will not focus extensively on these questions, but
the reader should always keep in mind how each method can be extended in
precision, as well as the possible effort involved in doing so.

As our ultimate goal is to understand the physics behind the equations, we may
well have to rethink what it means to “solve” a problem when we approach it
numerically. For example, do we need an analytic functional form for ¥ (x)
or is an array of numbers or an interpolating function enough? How precisely
do we need to know the energy eigenvalues? When are we “done”?

Finally, the use of numerical methods is often nicely complementary to the
study of analytic examples. One often looks at a problem in a much differ-
ent way when one approaches it expecting to write a computer program to
“solve” it, and such new insights can be valuable. For example, the study of
chaotic dynamics in classical mechanics owes much of its success to the applic-
ation of numerical (as opposed to analytic) techniques to otherwise familiar
problems.

In each section, we first discuss the formalism of each method and then give
an example of its possible use as a computational tool.

10.1 Numerical Integration

Classical and quantum mechanics share the fact that their fundamental math-

ematical descriptions are given by second-order differential equations, Newton’s

law for a point particle

d*x(t)
m— = F(x) (10.1)
and the time-independent Schrodinger equation
R d*y(x)
AV L vy = By (10.2)
2m  dx

We are used to thinking of Eqn. (10.1) as being completely deterministic, in

that, if we are given the appropriate initial conditions, namely, xp = x(0) and

19 = %(0), the future time development of x(t) is then predicted. To see how

a particle “uses” Eqn. (10.1) to “know where it should be” at later times, we can

! We ignore any complications such as the extreme sensitivity to initial conditions present in chaotic

systems.
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use a conceptually simple method” to integrate Newton’s law directly. We first
approximate the acceleration (the second derivative) via

Px(t) . [ x(t+8) — k(1)
o =0 = fim (HEZHO)

|:lima_>o((x(t +28) — x(t +6))/8) — lims— o (((x(¢ + ) — x(t)))/5)i|

= lim
§—0

)

) (x(t+28) —2x(t +6) —i—x(t))
= lim
§—0 52

x(t+28) — 2x(t + 8) + x(t)
~ 5 .

(10.3)

With this approximation, Newton’s law can be written as

F(x(1))

m

x(t +28) ~ 2x(t + 8) — x(t) + 8* (10.4)
which is now a difference equation for x(t), evaluated at the discretized times
t = né.
Since
8) — x(0
1 = x(0) = w we have  x(8) =~ x(0) + 5x(0) (10.5)
and the values of x(t) at the first two of the discretized times, n = 0, 1, are fixed
by the initial conditions; for later times, the x(t+ = nd) with n > 2 are then
determined by Eqn. (10.4).

Example 10.1. Numerical integration of the classical harmonic oscillator
The classical equation for a mass and a spring is of the form
X(t) = —aw’x(t) (10.6)

where @ = /K/m. For any numerical problem, we must specialize to definite values, for
both the physical parameters of the problem, and for the initial conditions; as an example, we
choose

w=2, x(0)=1, and v(0)=x(0)=0 (10.7)

2 Much more powerful techniques, such as the Runge-Kutta method, are discussed in all textbooks
dealing with numerical methods.
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(Continued)
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Figure 10.1. The exact (solid) and numerical (dashed) solutions of the harmonic oscillator differential
equation are shown in (a). The differences between the numerical and exact solutions versus time for

two different step sizes, 8, are plotted in (b).

which has the exact solution x(t) = cos(2xt). In Fig. 10.1(a), we show the result of a
numerical solution of Egn. (10.6) (dashed curve), using Eqn. (10.4), to be compared to the
exact solution (solid curve). In Fig. 10.1(b) the difference between the numerical and exact
solutions, A(t), is seen to increase with ¢, but it is also smaller for smaller step sizes, 8, as

expected.

The same strategy can be used to solve the Schrodinger by approximating

Eqn. (10.2) as
V(x4 28) ~ 2¢ (x + 8) — Y (x) + 8° [zh—T(V(x) — E)i| ¥ (x) (10.8)

and using
¥(0) and ¥ (8) & ¥ (0) + ¢'(0)8 (10.9)
In this sense, Eqn. (10.2) is just as deterministic as Newton’s laws; the chief
differences are:
® The choice of x = 0 as the “initial” value is arbitrary.
® The differential equation can (and should) be integrated “to the left” as well
to obtain ¥ (x) for x < 0.
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® Most importantly, the Schrodinger equation can be integrated (solved) for any
value of the energy eigenvalue, E; the solutions so obtained, however, will not
necessarily be physically acceptable, that is, square-integrable.

To illustrate the usefulness of this approach to the isolation of energy eigen-
values and their corresponding eigenfunctions, we restrict ourselves to the special
case of a symmetric potential for reasons that will become clear. In that case, we
know that the solutions will also be eigenfunctions of parity and hence satisfy

even solutions: ¥ (0) = arbitrary and ¥’(0) =0 (10.10)
and
odd solutions: ¥(0) =0 and v'(0) = arbitrary (10.11)

The arbitrariness in ¥ (0) or ¥/(0) present at this point is eventually removed
when the wavefunction is properly normalized, but that is separate from the
solution of the Schrodinger equation itself. The overall normalization does not
affect the shape of the solution.

We now focus on the behavior of the wavefunction at large |x| for various
values of E. For the even case, for example, we can start at x = 0 with an
arbitrary value of ¥ (0), use the oddness of ¥/'(x) to determine v (§) = ¥ (0),
and then use Eqn. (10.8) to numerically integrate to arbitrarily large values of
x = né; we find the generic behavior shown in Fig. 10.2(a). If we call the lowest

even energy eigenvalue E1(+), then for values of E < E1(+)

, the solutions diverge
as ¥ (x) - 400 as x - +00. When E > Ef+), the solutions are still poorly
behaved at infinity, but now diverge with the opposite sign. Clearly, the energy
of the physically acceptable square-integrable ground state solution lies between
E, and Ep; this behavior is familiar from our study of the harmonic oscillator

and Fig. 9.3.

E.<EM o ESD < E,

Ground Next even
Figure 10.2. Numerical solutions of the state state
Schrédinger equation for a symmetric potential. The
energy parameters £5 < E1(+) < Ey, bracket the ‘ ‘ V_\
. (+)
true ground state energy; Ec < B <Ey ) )
bracket the first-excited even state. Bl sk Ec<E
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Once such a pair of energy values which brackets the “acceptable” ground
state solution is found, one can determine E1(+) with increasing precision by
a systematic exploration in the interval (E,, Ep), finding values of E, which
bracket the “true value” with decreasing error; the resulting accuracy of the
estimated value of Ej, however, will still depend on the integration method
used (Q10.2). As the energy parameter E is increased further, additional changes
in sign of the wavefunction at infinity are encountered (Fig. 10.1(b)), and the
energy spectrum can be systematically mapped out by finding pairs of energy
values which bracket a “sign change.”

Example 10.2. Energy eigenvalues for the harmonic oscillator

The numerical solution of the Schrédinger equation for the harmonic oscillator potential is
easy to implement using Eqn. (10.8) provided the problem is put into dimensionless form as
in Section 9.2.1, namely

d?y(y)
dy?

S % (10.12)

where the dimensionless eigenvalues are €5, = 2E,/hw = (2n + 1). The even states have

e€n = 1,59, ... and so forth. Values of £,, Ep, which bracket the ground state (E1(+)) and

first even excited state (E§+)) energies for several values of § are given by

5 Ea < ESY < E Eo < ESY < B
0.1 (1.191,1.192) (5.510, 5.511)
0.01 (1.0171,1.0172) (5.0431,5.0432)

0.001 (1.00169, 1.00170) (5.00423,5.00424)

so that the effect of decreasing the step size on the reliability of the results is clear.
It is useful to keep in mind that before applying any numerical technique to a new problem,
it is best to “test” it on a well-understood example if at all possible.

Once an approximate energy eigenvalue is found, the wavefunction for each
energy eigenvalue is obtained from the numerical integration as the collection
of points ¥ (x = nd), and can be fit to a smooth function using interpolation
techniques if desired; in any case, it can be normalized and used to extract further
information about the quantum system. The odd states are found in a similar
way (Q10.4) by making use of Eqn. (10.11).
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10.2 The Variational or Rayleigh-Ritz Method

Many branches of physics can be formulated in terms of a simple minimum
principle using the methods of the calculus of variations. Examples include min-
imum surface problems (bubble problems and the like), Fermat’s formulation of
geometrical optics using a principle of least time and, perhaps most importantly,
the principle of least action approach to classical mechanics.

In each case, the object of study is a functional, so-called because it takes as its
argument a function and returns a number as its output. The classical action in
mechanics, S[x(#)], is just such an example; it takes any possible classical path,
x(1), and returns the numerical value

1
S[x(H)] = / ' dt <%m3&2(t) — V(x(t))) (10.13)
73

and the trajectory realized in nature is the unique path which minimizes
Eqn. (10.13).

It is perhaps then not surprising that quantum mechanics can also be for-
mulated in such a manner. We will first discuss just such an approach and then
discuss how it can be applied as a calculational tool to approximate energy
eigenvalues and wavefunctions.

Consider a Hamiltonian, F, defining the bound state spectra of some system.
We assume that it will have a discrete spectrum of bound state energies, Ej,
with corresponding, already normalized wavefunctions 1, (x). We can define an
energy functional for any trial wavefunction, ¥ (x), via

Ely] = (YlHIY) = (@I TIY) + (W1V @) 1p)

+00 R
:/ dx Y (x) H  (x)

1 too * ") +00 ,
“om ) o dxyT(x)p Wx)+/_oo dx V(x) ¥ (x)] (10.14)

This is defined whether ¥ (x) is an eigenfunction or not. It is often conveni-
ent to use the “alternative” form of the average value of kinetic energy (as in
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Eqn. (4.65)), that is,

A A h? +00 d
WITIl/f):(T):_/ dx‘ ¥

2m J_so dx

2

(10.15)

If for some reason the trial wavefunction  is not already normalized, we can
simply write

A

E[y] = WiH) (10.16)

(Ulr)
It is easy to see that this functional simply returns an energy eigenvalue when its
argument is a normalized eigenstate, since

+o00

o0 A
Ely] = / e () F g () = / dx Y (%) By Yra() = En (10.17)

—00 —00

For a general wavefunction, ¥ (x), we assume we can use the expansion theorem

and write ¥ (x) = ZZ":O an ¥, (x) and we find that

E[y] = (y|H|Y) asan (W H| W)

wr
WK

0

3
Il
)

m

vr
WK

*
a,,anEndum
0

3
Il
(=)
3
Il

|an|*E, (10.18)

M

3
Il
)

This derivation is similar to that of Section 6.4 for the average value of the
energy operator, E, in a general state, but the quantity that appears in the energy
functional here is the expectation value of the appropriate Hamiltonian for the
problem, which in general acts only on spatial degrees of freedom.

We assume that the energy eigenvalues are ordered, thatis,- - - > E, > E; > E
so that

o o.¢]
Ely]=) laslEn > ) las’Ey=Ey or E[y]> E (10.19)
n=0 n=0

because the expansion coefficients, when squared, sum to unity, since ¥ (x) is
assumed normalized. The lower bound is only “saturated” when ¥ (x) = v (x)
in which case a, = 6,0 and only the ground state energy term contributes.
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This is then the desired minimum principle, namely that:

® The energy functional, E[/], defined via Eqn. (10.14), always gives an energy
at least as large as the true ground state energy, that is, E[y] > E for all ¢.

To use this property as a calculational tool, we first note that if the wavefunction
used in the functional has an arbitrary parameter, for example, ¥ (x) = ¥ (x; a),
then the energy functional yields a function of one variable, namely

E[Y(x;a)] = E(a) (10.20)

An example of this would be the family of Gaussian variational wavefunctions,
¥ (x; a) = exp(—x%/2a?)/\/a/7, with a variable width.

Because the functional satisfies the minimum principle for each value of the
parameter, one can minimize the variational function E(a) and be assured that
the resulting minimum is still greater than the true ground state energy. Thus,
one can find the trial wavefunction, in the one parameter family considered,
which has the lowest energy. The minimizing wavefunction accomplishes this by
somehow “adjusting” to as similar as possible to the exact ground state solution.
This approach is similar in spirit to the “zero-point energy” argument of P1.14,
but is more powerful because:

® The guaranteed lower bound of Eqn. (10.19) provides a method of assessing
the reliability of the approximations.

— Of two variational estimates of the ground state energy, the lower one is
always closer to the true value.

In this context, “lower is always better” as we know that we can never
“undershoot” Ey on the negative side.

e Italso provides an approximation to the wavefunction as well as to the energy;
one can then use it to estimate expectation values and to find the approximate
momentum-space wavefunction. As an aside, because the argument leading
to Eqn. (10.18) is not specific to a position-space representation, one can also
use the variational method with momentum-space wavefunctions (P10.5).

For illustrative purposes, we will sometimes calculate |ap|? as a measure of
the “overlap” of the trial solution with the exact ground state wavefunction (if
known); it can be used as a quantitative measure of the similarity of any two
functions. We reiterate, however, that the trial wavefunction of a given class
which minimizes the energy is not necessarily the one which has the largest
overlap with the true ground state wavefunction, that is, it does not necessarily
maximize |ag|? (see, for example, P10.9).
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Example 10.3. Variational estimate for the harmonic oscillator |

As an example of the method, consider approximating the ground state energy and
eigenfunction of the simple harmonic oscillator by using the family of trial wavefunctions
W (x; o) = exp(—x2/2a?)/+/a/m mentioned above. Because the true ground state solu-
tion is also Gaussian, we expect to find the exact answer. We have to evaluate Eqgn. (10.14)
with V (x) = mw?x%/2 and we find that

. 5 AL
Minimizing this expression we find
dE(@  h* 1,
da ~ ama T2 0 (10.22)

which yields apin = ~/h/mMw and E (apin) = hw/2 as expected.

Example 10.4. Variational estimate for the harmonic oscillator I

To illustrate the principle in the case where the form of the ground state wavefunction is
not known, consider as a trial wavefunction for the simple harmonic oscillator (SHO) the
wavefunction

for |x] > a

10.23
N@2—x%?  for|x| <a ( )

Y(x;a) =

where the variational parameter is again a and the normalization constant is given by N =
v/315/256a°. A similar calculation to the one above shows (P10.3) that the energy function is

38 me’al

+ —. (10.24)

EW]ZE(a)ZW 7

This has a minimum value at a2, = +/33%/muw yielding

E(amin) = hTa)\/g = (0.522) how (10.25)

which is only 4.4% greater than the exact value.

The trial wavefunctions, along with their corresponding energies for several choices
of a are shown in Fig. 10.3 along with the value of |ag|?. We plot in Fig. 10.4 the
fractional difference between the variational energy and the exact ground state value
(E(var) — E(exact))/E(exact) as well as the probability that the variational wavefunction
is not in the ground state, that is, 1 — |ag|?, versus the variational parameter a. We note
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(Continued)

Figure 10.3. (3a) The variational energy, £ (a) versus a, showing the value of a,,;,, which minimizes the
energy functional (vertical dashed line) and two other values (dotted and dot-dash). (b) The corresponding
variational wavefunctions (same dashing) along with the exact ground state (solid curve). Values of the
overlap, given by |ag|2, for each variational waveform are also shown.

Figure 10.4. The fractional energy error (solid
curve) and the degree of “non-overlap” (dashed
curve) versus variational parameter a for
Example 10.4. This illustrates that first- order
changes in the wavefunction give second-order
changes in the energy functional.

“mom 1= lagf
— (B@)Eo)/Eo

[
6 8 10

that variations in the parameter a seem to have a much larger effect on the energy functional
than on the wavefunction itself.

To formalize this last observation further, let us imagine making small vari-
ations around the exact ground state wavefunction, ¥(x), parameterized by
Yo(x) — Yo(x) + Ap(x) so that ¢ (x) represents a first-order change in the
wavefunction; we use A to keep track of the expansion.
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Consider then the energy functional (where we use Eqn. (10.16) since the new
wavefunction is not properly normalized) and we find

(Yo + oI H|Wo + 1)
(Vo + Ao + Ap)

_ Eo(Wolvo) + Aol HIg) + (1 1Y) + 17(9|H|¢)
(ol o) + A{Wolg) + A{lo) +22(gl¢)

_E 1+ A((Yolg) + (@1¥0) + A2 ($IHIp)/Eo
1+ 2((Yol@) + (@lvo) + A%(l¢)

= E (1+00%)) (10.26)

E[yo + 2] =

since the zeroth-order and O()) terms are identical. This shows that, in general,

 First-order changes (O(X)) in the trial wavefunction, away from the true ground
state solution, give rise to second-order changes (O(A?)) in the corresponding
energy functional.

This fact is reflected in Fig. 10.4 as the fractional change in energy does seems
to vary quadratically with deviations away from the minimum value of the
variational parameter, while the deviation in the wavefunction itself (as measured
by 1 — |ap|?) seems to vary much more weakly on a. This is a typical feature of
problems involving the calculus of variations.

If the variational method is to be useful as an approximation method there
should be some possibility of further refinement of the estimation of the ground
state energy. This can be accomplished by simply taking as a trial wavefunction
one with a larger number of variational parameters. For example, one might
consider

U ab) = e 729 (1 4 bx?) (10.27)

which has an additional parameter, b, but which reduces to the original choice
in some limit (namely, b = 0). In this case, we are guaranteed to have

E(amin) = E[Y¥ (x5 amin)] > E(amin> bmin) = E[¥ (X5 min> bmin)] > Eo
(10.28)

because any variational energy must be larger than the true ground state and
because the minimum with nonzero values of b will be at least as small as for
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b = 0. The new minimum value will be determined by
d0E(a,b)  0E(a,b)
= = O
da ab
By adding more and more variational parameters, we can allow the trial
wavefunction to conform as closely as possible to the exact ground state.

(10.29)

Example 10.5. Variational estimate for the harmonic oscillator Il

We illustrate the improvement possible with multi-parameter trial wavefunctions by using the
(unnormalized) function
0 for |x| > a
vxaby=1, ,, ) A (10.30)
(@ —x9)*(1 + bx*) for x| < a
as a trial solution for the ground state of the SHO. We plot in Fig. 10.5 a contour plot of £(a, b)
versus a, b; the small star on the dotted line indicates the minimum for the b = 0 case, while
the small + indicates the new global minimum which does indeed have somewhat lower
energy. The values of the exact, one-parameter, and two-parameter fits for various quantities
are shown below:

quantity exact | w(x;a) | ¥(x;a,b)
Eo/(hw/2) 1 1.0445 1.0198

ENE 1 ] 09951 | 0.9977
(x%/p? | 1/2 | 05222 | 0.5099
xY)/p* | 3/4 | 06923 | 0.6884 (10.31)

The energy is lower and the overall fit is better (|ag|? is closer to 1) than in the one-parameter
case; it is clear, however, that various higher moments (i.e. average values of x%") are never
fit very well with this particular form which is not surprising given its lack of a realistic ‘tail’
for large |x|.

a

b=0 [/K\\

+

o

One-parameter Two-parameter
minimum minimum

Figure 10.5. Contour plot of two-parameter variational energy £ (a, b) versus (a, b); the dotted line
corresponds to the one-parameter family, £(a) versus a. The minimum energy for the two-parameter
family of trial wavefunctions is lower than for the one-parameter set.
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The process can be continued with as many variational parameters as one can
handle, presumably improving the agreement with experiment, if not providing
much more useful insight into the basic physics.” One of the most famous tour
de force calculations of this type are variational calculations of the ground state
of the helium atom which use trial wavefunctions with hundreds of parameters.”

In some cases, it is also possible to extend the variational method to give
rigorous lower bounds for excited states as well as the ground state. Suppose,
for example, that one could choose a trial wavefunction which was somehow
known to be orthogonal to the true ground state, that is, (¥ |1p) = 0; this would
guarantee that ap = 0 in the expansion theorem. The standard argument would
then give

o0 o0 o0
Y= awn = EYl=) |a’E, =) |a, B =F  (10.32)
n=1 n=1 n=1

Thus, all the trial wavefunctions in this restricted class would have energies at
least as great as the first excited state.

Various symmetries of the problem can often be used to restrict the form
of the trial wavefunction so as to satisfy this constraint. For example, in a one-
dimensional problem with a symmetric potential, V(x) = V(—x), we know that
the ground state will be an even function; therefore any odd trial wavefunction
will have ap = 0 and hence satisfy Eqn. (10.32) and give a good estimate of
the first excited state energy. Less prosaically, in three-dimensional problems
with spherical symmetry, the ground state will have no angular momentum (i.e.
I = 0) and excited states with higher values of / are automatically orthogonal to
the ground state.

10.3 The WKB method

The variational method is best suited to evaluating the properties of the ground
state solution, that is, for n = 0. It is useful to have a complementary approach,
which is more appropriate for the quasi-classical regime where n > 1; we have
argued that this limit is also attained, in some sense, when i — 0. Such an

3 It is said that, when confronted with the result of an impressive numerical calculation, Eugene
Wigner said “It is nice to know that the computer understands the problem. But I would like to understand
it t00.”; See Nussenzveig (1992).

4 See Bethe and Jackiw (1968) or Park (1992) for discussions.
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Figure 10.6. Generic potential with classical turning
points for the WKB approximation.

approach was first discussed in the context of quantum mechanics by Wentzel,
Kramers, and Brillouin® and is therefore often called the WKB method.

10.3.1 WKB Wavefunctions
Motivated by the simple form for a free-particle de Broglie wave, that is,
Y(x) = AT = A = A ix/h (10.33)
we attempt a solution of the time-independent Schrodinger equation of the form
¥ (x) = A(x) eF /M (10.34)

where A(x) and F(x) are an amplitude and phase term, respectively. We retain
the explicit factor of & and will use it to parameterize the smallness of various
terms. We also assume, for the moment, that we are in the classically allowed
region so that E > V(x), as in Fig. 10.6, so thata < x < b.

With the ansatz’ in Eqn. (10.34), the Schrédinger equation becomes

1 [dF(x)\*
0= A(x) ﬁ( T ) — (E—=V(x))

- 2
3 h(L) |:2dA(x) dF(x) +A(x)d F(x)]

2m dx  dx dx?
1 d*Ax
2 [% dx(2 )} (10.35)

At this point, we can either consider / as an arbitrary small parameter and set
the first two terms (of order O(h°) and O(h'), respectively) separately to zero
or else we can require that both the real and imaginary parts of Eqn. (10.35)
are satisfied; in either case, we neglect the last term (being of order O(h?)) and
discuss the validity of this approximation below.

> It was also studied independently by Jeffries; the name WKBJ approximation is therefore sometimes
used.

6 The German term ansatz, often defined as formulation or setup, is often taken to mean something
like “assumed form of the solution” in the context of a physics or math problem.
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The O(R°) equation (or real part) is easily written as

dl;ix) — +/2m(E — V(%)) = +p(x) (10.36)

or
X
F(x) = i/ p(x) dx (10.37)
where p(x) is simply the classical momentum. The O(A!) (or imaginary part)
then gives
dA X dp(x
2 py A P =g (10.38)

which can be multiplied on both sides by A(x) to obtain

dA d
<2A(x) o )>p( ) + [A)]? @ (xx) ([A(x)] p(x) =0  (10.39)
or
[A(0)]p(x) = C (10.40)

where C is a constant. The two linearly independent solutions (corresponding
to right (4) and left-moving (—) waves) are then given by

VYi(x) = G X [ pdx/h o o eFi[ ke dx (10.41)

Vp(x) Vv(x)

where p(x) = hk(x) defines the “local wavenumber” k(x), and v(x) is the local
speed. This remarkably simple solution has several obvious features:

* The corresponding probability density, |1/ (x)|?, satisfies

WP o —— o —— (10.42)

P V()
which is exactly of the form of the classical probability distribution first dis-
cussed in Section 5.1. This implies (recall Fig. 9.7) that the wavefunctions for
the low-lying energy levels will be poorly described by the WKB solutions; the
quantum wavefunctions for large quantum numbers will, however, approach
these semiclassical solutions when suitably locally averaged.

® The phase of the wavefunction can be written as

/x k(x) dx = fx dg (x) (10.43)
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where

27 do dx
db(x) = k() dx = = 4 @2 10.44
¢ (x) (x) dx ) x or - =7 ) ( )
Thus, as the particle moves a distance dx, or a fraction of a “local” wavelength,
df = dx/A(x), through the potential, it acquires a phase d¢ = 27 df .

¢ The solutions can be easily extended to the case where E < V(x), that is, in
the classically disallowed regions by appropriate changes in sign giving

C X
Uy = p?x) exp <i\/2m/h2f VV(x) — de) (10.45)

which are the exponentially suppressed solutions discussed in Section 8.2.2;
these give rise to quantum tunneling effects. The WKB wavefunction thus has
features of both the classical probability distribution, arising from averaging
over the trajectory, and the quantum wavefunction.

With this form of the solution, we can examine the effect of neglecting the
O(Rh?*) term in Eqn. (10.35). Taking the ratio of the last term to the first we find
something of the order

h2 (A”(@) o1 1 (A(x))z (10.46)
Fa2 \am ) S pe0? 2 X k@ =\ 2ni '

where [ is a typical distance scale over which E — V(x) changes. Thus, if the
“local de Broglie wavelength,” A (x), is much shorter than the distance scale over
which the potential changes, the semiclassical approximation is a good one. This
is obviously not the case near the classical turning points where the explicit
1/,/p(x) factors in Eqn. (10.41) actually diverge, indicating that the solution is
poorly behaved there.

To obtain a complete description of the wavefunction, the solutions inside
and outside the well must be smoothly matched onto each other. The formalism
for doing this is not beyond the level of this text, but we choose to only quote the
results.” For example, we can take linear combinations of the complex exponen-
tial solutions near the left turning point to write

Yr(x) =

Ar x
cos k(x)dx — Cym (10.47)
VP(x) (fa )

7 See, for example, Park (1992); I also like the discussion in Migdal and Krainov (1969).
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For an infinite wall type boundary condition, it is easy to see that C;, = 1/2 since
we require that

Yr(a) < cos(—Crmr) =0 (10.48)

For a smoother potential, one for which one can approximate V (x) near x = a
by a linear function,’ the appropriate value of Cy turns out to be 1/4. This can
be interpreted as saying that the quantum wavefunction penetrates 7 /4 = 27 /8
or ~1/8 of a local wavelength into the classically disallowed region.

10.3.2 WKB Quantized Energy Levels

One of the most useful results arising from the WKB method is a semiclas-
sical estimate for the quantized energy levels in a potential. Matching the WKB
wavefunctions at each of the two classical turning points yields two, presumably
equivalent descriptions of v (x) inside the well, namely

A X
Yr(x) = L cos (/ k(x) dx — CL7T> (10.49)
,/p(x) a
and
AR b
Yr(x) = cos / k(x) dx — Crm (10.50)
Vv p(x) x
If these two solutions are to agree, we must clearly have |Ar| = |Ag|; then

comparing the arguments of the cosines we find that

b
/ k(x)dx — (Cp + Cr)mr =nwr forn=0,1,2.... (10.51)
a

This implies that

b
fk(x)dx:(n+CL+CR)n forn=0,1,2.... (10.52)
a

or

b
f V2m(E— V(x)dx=(n+ CL+ Cr)h (10.53)

Recalling that k(x) = 27 /A(x), we see that Eqn. (10.52) is simply a more soph-
isticated version of “fitting an integral number of de Broglie half-wavelengths in
a box” and generalizes the Bohr-Sommerfeld quantization condition. The value
of n can be seen to count the number of nodes in the quantum wavefunction.

8 In this case, the solution which interpolates between the inside and outside can be described by an
Airy function (See Appendix E.2).
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Example 10.6. Infinite well and harmonic oscillator

For the standard infinite well, we have C; = Cg = 1/2 (infinite wall boundary conditions)
and k(x) = +/2mE /R?, so that the WKB quantization condition gives

a
/ V2mEdx = (n+ D (10.54)
0

or
h2(n + 1)m?
En=¥ forn=0,1,2... (10.55)
2ma?
which is the exact answer.
More interestingly, the WKB quantization also gives the correct answer for the harmonic
oscillator. In that case we have

p(x) = \/Zm(E —mwx?/2) or k(x) = m—;)m (10.56)
where £ = mszz/Z. Since C; = Cg = 1/4 in this case (noninfinite walls) we find
:Ak(x)dx: %/:Amcjx=(n+1/2)n (10.57)
or
En=(n+1/Dho. (10.58)

Once again, the harmonic oscillator problem can be solved exactly with seemingly every
method brought to bear.

We have noted that we have dropped terms of order O(h?) or 1/(Ik)?; since
typically we find k,, o n/1, we expect the WKB estimates of the energies to have
errors of order O(1/n?). This is consistent with our keeping the Cy, Cg terms in
Eqn. (10.52), which, in this language, are of order O(1/n).

10.4 Matrix Methods

The variational method relies on the expansion of a general quantum state in
terms of energy eigenstates. In this section, we describe a matrix approach, which
also uses the algebraic structure inherent in the Schrédinger equation, but in a
rather different way.

Suppose that we have solved for the energy eigenstates of some Hamiltonian
operator, F1. We call them ¥, (x) where we let the label n start with n = 1 for
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notational convenience; with this labeling, the ground state is 11 (x), the first
excited state ¥, (x), and so on.

We know that a general wavefunction can be expanded in such eigenstates
via ¥ (x) = 22021 an ¥, (x) and from Section 6.4 we know that the information
content in ¥ (x) and the expansion coefficients, {a,}, is the same. We can write
the collected {a,} as an (infinite-dimensional) vector a

ai
a

Y(x) = {a) = |, | &= (10.59)

where we demand that }_°° |a,|?> = 1 for proper normalization. In this language,
individual energy eigenstates are written as

1

0
Vi(x) &= {m=Las1 =0 || & & (10.60)

and so forth. The set of vectors, e;, corresponding to eigenfunctions are said
to form a basis for the infinite-dimensional vector space; they are like the unit
vectors of a more physical vector space. We then havea = ) _; aje;.

The Schrodinger equation Hy = Ev can be written in the form

H (Z amz/fm<x>> =E (Z amwmoc)) (10.61)

so that if we multiply both sides by 1/ (x) (on the left, as usual) and integrate we
find that

Z(lﬂnu’_\”l%ﬂ)am = EZ(Wnlwmﬂlm = EZSn,mam = Ea, (10.62)

m

We then choose to identify
(Wl H1Ym) = Hum (10.63)

with the n, mth element of a matrix H in which case the Schrodinger equation
takes the form of a matrix eigenvalue problem (see Appendix F.1), namely

Hii Hi Hiz -\ [ a

Hyy Hx Hx | | & v a
Hyi Hs; Hsz -l las| ~ % |as (10.64)
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or
Ha = Ea (10.65)

for short. The H,,;,, are called the matrix elements of the Hamiltonian and are
said to form a matrix representation of the operator H.

We note that H can always be evaluated using a particular set of basis vectors,
namely the eigenfunctions of H itself. In this particular case, the matrix takes an
especially simple form namely, because

Hum = (Wnl HIVm) = (Wl Em|¥m) = ESum (10.66)

so that the matrix H is diagonal. Thus, Eqn. (10.64) takes the form

E1 0 0 cee a ay
0 Ez 0 cee ap a
0 0 E3 . as =E as (1067)

The only way Eqn. (10.67) can be satisfied is if

E,—E 0 0

0 E,—E 0

where 1 is the unit matrix. This is equivalent to
o0

(Bt —E)(B, — E)(Es —E)--- = [ [(Bs = B) = 0 (10.69)
n=1

so that the energy eigenvalues are simply the E,;, as we knew; the corresponding
eigenvectors of the matrix equation are then simply the e; (Why?).
We then say that:

¢ The matrix representation of a Hamiltonian, when evaluated using its eigen-
functions as a basis, is diagonal and the diagonal entries are just its energy
eigenvalues.

Matrix representations of other operators can also be generated. For example,
the position and momentum operators, x and p, have matrix counterparts
denoted by x and p and are defined via

Xom = (YnlX|¥m) and  Pum = (Ynlpl¥m) (10.70)
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Such matrix representations satisfy the usual rules of matrix algebra, namely

2
O =Y Xk Xk (10.71)
k
or more explicitly
X2 X% e X1 Xz e X1 X2
X221 X%n | =[x x| X X e (10.72)

The matrix representation for the kinetic energy operator is, for example,
T =p?/2mor

1
Tnm = % Xk: Pnk Pkm (10-73)

Example 10.7. Matrix representation of the harmonic oscillator

We can make use of the results of Chapter 9 to evaluate many of these matrix representations
for the specific case of the harmonic oscillator. Using the standard energy eigenvalues we find
that

170 0

ho |0 3 0
H=— 10.74
> 1o 0 s (10.74)

Using the results in Section 9.2.1, we then find that
h
Xnm = _— (8n’m7'|«/m + 5n1m+1 v m + 1) (10.75)
2mw

and we also quote the result

h
W2y = (5n,m+2\/(m F DM +2) +@n+ Dépm

= 2mw
+8pm-2/Mm=1)) (10.76)
We can check that the matrix equation

inm = ank Xkm (10.77)
k
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(Continued)
holds explicitly by comparing
1 0 V12 0
0 3 0 V23
v 2o 5 0 (10.78)
mo | o 23 0 7.
0 V1 0 0 0 J1 0 0
Voo V2 o0 Voo V2o
1o v2 o 3 1o v2 oo 3
mof o 0 3 0 mo o 0 V3 0
Similar results hold for p and p2 and one can show (P10.16) that
1 ma?
Hom = mp%m + Tx,%m (10.79)
holds as a matrix equation.

The average or expectation value of an operator in any state can also be written
in this language. For example, we have

(x) = (Y lxly) = <§:anwn }:amwm>

= a@ (Yulx| Ym) am

= @ Xum (10.80)
with similar expressions for other operators. We can also easily include the
time-dependence for any state via

—iEit/h
iEyt/h

a) e
a(t) Z ajej e Eit/h e— | a2 €™

i

(10.81)



10.4 MATRIX METHODS 283

The expectation value of the energy operator can be checked to satisfy

(E>t = Z |an|2En (10.82)

independent of time because the energy matrix is diagonal; other average
values have less trivial time-dependence (P10.17) in agreement with earlier
examples.

Thus far we have only considered the case in which we already know the
energy eigenfunctions and eigenvalues of the Hamiltonian operator H. In this
instance, the discussion above is interesting, but provides little new information;
we have just provided yet another representation of the solution space. If, on
the other hand, we did not know the stationary states we could still proceed as
follows:

1. Pick a convenient set of energy eigenfunctions to some problem, called ¢, (x);
we immediately know that they form a complete set so that the expansion
theorem will work.

2. Evaluate the Hamiltonian matrix using this set of basis functions, that is
calculate

~ 1 N
Hum = (Sl HIEm) = ﬁ<;n|p2|;m> + (Lal V() [Em) (10.83)

In this case, H will no longer be diagonal.

3. The Schrodinger equation in matrix form is still an eigenvalue problem of
the form in Eqn. (10.64); its eigenvalues are determined by the condition that
det(H—E1) =0.

4. If the eigenvalues are labeled via E; and the corresponding eigenvectors by
a)| the position-space wavefunctions are given by ¥;(x) = ) 7° a,(f) Cn(x).

Since finding the exact eigenvalues and eigenvectors of an infinite-dimensional
matrix is only possible in very special cases, to use this method as a real cal-
culational tool we most often restrict ourselves to a truncated version of the
problem. More specifically, we try to diagonalize the N x N submatrix in the
upper left-hand corner for some finite value of N. As N is made larger, we expect
to obtain an increasingly good representation of the exact result. Because there
exist powerful techniques for diagonalizing large matrices, especially if they hap-
pen to have large numbers of vanishing components (so-called sparse matrices),
this technique is well suited for numerical computations.
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Example 10.8. Infinite well plus §-function I: Matrix methods

As an example of this method, consider the potential discussed in P8.8, namely, a symmetric
infinite well defined via
0 for x| < a

V(x) = (10.84)
400 for |x| > a

plus a §-function potential spike at the origin,
Vg(x) = 98(x) (10.85)

This problem can be solved exactly and hence is useful as a testing ground for various
approximation techniques. (For a thorough discussion, see Lapidus (1987).)

We know that the odd states are unaffected by Vi (x) since they all possess nodes at
x = 0. We thus only consider the even states only for which the energy eigenvalue condition
can be written as

» = —2y cot(y) (10.86)
where
L (10.87)
TR " 2ma? '

We naturally choose as a set of basis functions the even solutions of the symmetric well
without the 8-function potential, that is,

! (n—=1/)nrx
YAl e — 10.
Yn(X) 7 Cos ( 3 ) (10.88)
Evaluating the Hamiltonian matrix with this basis set, we find
7127'r2/8ma2 +g/a g/a g/a
9/2 9htr? (8mat +g/a g/a
H= g/a g/a 25h2n2/8ma2 +g/a
(10.89)
or
1 + € € €
hznz € 9+¢€ € ..
= <8ma2> € € 254+¢€ .- (10.90)

where € = 4x /2. Since we rely on matrix diagonalization methods ("“canned” packages
exist in many programming languages which will find the eigenvalues and eigenvectors of
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(Continued)
matrices), we must choose some specific numerical values. For A = 5, the exact even energy
eigenvalues (in terms of h2r2/8ma?) obtained from Eqn. (10.86) are

2.2969 (1) 10.8048 (9) 26.9303 (25) 50.9743 (49) (10.91)

where the terms in parentheses are the values without the §-function term.
Using an available package (in this case Mathematicag), we find the eigenvalues for
increasingly large N x N truncated basis sets:

1% 1 3.02642 = —— =
2x2 2.54241  11.5104 —— =
3x3 244832 111412 27.4898 ——
4 x4 240672 11.0335 27.2396 51.4298

. . : ; : (10.92)
10 x 10 2.33857 10.8861 27.0277 51.07991

50 x 50 2.30506 10.8204 26.9487  50.9937

It does seem that the eigenvalues of the truncated set approach the exact values at N is
increased. Such programs also give the eigenvectors as well; we display the components
corresponding to the ground state solution below:

1% 1 )
2 %2 (0.97264, —0.23232)

3x3 (0.97451, —0.21543, —0.06258)

4x 4 (0.97575,—0.20818, —0.06075, —0.02946) (10.93)

(x) versus. x

Exact
--------------- N=1
--------- N=4
Figure 10.7. The exact (solid) and two
approximate solutions for Example 10.8. -a +a

Using these values, we illustrate in Fig. 10.7 the approximations to the ground state wave-
function for the first four approximations, comparing them to the exact solution, with the cusp
expected from the singular §-function; the convergence to the exact solution is not particularly
rapid.
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10.5 Perturbation Theory

We now turn to what is undoubtedly the most widely used approximation
method we will discuss, perturbation theory. We are certainly used to the notion
of the systematic expansion of some quantity in terms of a small parameter; a
familiar example is the series expansion of a function,

f(x) =£(0)+f'(0)x + %f”(O)szr--- (10.94)

Such an expansion may well formally converge for all values of x (such as for the
series for exp(x)), but is often most useful as a calculational tool when |x| < 1.

Perturbation theory extends this notion to quantum mechanics in cases where
the system under study can be described by an “unperturbed” Hamiltonian, Hy,
for which the energy eigenstates can be obtained exactly, that is,

Hyy¥ = EDy©® (10.95)

We began this chapter with the observation that many important systems such as
the hydrogen atom or the harmonic oscillator can actually be solved exactly. One
can then imagine “turning on” an additional perturbing interaction, H', which
will change the spectrum and wavefunctions; examples include the addition of
an electric field acting on a charged particle (via a term H' = V(x) = —gEx in
one dimension) or a magnetic field acting on a magnetic moment (H = —ju-B).
(While we will most often consider the case where the perturbation is a (small)
additional potential energy function, other cases are possible (P10.20).) We can
then write

H=Hy+ \H (10.96)

where we introduce a dimensionless parameter A (which can be set equal to unity
at the end of the calculation) to act as an expansion parameter. Our goal is then
to solve the Schrodinger equation for the complete system,

Ay, = Eyiy (10.97)

as a series in A.
We focus in the next two sections on time-independent problems, but briefly
discuss problems involving perturbations which evolve in time in Section 10.5.3.

10.5.1 Nondegenerate States

We will begin by making the assumption that the energy levels of the unperturbed
system are all distinct, that is, that there are no degeneracies where E,(lo) ~ El(o)
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for some pair [, n. Then, as we imagine A — 0, we can unambiguously write

U 220 © and  E, 22 EO (10.98)

and make a unique identification of each perturbed state with its unperturbed
counterpart. Motivated by these assumptions, we first write

Ey=E® + 2BV + R2EP 4 ... (10.99)

as a series in A. Then, since the unperturbed eigenstates form a complete set, we
always have

Yu = Zan]w( "= any” + Za i (10.100)
j=0

where ), ’ denotes the infinite sum with the j = n term removed. The new
(perturbed) eigenstates can always be written as a linear combination of the old
(unperturbed) eigenstates.

The coefficients have slightly different expansions in A,

ann = a® 4 2a) 42202 4 ... (10.101)
aj=  hay +3%ay 4+ forj#n (10.102)

because Eqn. (10.98) implies that

lim a,j = 8, (10.103)

A—>0

We can constrain the expansion coefficients of Eqn. (10.100) further by noting
that the normalization condition

0
Z lagjl* =1 foralln (10.104)

implies that

/ 2
L= laml + Y layl? = lan/? +Z( W) = el + 062
j
(10.105)

so that

am ~1 to OO?) which implies that a(l) 0 (10.106)
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The Schrodinger equation can now be written (to O(A?)) in the form
A A /
<H0 + AH/) Va2 Y any® +
j
/
0
(EQ +2ED 4+ 22E? 4+ [ v, + A Z an ) + - (10.107)

We first multiply Eqn. (10.107) by ¥ s2)* on the left and integrate to obtain

/
< ;SO lﬁn—F)\Zaanj«))—i—--- >
j

(E(O) +AE(1) + )\ZE(Z) )<w(0) | v, + )”Z anjw(O) . >

(10.108)

Equating powers of A and making extensive use of the orthogonality of the
) = 8pj> We find

unperturbed wavefunctions, namely that (Y,

O : EY = (v | Holy ") (10.109)
o EVY = (wO1H |1y Oy =H (10.110)
OM?) :E? = Z a“) w<°>|H/|1p]?°) Z a(l)H/ (10.111)

These expressions all require the matrix elements of the perturbing Hamiltonian,
. . . ,
evaluated using the unperturbed eigenfunctions, H' .
The O(1%) term (E,SO)) simply reproduces the unperturbed energy spectrum.

The equation for E,(Zl) in Eqn. (10.110) is a very important result as it states that:

¢ The first-order shift in the energy of level n due to a (small) perturbation is

given by the diagonal matrix element of the perturbing Hamiltonian, H/,,,

evaluated with the unperturbed wavefunctions, that is,
1 0) [ £771/,(0
EV = (" 1H |y,0) = H,,, (10.112)
which we repeat because of its extreme importance.

Using Eqn. (10.112) we see that it can sometimes happen that the first-order
energy shift vanishes identically because of symmetry. For example, a charged
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particle in the infinite symmetric well subject to a weak electric field, given
by a potential of the form V(x) = — gEx, would have a first-order energy
shift given by

qE(u(+) |x|u(+)) for even states

ED —
! —qE(uy )leu( )) for odd states

(10.113)

which vanishes for all states. In such cases, the second-order term E,(f) is the
leading correction.
The form of Eqn. (10.111) also suggests the more general result:

® The kth order correction to the energy levels requires knowledge of the
(k — 1)th order wavefunctions

so that to determine E‘® we require the leading-order expansion coeffi-
@
nj
To obtain information on the expansion coefficients, we multiply

Eqn. (10.107) by (¢ ]-(0))* with j # n and integrate. The O(A°) terms are absent,
while the O(A!) terms require that

cients, a

0 0
o W) H
kK — 0 0 - 0 0
T EY -0 T BV -EY)

(10.114)

The first-order wavefunction thus receives contributions from every state for
which the off-diagonal matrix elements are nonvanishing, thatis, H’ , # 0. Com-
bining Eqns. (10.114) and (10.111), we find that the second-order corrections to
the energies are given by

(2) Z a(l) H;k
0) 0)
_ Z wk |H/|1ﬂ ) (w(0)|j_\1/|wlgo)>
E(O) _ E(O)) n

A H ) P
T E-E)

@ — Z’ |H;¢k|2
no 0 0
T (B —E”)

(10.115)
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In the last step, we have made use of the fact that A’ is Hermitian to write
H, = (H},)*; this form makes it clear that the second-order shift in energy is
manifestly real. This result has many interesting consequences:

® The second-order shift depends on the off-diagonal matrix elements, but
inversely weighted by the “distance in energy” to the state in question; thus, in
general, states nearby in energy have a larger effect.

¢ This form also implies that the spacing in energy levels must be larger than
the matrix elements of the perturbation for the expansion to be valid, that is,
we demand that

0
H, << |EQ — EY (10.116)

This shows that degenerate energy levels must clearly be handled in a different
way.

o States with energy below (above) a given level induce a second-order energy
shift which is positive (negative); this effect is often referred to as “level
repulsion”.

¢ In particular, the second-order shift in the ground state energy is clearly always
negative as all the other states lie above it. For many problems for which there
are large numbers of levels, one can argue heuristically that the second-order
shift for any fixed energy level will be negative due to the large number of
states above it; this can be motivated on more physical grounds’ and is often
observed.

The second-order expansion coefficients (the af;)) are too complicated to
reproduce here but, for reference, we state without proof that the result for the
third-order shift in energies is

=y

H HiH), " ZE:/ H 12
o 0 o 0,  nn 0 0

(10.117)
We see that the work required to continue the perturbation theory expansion
increases rapidly, so that often only the first- and second-order corrections are

calculated. We now turn to some examples.

9 See the nice discussion by Saxon (1968).
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Example 10.9. Harmonic oscillator with applied electric field

The problem of a charged oscillator in a constant electric field, described by the Hamiltonian

P
H:Ema)zxz—Fx (10.118)
(where F = qE) was investigated in P9.9 where it was shown that it could be solved exactly;
the resulting energy spectrum is

2

2ma?
Let us approach this problem by considering the electric field interaction to be a small perturb-
ation about the unperturbed oscillator, that is, A’ = —Fx; we can then use F as an expansion
coefficient to count powers in perturbation theory. We have E,(f)) = (n+ 1/2)haw, of course,
while the first-order correction vanishes (because of symmetry) since

En=(n+1/Dhw— (10.119)

E5Y = (Wl [n) = —GE (Wnlx|yrn) = 0 (10.120)
The second-order correction is given by
2 2
£D :FZZ "HYnlX 1Y) ZZ l{nlx|K)| (10.121)

P (E,(,O) (0)) (n— k)ﬁ

Using the results in Section 9.2.2, we know that

h
(ixtk) =\ -— (ﬁsk,M /N1 5k,,,+1) (10.122)
mw

Inserting this result into Eqn. (10.121), we find that

F2 [ h "Nk p_1 4+ (N + DSk pit)
@ _ k,n—1 k,n+1
En _ha)<2ma)>z (n—k)

P n, n+1
T 2me? \1 —1
/:2

= — 10.123
2Mmaw? ( )

which reproduces the exact answer. One would then expect that all of the higher-order
corrections to the energy would then vanish identically and one can confirm explicitly (P10.21)
that the third-order correction in Egn. (10.117) is indeed zero in this case. It is also an example
where the second-order corrections are, in fact, negative for all energy levels.

This does not imply, however, that the expansion coefficients have a similarly simple series
behavior. To see this, we can make use of the exact ground state solution to the complete
problem (see P9.9 again)

1 2,92
V(X F) = —— e~ X702 (10.124)
Ned
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(Continued)
where xg = F/mw? and p = /B/mew. The expansion coefficient ag is then given by

ag = /W(X;F — O] w(x; F)dx = e~0/%" — e=F'/F (10.125)
where Fy = 24/hma. Expanding ago in powers of F we find that
F21F
ap=1—— 4+ —— 4. 10.126
00 R7tim ( )

Thus, while the perturbation series for the energies terminates at second-order, the expansion
coefficients require the full series to converge to the exact answer.

Example 10.10. Infinite well plus §-function II: Perturbation theory

Consider the problem, discussed in P8.8, of the symmetric infinite square well potential plus
a 8-function potential at the origin; in this case, let the §-function constitute the perturbation
so that /' = g8(x).

For the odd case, the explicit application of the boundary conditions for the full problem
require that the uS;™ (x) vanish at the origin and gives the same energy eigenvalue condition
as for the infinite well alone. This can be confirmed to any order in perturbation theory since
all of the relevant matrix elements in Eqns (10.112), (10.115), and (10.117) vanish explicitly.
(See P10.22.)

For the even case, the exact eigenvalue condition was given by A = —2y cot(y) where
A =2mag/h? and E = h?y?/2ma?. Focusing only on the ground state, this eigenvalue
condition can be expanded to second order (see P10.23) to yield

A 22 20 4x2
y=242 0 toph =1+ )4 (10.127)
2 07w 73 2 72 74

or

hm? h? ,f B
~ A —A e 10.128
gma? <2ma2) mimat ) © ( )

The first-order perturbation result for even states is simply

hZ
ED D = WiPlgseolu) = % = <2maz) (10.129)
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(Continued)

independent of n for all even states; this obviously agrees with the explicit expansion of the
eigenvalue condition for the ground state in Eqn. (10.128). The second-order correction is
then

£\ _ i {us 19800 lug™) 12
" o (W2 /8ma’) (1 — 2k = D)
2h? > 1 1
= S whereS=Y —————— =
mm2a2s e ; Qk—1H2—-1 4
h2
=’ (m> (10.130)

which also agrees with the expansion of the exact result. (See Epstein (1960) for a nice
discussion of the subtleties of this problem.)

While the technical details of the calculation are beyond our level, it is
appropriate to note here that one of the most spectacularly successful pre-
dictions in all of physics makes use of perturbation theory. The magnetic
moment of both the electron and the muon can be calculated in the theory of
quantum electrodynamics,’ using more advanced perturbation theory methods.
A recent theoretical result for the electron magnetic moment (expressed
as a dimensionless number) is

ge(theory) = 2.0023193048 (8) (10.131)

where the uncertainty is indicated in the last significant digit. Amazingly, it can
also be measured to a similar precision with the result

ge(experiment) = 2.0023193048 (4) (10.132)

10.5.2 Degenerate Perturbation Theory

When two (or more) energy levels of the unperturbed system are degener-
ate, any linear combinations of the corresponding wavefunctions, w,(lo) (x) and
1//1(0) (x), still give same energy eigenvalue. (Such combinations can still be made
orthogonal to each other, of course.) This implies, however, that the unique
identification of each perturbed state with an unperturbed counterpart as in
Eqn. (10.98) is not possible. The breakdown of the perturbation method in
this case is clearly signaled by the appearance of small energy denominators

10 See Perkins (2000) and references therein for a discussion at an undergraduate level.
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in Eqn. (10.114); states nearby in energy can play an important role and have to
be considered on a more equal footing.

In this limit, it is convenient to return to the matrix formulation of the eigen-
value problem and consider the 2 x 2 submatrix involving the states in question,

(0) / /
B W o (a”)=E(“”> (10.133)
AH E” +aH) ] \a a

where the a,, a; are the expansion coefficients. In general, for a case with N

namely

degenerate levels, the corresponding N x N submatrix must be considered.
This system of linear equations (for the a,, ;) will only have a nontrivial solution
if the appropriate determinant vanishes, that is,

0) / /

E A, —E AH

det [ 7" + e ©) " =0 (10.134)
AH) E" +H) —E

The special case of an exact degeneracy where EY = EZ(O) = £ is easiest to treat;
in this case, the energy eigenvalues are determined by the condition

(E—[€ +aH,,]) (E—[€ +AH}]) — A*H] H,, =0 (10.135)

n

or

A A
Ey =&+ P (H/nn + Hgl) + E\/(H/rm - H;l)z + 4H;nH;n (10.136)

The first term is obviously the (common) value of the unperturbed energy while
the second is the average of the first-order energy shifts in each level, consistent
with the non-degenerate case; the third term, however, can split the two levels
and generally removes the degeneracy.

Substituting the result of Eqn. (10.136) into the matrix equation Eqn. (10.133),
we find that the expansion coefficients are given by

e M
H
A7 (= H) o+ J(H, = Hp2 M
so that the appropriate (unnormalized) eigenfunctions are given by
B (x) o alB (0 + a P Pi(x) (10.138)

The actual energy splitting in Eqn. (10.136) clearly depends on A, that is, on the
magnitude of the perturbation; the appropriate linear combinations, however,
do not, but are determined by the form of the perturbation, that is the relative
sizes of the matrix elements H’ Hgl, and H’ln (P10.26).

Because degeneracy of energy levels is far more common in multi-particle or

(10.137)

multidimensional systems, we postpone presenting examples until later chapters.
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10.5.3 Time-Dependent Perturbation Theory

The problem of determining the future time-development of a given quantum
mechanical state, if one knows the exact energy eigenvalues and eigenfunctions
of the system, is usually straightforward, since if we have H (O)¢,50) = Enw,io),
then

o0 o
vOx0=>ayl? — vOun=> ae ™My (10.139)
n=0

n=0

A similar problem arises in time-dependent perturbation theory when the system
is subject to a (small) time-dependent change, so that the resulting Hamiltonian
is given by

H=HO + Al (1), (10.140)

just as in Eqn. (10.96), but now with H’ depending explicitly on time. We
wish to see how the introduction of the perturbing potential changes the
time-development of a quantum state, since we now must satisfy

oY (x, 1)

[H“)) + kﬁ/(t)] V) = Hy (o) = ih=—

(10.141)

Because the eigenfunctions of H® still form a complete set, we can always write

Y0 =) a(t)ye Bty (10.142)

n=0

where we now assume that the expansion coefficients, the a,(t), themselves
depend on time. (We can choose this form without loss of generality, thereby
defining the a,(t), but this form is convenient since for the case of no per-
turbation, it reduces to the standard result in Eqn. (10.139).) We can substitute
a solution of the form in Eqn. (10.142) into the time-dependent Schrodinger
equation (Eqn. (10.141)), giving the respective left- and right-hand sides

Ao ) =Y Eaan(t) MO 3 ay (1) B 101y |
' ' (10.143)

¢ ¢

., 0V (x, 1) . day(t) _ lE_n —iEqt/h
th - zh;[ " - an(t)i| e Y (10.144)
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Equating these two, cancelling the terms proportional to E,, and multiply-
ing (on the left, as usual) by (w,(y? ))* and integrating, we can make use of the
orthonormality properties of the eigenstates to write

B0 ittt = 5 GO ) (10145
n
or
Bonl0) L5 a0y B E Iy O 0y )
n
= L a e, (10.146)
where
Oy = @ and H, = @O0 1)y) (10.147)
and H/,, can be called in this context a transition matrix element. We recall

nm
that the frequency w, , sets the characteristic timescale for any two-state system

(Section 4.6). At this stage, the infinite set of coupled equations implied by
Eqn. (10.146) is still completely equivalent to the time-dependent Schrodinger
equation for the perturbed system, as no approximations have been made.

We now specialize to the case where the initial state of the system is that of
an energy eigenstate of the unperturbed Hamiltonian, namely, we assume that
Y(x,0) = %50). We then expect that for a small perturbation the expansion
coefficients, a,,(t), for states with m # k will be small (since a,,.,(t = 0) =
dmk = 0 to begin with), while the single ax(t) corresponding to the original
eigenstate will be of order unity, namely

O(r 1 f k
o (1) = 1O <1 form # (10.148)
o) form=k
Using this approximation in Eqn. (10.146), we find that
da,(t .
%() ~ _}ii L £ (10.149)
or
i [t
am(t) = __/ dOmkt H! (1) dt (10.150)
h Jy,

for m # k, if we assume that the perturbation is “turned on” at time t = #y. This
form is important since it implies that the probability that the particle will be
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found in the mth state of the unperturbed system at a later time is given by
2

1 o
Pha () = (D) = / et W (1) dt (10.151)
fo

2
We expect that the chance of being excited (or decaying) into a different final
state (the transition probability, Px_, ,,(t)) will depend both on the transition
matrix element (which includes information on the perturbation and its ability
to “connect” the initial and final states) as well as on the detailed history of how
the perturbation is applied in time, via the integral, which is weighted by the
oscillatory exponential factor present in all two-state systems.

Example 10.11. Harmonic oscillator in a time-dependent electric field

Consider a particle of mass m and charge g in the ground state, |0), of the harmonic oscillator
potential V (x) = mw?x?/2. It is subject to an external time-dependent electric field of the
form

H(t) = (—q&ox) e /7! (10.152)

The perturbation is allowed to act over the time interval (—oo, +00) and we wish to evaluate
the probability that the particle is eventually found in any excited state, |n).
The expansion coefficient from Egn. (10.150) in this case is given by

i oo iwnot o—t2/272
am(t) = =(n|q&yx|0) e'“not @ dt (10.153)
h —o0
The off-diagonal oscillator matrix element is given by Eqgn. (9.50) as

h

0) =
(nlx|0) T

81 (10.154)

while the integral over time is a standard Gaussian form. Combining these results, we find
that the transition probability to any excited state is given by

1| G?&n .
Pon(t) = lan(t)|? = = [ﬁanj} [2m2e (@no7) ] (10.155)

This result does show that transition probabilities in time-dependent perturbation theory can
depend on what the perturbation is, to which states it is trying to couple, and how it is
applied.

¢ The explicit form of the electric field potential in this case, for example, has implied that
only adjacent levels can be excited (to this order of perturbation theory, at least) which is
reminiscent of the selection rules discussed in Section 16.3.3. For an initial state |k), only
the final states |k & 1) would be populated by this perturbation. The transition probability
does, of course, also depend on the strength of the external field.
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(Continued)

® The transition probability in this case is peaked at a value of w, gt = 1 s0 that application
of the external perturbing potential at a rate (given by the timescale t) which matches the
natural frequency or period of the system gives the biggest effect. For the special case of
the oscillator, wn 0 8n,1 = w = 27 /Ty is precisely the classical periodicity of the problem,
so perturbations which occur on timescales much longer than this allow the system to
accommodate itself to the change. This connection to the classical periodicity is much more
general as we recall (P1.16 and Section 12.7)) that the classical period of a quantum system
can be written as Tq = 2w hi/|dEn/dn| ~ 27 /| AEpml.

We can examine the result of applying the perturbation slowly over a long
timescale in some detail, by writing Eqn. (10.150) in a way which includes
information on the rate at which H’ is applied more directly. For example,
using an identity and an integration-by-parts (IBP) trick, we have

h
1 L dr .
— _ . 10y kT /
Rwmr /to dt [e ]Hmk(t) dt

IBP 1 iompt (M '
BP | piomit ((Emk ) g o piomit 10.156
ha)m’k |: /to e Ot +e mk( ) ( )

If the rate at which the perturbation is applied, as encoded in the dH’  /dt term,
is slow enough that that term can be neglected, we have the simplified result

. t
am(t) = _i/ eOmkt W/ (1) dt
fo

H (1) .
ap(t) = iON ¢! Em—E)t/h (10.157)
(Ex — Em)
Since ai(t) ~O(1) - e~ /" the time-dependence of the perturbed state is
simply

H ) . :
w(x) t) — —lEkt/h 1’0(0) Z |:(E mi(; ) el(Em—Ek)t/h] e—lEml’/h wr(r(l))
—y m k

(0> H.e (1) © | giit/n
10.158
" Z B —E) ") ° (10138)

We stress that the time-dependence of this state is simply that of a single eigen-
state, while the form of the (spatial) wavefunction is that due to a first-order
perturbation theory treatment of H'(t), as in Eqn. (10.114), evaluated at time ¢.
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This implies that in the limit of slow application of the perturbation, the indi-
vidual eigenstates of the old system “morph” into the corresponding eigenstates
of the new system, in a state-by-state or quantum-number by quantum-number
manner; thus the ground state of the new system corresponds to the ground state
of the old system, the first excited state to the first excited state, and so forth.
This limit of a slowly acting perturbation is called the adiabatic approximation
and was used (implicitly) in P5.21.

The opposite extreme, where the system undergoes a very rapid change, is
called the sudden approximation and in this case we have a discontinuous change
in the Hamiltonian of the system. For example, if we have ICII — ﬁz att = 0,
the eigenfunctions of the system can be written as

I:Iﬂ,ﬁn = E,¥, t < 0 (original system) (10.159)
I:Iz(bn =&yt > 0 (new system) (10.160)

In this case, if the initial state was that of an eigenstate of the original system (y/,,)
for t < 0, then in the new universe of solutions we have the standard expansion
theorem result that

Y(x,0) =y, = Z cx ¢x  with expansion coefficient ¢, = (¢r|Vy)
k

(10.161)

and the future time-dependence of the original eigenstate in the new system will
be given by

Yiot) =Y e Gy (10.162)
k

We have also made implicit use of this method in earlier problems (Example 6.3
and P9.6) with a more physical use discussed in P17.8.

10.6 Questions and Problems

Q10.1. Ifyouaregiven a numerical solution of the Schrédinger equation in the form of
a list of values at discrete points, that is, ¥ (x = ne€), how would you normalize
the solution? How would you find (x)? How about (p)? How would calculate
the momentum-space wavefunction, ¢ (p)?

Q10.2. Distinguish carefully between the precision and the accuracy of a measurement.
For example, for a given approximation method, you can imagine determining
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the range over which the solutions change their sign at infinity more and

more precisely; is this increased precision or increased accuracy? Do you think

that decreasing the step size € or using a better integration method results in

increased accuracy or increased precision?

Q10.3. Assume that you have a program which numerically integrates the Schrédinger
equation and that you have found two energy values, E, and E},, which bracket

an acceptable (i.e. square-integrable) solution of the SE. Describe an efficient

strategy to get arbitrarily close to the “real” energy. Hint: If someone tells you

they have a number between 1 and 1000, what is the optimal strategy to find

their number using the minimum number of “yes—no” questions.

Q10.4. If you have a program which solves the Schréodinger equation for the even
solutions in a symmetric potential, what lines of code would you have to

change to let it solve for the odd solutions?

Q10.5. Assume that you have a quantum mechanical system with quantized energies
E; and probability densities [1/;(x)|>. Suppose that you can add a §-function
perturbation at an arbitrary location. How could you then “map out” the
wavefunction using the observed shifts in energy. Assume that the §-function
strengths are small enough that first-order perturbation theory can be used.

This approach was followed by Salis et al. (1997).

P10.1. Numerical integration—Newton’s law. Pick some simple technique designed

to numerically integrate second order differential equations, perhaps even the

simple one used in Section 10.1. Write a short program (using a computer

language, programmable calculator, or even a spread sheet program) to solve

Newton’s laws for a general potential or force law.

(a) Apply it to the differential equation

2
ddigt) = —x(t) wherex(0) =1 and x(0)=0

Compare your results for decreasing step size with the exact solution

(which is, of course, x(t) = cos(#).) Try to reproduce Fig. 10.1.
(b) Try the same thing for the equation

A*x(t)
dt?

= +x(t) wherex(0) =1 and x(0)= -1

and also for the initial conditions x(0) = +1 and x(0) = +1. What are
the exact solutions, how well does your program work in these two cases,

and why?

P10.2. Numerical integration—The Schrodinger equation. Using your experience
from P10.1, modify your program to solve the Schrodinger equation for a

symmetric potential.
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(a) Apply it to the case of the harmonic oscillator written in dimensionless
coordinates as

()
dy?
where € are dimensionless eigenvalues. Try to reproduce the values in

Example 10.2. Repeat for the odd case where the eigenvalues are € =
3,7,11,....

— 7)) =¥ () (10.165)

(b) Apply your program to the case of a quartic potential, that is, V (x) = Cx*.

Write the Schrodinger equation in dimensionless variables and find the
first two even and odd energy eigenvalues. Use your previous experience
with the oscillator case to estimate the errors in your calculation.

Show that the trial wavefunction in Example 10.4 yields the energy function
in Eqn. (10.24). Try the problem with the nonzero piece of the wavefunction
given by N(a? — x?)" with n = 1, 3,4 as well and compare your results.

Estimate the ground state energy of the SHO by using the family of trial

wavefunctions
1
V(x;a) = \/je'xl/“ (10.166)
a

Why is your answer so much worse than that using the cut-off polynomial
expression of Example 10.4?

The momentum-space wavefunction corresponding to P10.4 is

_ [ (o
¢(p) =4/ — <p2+p§) (10.167)

where py = h/a. Evaluate the energy functional in momentum space using
this trial wavefunction for the SHO and show that you get the same result (for
the energy and trial parameter) as in position space.

Estimate the energy of the first excited state of the SHO potential by using a
trial wavefunction of the form

{0 for |x| > a
Y(x;a) = (10.168)

Nx(a?> — x*)? for|x| > a

Is your answer guaranteed to be larger than the real answer?

Use a Gaussian trial wavefunction to estimate the ground state energy for the
quartic potential, V (x) = gx*. Show that your answer is

3\ 4/3 /pa 1/3
Emin = (‘) (_g) (10.169)
4 m

Compare this to the “exact” answer (determined by numerical integration)
which has the prefactor 0.668.
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P10.8. (a)

(b)

P10.9. (a)

(b)

Estimate the ground state energy of the symmetric infinite well using the
family of trial wavefunctions

{0 for |x| > a
Y(x) = (10.170)

N(@a* —|x|*) for|x| > a

where A is the variational parameter and you must determine the normali-
zation constant N

Estimate the energy of the first excited state by using the wavefunction in
(a) multiplied by x to make an appropriate odd trial wavefunction. You
will, of course, have to renormalize the wavefunction,

Estimate the ground state energy of the symmetric infinite well by using
the wavefunction

{0 for |x| > a
Y(x) = (10.171)

N(a? — x?) for|x| <a

Evaluate E(var)/Ey — 1 and 1 — |ag|? for this state. Note that this has no
variational parameter.

Now consider the family of trial functions

¥ (x; b) 0 for |« > 4 (10.172)
xb) = .
N'(a*> — x¥)(1 + bx*/L*) for |x| < a

which does have an additional parameter. Calculate both the variational
energy E(b) = E[¥(x;b)] and 1 — |ap|?. Find the values of b, which
minimize each of these two quantities and show that they are slightly
different. Specifically, show that

b = (P L 0asn6 (10.173)
mE\ -2 )T '

for the overlap maximum, while

bmin =

(—98 + 84/133) _

—0.22075 (10.174)
26

for the energy minimum. This demonstrates that while there is a strong
correlation between the wavefunction which minimizes the variational
energy and the one which maximizes the overlap with the ground state
wavefunction, the two criteria are ultimately independent.

P10.10. Using the variational method, show that any purely attractive potential in one

dimension has at least one bound state. By purely attractive, we mean that
V(x) < 0 for all x. We also assume that V(x) — 0 as x — =oo. Hint:
Show that we can find a (perhaps very shallow and narrow) finite square well
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potential, V(x), which satisfies 0 > Vj(x) > V(x) for all x and use the fact
that a finite square well always has at least one bound state.

Show that the matching of solutions leading to the WKB quantization
condition implies that C; = Cgr(—1)".

Apply the WKB quantization condition to the symmetric linear potential,
V(x) = F|x|. The “exact” answers for the lowest lying even (4) and odd (—)
states are given by

B2 F? 1/3
&H _ D
E™ =y, (%) (10.175)

where
y P =10188  y 7 =23381
y P =32482 y{7) =4.0879
yP =a8201  y =55206
nw =61633  y7) =6.7867 (10.176)

Does the agreement get better with increasing n as expected? Can you plot the
WKB estimates and “exact” answers in such a way as to demonstrate that?

>

Apply the WKB quantization condition to the “half-harmonic oscillator’
potential, namely,

~+o00 forx <0
Vix) = (10.177)
mw?x*/2 forx >0

What are the appropriate values of Cr, Cr and what are the WKB energies?
What are the exact results for this problem? Hint: Recall P9.10.

Apply the WKB quantization condition to estimate the bound state energies
of the potential

Vo

Vi) = _cosh(x/a)2

(10.178)

(a) Show that your results can be written in the form

2
2
E, = — (/70 — (n+1/2),/ 22a2> (10.179)

Hint: You might use the integral

A 2 42
/ VA W % (\/1 T A2 1) (10.180)
0

1+ u?
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P10.15.

P10.16.

P10.17.

P10.18.

P10.19.

(b) If Vo > h?/2ma?, show that your result approximates the harmonic
oscillator approximation for this potential.

(c) One might think that one could take the limit Vj — oo and a — 0 in
such a way as to reproduce an attractive §-function potential. Discuss the
WKB approximation to the energy levels in this limit; if it works, does it
reproduce the result of Section 8.1.2? If it does not, why?

Harmonic oscillator matrix elements.

(a) Evaluate py, for the harmonic oscillator using the methods in Example
10.7. Using your result, show that the commutator [x, p] = ih holds as a
matrix equation.

(b) Evaluate pznm and use your result to show that Eqn. (10.79) holds by
evaluating both sides as matrices.

Infinite well matrix elements.

(a) Evaluate the matrix elements P, using the ‘standard’ infinite well energy
eigenstates as a basis. How would you show that

1
Hm = ; Pk Pk (10.181)

is the (diagonal) Hamiltonian matrix.

(b) Evaluate the matrix elements X,,,,,. Can you show that [x, p] = i holds as
a matrix equation?

What is the expectation value, (X);, for a state vector in a matrix representation
for general t, that is, how does Eqn. (10.80) generalize to t # 0?. What does
your expression look like for a state with only two components?

Show that the wavefunction to second order in perturbation theory (assuming
no degeneracies) is given by

H/

' HjH
(2) — mk kn 1//(0) _ ﬂw(o)
m m

; ; (B — <°))(E(°) 25”) ; (B — ED)?

Iﬂ(o) Z

We have seen in P6.4 that a constant shift in the potential energy function, that
is, V(x) = V(x) + Vp can have no effect on the observable physics. Consider
such a shift as a perturbation and evaluate (i) the first-, second-, and third-
order changes in the energy of any state using Eqns. (10.112), (10.115), and
(10.117) and (ii) the first-order shift in the wavefunction using Eqn. (10.114)
and discuss your results. You can also use the results of P10.18 to check the
second-order shift in the wavefunction.

(E(O) E(O))2 (10.182)
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Relativistic effects in perturbation theory. The nonrelativistic series for the
kinetic energy in Eqn. (1.8) is given by

_ P p

T 2m 8mdc
Using first-order perturbation theory, valuate the effect of the second term
in this expansion (with p replaced by the operator p) on the nth level of a
harmonic oscillator.

2 4

(10.183)

Referring to Example 10.9, use Eqn. (10.117) to show that the third-order
energy shift to the energy levels vanishes, as expected since the exact result is
of second order.

Referring to Example 10.10, evaluate the first-, second-, and third-order shifts
in energy for the odd states due to the §(x) perturbation and show that they
vanish.

Derive the expansion in Eqn. (10.127) for the ground state solution in
Example 10.10 by writing

i
y=5+ak+bkz+--- (10.184)
substituting this into the exact eigenvalue, A = —2ycot(y) and equating

powers of A.

A particle of mass m in a harmonic oscillator potential V (x) = mw?x?/2 is

subject to a small perturbing potential of the same type, namely, V' (x) = Ax>.

(a) Show that the energy spectrum can be derived exactly with the result
1
E, = <n+5)h,5 (10.185)

where @ = wy/1+ 2A/mw?. Expand this for small A to O(A?) for

comparison with part (b).

(b) Evaluate the first- and second-order shifts in energy using Eqns (10.112)
and (10.115) and compare your results to the exact answer in part (a). You
will find the matrix elements of (1|x?|k) in Example 10.7 useful.

Anharmonic oscillator in perturbation theory. Evaluate the effect of a small
anharmonic term of the form

V/(x) = —rkx® (10.186)

on the spectrum of the harmonic oscillator in first- and second-order
perturbation theory. You may find the following matrix element useful:

2mw

307 By = D= D) (10.187)

3/2
<wn|x3|wk>=( ) (Vo Do+ 200 +3) 8 + 301+ D72 801
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P10.26.

P10.27.

P10.28.

Degenerate states in perturbation theory

(a) Show that the first-order shifts in energy in Eqn. (10.136) are real as they
should be. Do the a,,; have to be real?

(b) Using Eqn. (10.137), show that the linear combinations ¥ (x) and
¥ () (x) are always orthogonal.

(c) Discuss the energy levels and mixing of eigenstates in the case where
H;, = Hj, = 0but H = (H )* # 0; show that the eigenfunctions are
“completely mixed.”

(d) Discuss the case where the degenerate states are not connected in the
Hamiltonian to lowest order, that is for which H) = (H/)* = 0.

Consider a particle of mass m and charge g in the ground state of the symmet-
ric infinite well of Section 5.2.3. It is subject to a time-dependent electric field
of the form

H'(t) = (—g&x)e /T (10.188)

Find the probability that the particle will be excited to the first excited state if
the perturbation is allowed to act over the time range (—00, +00). Repeat for
the probability that it is excited to the second-excited state.

Consider a system in a general eigenstate Yk, which is subject to a time-
dependent harmonic perturbation of the form

H'(t) = 2V (x) cos(wt) (10.189)

If this perturbation is turned on at t = 0 and then removed at ¢ > 0, find the
probability that the system is in a new state, 1, In the limit of long times,
what states are most likely to be connected by this perturbation? Discuss what
this might have to do with the emission or absorption of radiation.



ELEVEN
Scattering

11.1 Scattering in One-Dimensional Systems

11.1.1 Bound and Unbound States

Besides the bounded, periodic classical motion of particles in potentials as shown
in Fig. 5.2 (for energy E) ), there is also the possibility of unbound states which are
not localized in space and not repetitive in time; these correspond to particles
incident on the potential and which subsequently “bounce” off (energy E, in
Fig. 5.2) or temporarily change their speeds as they go over the potential (energy
Ej3). Classical mechanics, which solves for the exact trajectories in either case,
makes little distinction between the two types of motion aside from some tech-
nical details, such as the use of Fourier series in the study of periodic motion. In
quantum mechanics, on the other hand, the experimental realizations of these
two classes of classical motion are quite distinct, so that the theoretical formal-
isms and methods used to analyze them are necessarily somewhat different.

One main source of experimental information on microscopic systems which
allows us to test the ideas of quantum mechanics is spectroscopy, the study
of bound states and their radiative decays. This corresponds most closely to
bound states as studied in Chapters 5-10. The quantization of energy levels for
particles bound in potentials gives rise to a discrete spectrum of photons (or
other particles) when excited states decay into lower energy levels. A precise map
of the photon energies can allow one to reconstruct the energy level diagram,
which, of course, then conveys information on the nature of the bound particles
and their interactions.

Quantum scattering experiments, however, make use of rather different exper-
imental techniques. Typically, a beam of incident particles is directed toward
atarget and the scattered particles are collected (detected) and counted at various
angular locations. A collection of classical trajectories corresponding to unbound
motions would, as a function of say the particle energy and impact parameter,
also allow for a mapping of the scattering force. Quantum mechanically, the
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particle trajectories are replaced, at best, by probabilistic wave packet motion,
but variations of the probability of scattering at different angles and energies still
gives information on the nature of the scattering potential.

We will discuss the formalism of scattering theory in much more detail in
Chapter 19, but we find it useful here to introduce some of the ideas and
notation of three-dimensional scattering before specializing to one-dimensional
problems.

In a three-dimensional scattering experiment, a given intensity of incident
particles

dNinc

-(3) -
(6 1) = == (11.1)

that is, the number of particles (dNj,c) incident on a target per unit time (dt)
per unit area (dA), can be directly associated with the probability flux, defined
in three dimensions via

0 = 5= [W VY ) = V@ DY )] (11.2)

mi
which is an obvious generalization of the one-dimensional result in Eqn. (4.32).
The number of particles scattered into a given small solid angle (d<2) at a specific
angular location specified by (6, ¢), per unit time, as in Fig. 11.1, is described by

dN,
.(3 tt
]s(ca)tter 0,9) = ﬁ

and will certainly depend on the incident intensity. An appropriate ratio which
measures the probability of a scattering event is

js(c?tter _ dNscatter [ ANinc _ do (0, ¢)
G atdQ [ dtdA —  4Q

Jinc
which defines a differential cross-section for scattering, do (9, ¢)/dS2, which has
the dimensions of an effective area; this quantity can be calculated from a know-
ledge of the scattering potential, V(r), and can also be directly compared to
experiment. For classical “specular” (equal angle reflective) scattering, ideal-

(11.3)

(11.4)

ized by scattering small masses (e.g. BBs or marbles) from larger, heavy shapes
(e.g. billiard balls), the differential cross-section gives direct information on the
size and shape of the scatterers, hence the notion of “cross-sectional area” or
cross-section. In quantum mechanics, the wave properties of the scatterers will
also be important and the analogs of such effects as interference and diffraction
will be apparent.

For scattering in two dimensions, the similar quantity involves ratios of
particles incident per unit time (dt) per unit length (dx) and numbers of particles
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/5 Detector

Incident beam Unscattered beam

Outgoing spherical wave

Figure 11.1. Geometry of a scattering experiment in three dimensions.

scattered per unit time per unit angle (d6), that is,

= = 11.5
]l(lfc) dr do dt dx do ( )

js(cza)tter _ stcatter / dI\]inc d,O (‘9)
This is an effective “width” or lateral size of the target for scattering through
various angles 6 in the plane.

In one dimension, which we consider in this chapter, the geometric situation
is far simpler as there are only two possible directions. In this case, incident
particles which continue forward are “transmitted,” while those undergoing a
back scatter are called “reflected.” The incident particles will be described by the
incoming number per unit time

dN;
(1 1

with similar expressions for the scattered (i.e. reflected) and transmitted fluxes,

dN, dN;
.(1 f 1 (1 t
J r(ef) i;e an ]t(ra)ns - Z;ans (1 1'7)

The ratio of reflected to incident flux, ]r(elf) / ]l(r}C) is then the analog of the scattering
cross-section or size, but is dimensionless.

A description of scattering in one, two, or three dimensions involving wave
packets (with obvious connections to classical particle trajectories) is possible,
but following our discussion for free particles in Chapter 3, we will begin by
considering the fluxes (and their ratios) corresponding to the scattering of plane
wave solutions as it contains much of the physics involved.
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11.1.2 Plane Wave Solutions

If we deal with plane wave solutions, we immediately come up against the prob-
lem of how to use nonnormalizable wavefunctions. We can avoid any such
questions in a highly physical way by considering only the concept of prob-
ability flux or currents in Eqns (11.6) and (11.7). For a right- or left-moving
plane wave of the form

w(x, t) — Aei(:l:px—pzt/Zm)/h — Aei(:l:kx—ﬁkzt/Zm) (1].8)
the probability flux is given by (P4.10)
hk
jent) =£—|A (11.9)
m

independent of time. The factor &hk/m = £p/m = £v simply corresponds to
the classical velocity of the particle beam. Since we expect (normalizable) one
particle wavefunctions in one dimension to have dimensions given by [A] =
1/,/length, the dimensions of flux can indeed be thought of as the number
of particles per unit time; thus we take the probability flux as equivalent to
Eqn. (11.6). The flux or incident intensity of a particle beam can be made larger
by increasing A corresponding, say, increasing the intensity of the source, or by
changing the speed of the particles, that is, increasing k (having them “come at
you faster”).

We stress that ratios of fluxes are then free from any ambiguities from the
lack of normalizability and correspond most naturally to the real experimental
situation where just such ratios are measured. The conservation of particle flux
(no particles are assumed lost) should also follow immediately from the fact that
we have introduced no possible absorption processes, and this can be used as a
check in any calculation. We will implement these ideas in a series of examples
involving plane waves in the next few sections; we will also exhibit some wave
packet solutions for comparison.

11.2 Scattering from a Step Potential

The simplest one-dimensional potential which can be investigated analytically
corresponds to scattering from a step potential. Any physical “step” will have
smooth edges as in Fig. 11.2(a), but it is easiest to treat the discontinuous
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(a) V(x)
/_ Yo
X
[0) T = VAt (R
(b) E>V, v
E<Vy----q--m-mmmmmm--
. 0
Figure 11.2. Models of a step potential in one dimension;
(a) a physically acceptable smooth step, (b) an idealization of (c) v
(a) as a discontinuous potential, and (c) a “linear step 0
potential” where the potential is allowed to “turn on” over a

distance a. 0 a

potential in Fig. 12.2(b). This is defined by

0 forx<O
Vix) = (11.10)
Vo forx >0

where we consider both Vj > 0, Vy < 0, but allow only E > 0.

If a quantum mechanical free particle in one dimension corresponds to clas-
sical traveling waves on a string, this potential is the analog of two strings of
differing mass density, and hence with different propagation velocities, “tied
together” at the origin, as in P2.2. The corresponding classical particle picture
would be described by a force of the form F(x) = —V(§(x) implying an impuls-
ive “kick” each time the particle crosses the origin, changing the magnitude
(and/or direction) of its momentum (Q11.1). For example, a particle incident
on the step from the left with energy E > Vj > 0(Vy > E > 0), would slow
down, but continue over (bounce back from) such a potential step.

Considering first the case where E > Vj, the allowed plane wave solutions in
the two regions are simply

V(50) = ¥ ) Ie™ + Re™ ™  forx <0 (11.11)
x,0) =v(kx) = . . .
Te'™ 4+ Se™"*  for0 < x
where
2mE 2m(E — Vp)

The solutions for x < 0 are taken to correspond to an initial plane wave (Ie’<)
incident from —oo (i.e. from the left) and a reflected component (Re~ikx) going
back to —oo. For x > 0, the T exp(iqx) term certainly represents the right-

moving transmitted wave; as we expect there to be no left-moving solution for
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x > 0 if particles are incident on the step from the left, we require S = 0. The
wavefunction must still satisfy the appropriate continuity conditions on v (x)
and ¥’ (x), so we insist that

YO )=y¢(0")=I+R=T (11.13)
¥'(07) = ¢/ (07) = ikI — ikR = igT
which gives
_ (k=4 2%k
R_I(k—l—q) and T = I(k q) (11.14)

As expected, we cannot solve for R, T completely as they depend on the arbitrary
incident amplitude I and we cannot normalize the plane wave solutions; ratios
of fluxes, however, will be well-defined and independent of I.

A check on this (otherwise trivial) calculation is to confirm that the prob-
ability fluxes are also consistent with expectation. If we calculate the fluxes
corresponding to x < 0 (jp) and x > 0 (jr) (see P11.1) we find that

hk hk hk 4kq
ir(x,t) = —|I> — —|R|> = —|I|? 11.15
jr(x, 1) mll ml | ml | T a7 ( )
) hq ., hk _, 4kq
) = —|T)P = —|I 11.16
JR(x, 1) ml | ml | 1 a7 ( )

are equal, as expected. The fact that, classically, the particle is moving at a different
speed for x > 0 (and so g and not k appears in the transmitted flux) is obviously
important to remember in this context.

The quantities which would be most similar to experimental observables are
the ratios of reflected and transmitted to incident fluxes, that is,

J'r_ef_‘Br_<ﬂ) VE- VW FE (11.17)
jine |1 k+q VE+ W T E '
jtrans _ ﬂ ’z 2 _ qu _ 2«/ E(VO +E) (11 ]_8)
jine k| I (k+q9?  (VE+ Vo +E)? .

Using these expressions, it is easy to check that the probability of a backscatter
goes to zero when E >> V), and the effect of a small potential “bump” is
negligible.

We plot in Fig. 11.3(a) and (b) plots of the real part of the incident, reflected,
and transmitted wavefunctions corresponding to two signs of the potential step.
These figures illustrate several aspects of both the wave and particle aspects of
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Figure 11.3. Plane wave scattering from a
discontinuous step potential; two cases where

(@ E > Vyg>o0and(b)E > 0>V are shown.
The real part of the incident and reflected amplitude
(solid and dotted curves for x < 0) and transmitted
(dashed curve for x > 0) are illustrated.

scattering:

® The wavefunction is wigglier (less wiggly) and smaller (larger) in magnitude
when the kinetic energy is larger (smaller) as expected from our earlier discus-
sions of the intuitive connections between classical and quantum probability
distributions; this shows that such ideas are not restricted to bound state
problems.

® A classical particle with energy larger than the step height would, however,
never scatter back, so the reflected flux is purely a wave phenomenon. This
is not at all apparent from Eqn. (11.17) for the ratio of scattered to incident
flux as it depends only on E, Vj and has no explicit factor of & as would be
expected for a purely wave (and hence quantum) effect.

® The phase of the reflected wave relative to that of the incident one depends on
the sign of Vj (or equivalently the classical propagation speed) in a manner
which is familiar from other wave phenomena; in going from a region of large
to small speed, for example, there is a phase change on reflection.

For the case of V) > E > 0, we can either find the solutions for x > 0 directly
or analytically continue the ones of Eqn. (11.11) by letting

2m(E — Vy) . 2m(Vy — E)
q= —hz e K = 1q: —hz (1119)
so that, for example, the new solutions satisfy
Vx) =Te”* — Y(x)=Te ™ forx>0 (11.20)

Such a real function has vanishing probability flux, so the particles must be
completely reflected from this step potential. The wavefunction itself, however,
is nonzero in the classically disallowed region as we expect from tunneling ideas.
The reflection coefficient is then given by

R=1(k=* (11.21)
N k + ik '

which can be written in terms of a simple phase

R=1Ie"%% where tan(¢)= k/k (11.22)
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Figure 11.4. Same as for Fig. 11.3, but for two 1\ /\ /‘ A /\ i)

cases where Vg > £ > 0. T\ ‘ XX/

Using these, we indeed find that

—1 and 1M (11.23)

Jinc

e _|
jinc N I
as expected. Figure 11.4 illustrates two such cases where we can observe the
tunneling behavior as the amount of energy “cheating” increases. One obvious
limit is when V) >> E in which case we have the “infinite wall” scattering case
considered in Section 3.3. We note that in this limit we have ¥k >> k, so that

R — —I and the wave solution in the allowed region (x < 0) is then
Yr(x) = Ie™ 4+ Re= <Ieikx — Ie_ikx) ~ sin(px/h) (11.24)

as discussed previously.
To see the connections to wave packet scattering, we write the general time-
dependent plane wave solution in the form

i (Px—E0/h 4 | (i;_ﬁz) el P=EO/h forx <0

WP(JQ t) = I( 2pq ) ei(qu—Et)/ﬁ
p+pq

(11.25)
for0 < x

where p = hk,p; = hq, and E = p?/2m = pé/Zm + Vo. This can then be
used with a Gaussian weighting distribution to numerically generate the time-
dependent wave packet, as in Section 3.4. We illustrate the results for two cases
in Fig. 11.5 and note many similarities with the plane wave results:

® The dotted curves correspond to unscattered (but spreading) wave packets
and help illustrate the “slow-down” and “speed-up” of the classical particle
when V) > 0 (a) and V < 0 (b).

® The probability of reflection and transmission of such packets can be deter-
mined by the relative areas under the separate “bumps” of | (x, t)|? calculated
(numerically) for times long after the scatter; the complete wave packet, of
course, remains properly normalized at all times. One should not think, there-
fore, of the particle somehow “splitting” into two separate “blobs”; as with all
quantum measurements, a measurement of the particle will find it in a definite
position, but with probability related to the relative sizes of the “bumps.”
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Figure 11.5. Gaussian wavepacket scattering (solid curves) from a discontinuous step potential for
(@ E > Vy >0and(b) E >0 > V. The dashed curves show an unscattered Gaussian (no step
potential) for comparison. For example, in (a), the transmitted “lump” of probability lags behind the “free
Gaussian” as it slows down over the potential barrier, while for (b) it speeds up over the potential well and
is ahead.

11.3 Scattering from the Finite Square Well

An important, analytically calculable, example of scattering in one dimension,
which again illustrates classical connections, but which also introduces several
new features, especially quantum tunneling, is the finite well or barrier defined
by the potential

—Vo for|x| <a
0 for |x| > a

This potential satisfies the more realistic condition that V(x) — 0 when |x|
becomes large. Please note that with this notation, the case where Vj > 0
corresponds to an attractive well, while V) < 0 is a repulsive barrier.

11.3.1 Attractive Well

For the case V) > 0, we can easily solve the Schrodinger equation in the three

appropriate regions. Assuming a plane wave solution incident from the left, we
find

Ie™ 4 Re= ™  forx < —a
V(x) = { Ee'® 4+ Fe~'% for —a < x < +a (11.27)
Teikx for +a < x
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where

Lo [mE 2m(E + Vo)
Vo M ITY T

as usual; inside the well, we expect both left- and right-moving waves due to
reflections at the edges. In contrast to the bound state problem, the boundary
conditions at x = =*a are not equivalent because of the asymmetric nature of

the incident scattering. The four independent boundary conditions are given by

(11.28)

match ¥ atx = —a  Je~'* 4 Re*® = Ee* 4 Felke

match ' atx = —a ik(le~*a — Re'kay = iq(Ee_ik“ — Fe'k®)

match ¥ at x = +a  Ee'®® + Fe 1% = Te'*a

match ¥ at x = +a iq(Eiq“ — Fe™'1%) = jkTe'™*® (11.29)

We can then solve for R, T, E, F in terms of I; for the determination of the
scattering and transmission probabilities, we only require R, T and one can
obtain (P11.5)

(4> — k*) sin(2qa)
2kq cos(2qa) — i(q*> + k?) sin(2qa)
2kq
2kq cos(2qa) — i(q* + k?) sin(2qa)

R = Jie~%ika (11.30)

T — Ie—zika

(11.31)

while E, F can also be determined if one wishes to see the wavefunction over the
entire region.

We illustrate an example of the real parts of the various wavefunctions for a
typical case in Fig. 11.6 and we note some general features:

® A classical particle speeds up as it goes over the (attractive) well, and this is
consistent with the wavefunction shown in the figure, where the wave function
is “wigglier,” and has smaller amplitude.

¢ Another quantum remnant of this increase in velocity over the well is present
in the phase of the transmitted wave. If we write the wavefunction for x > a
as

Y (x) = |T| e e* (11.32)

where ¢ is the phase of the (complex) transmission coefficient, we find that

2 2

2kq

¢ =¢ —2ka where tan(¢) = tan(2qa) (11.33)
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Particle speeds up
over potential well

VA o
AVAVI e

Incident — Transmitted
""" Reflected ---- Non-interacting

’\
/

Figure 11.6. The real part of the incident, reflected, and transmitted plane wave solutions for a finite well.
For x < —a the dotted curve represents the reflected wave; for x > —a the dashed curve simply continues
the incident wave showing an unscattered wave for comparison.

In the limit that E >> V|, we have
K+q* 2B+ Vp
2kg  2JVE(EF Vo)

so that ¢ — 2a(q— k); in this case, the transmitted wave is of the simple form

— 1+ O(E*/ V) ~ 1 (11.34)

Jei(kx+2a(qg—k) (11.35)

If we compare this form to an incident plane wave which does not interact (i.e.
Vo = 0), we find that at a given time, the position of a point of the same phase
on the two waves satisfies

scattered < unscattered
kx' +2a(q — k) =

so that the difference in positions between the two cases is given by

2a
szx/—x:?(k—q) (11.36)
If we write these quantities in terms of the classical speeds in the two regions,
hk = mvy and hgq=mv (11.37)
we find that
2a
Ax = —(V—V) = tacross AV (11.38)

1)
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1.0

0.5

Figure 11.7. The ratio of reflected (dashed) and
transmitted (solid) to incident flux versus energy for

the attractive square well. The zeroes in |R//|2 0.0
correspond to transmission resonances.

E/Vy|

where Av < 0 since the particle speeds up (v > 1p) over the well; here f,cross
is just the time it would take the (unscattered) particle to cross the well. This is
shown in Fig. 11.6 where the transmitted waves does indeed “lead” a wave (the
dashed curve) which does not interact. This appearance of the classical “speed-
up” in the phase of the transmitted wave is related to the so-called phase-shift of
three-dimensional scattering.

We next plot the probabilities of both reflection and transmission versus
incident energy in Fig. 11.7 (for a particular choice of Vj and a) where we
see that:

e In the limit E >> V}, one has q2 —k? << 2kq, q2 + k2, so that there is little
reflection as expected.

® A completely nonclassical phenomenon is readily apparent as there are special
values of E for which there is no reflection, corresponding to so-called trans-
mission resonances. These points can be traced to the vanishing of sin(2qa) for
2qa = nm i.e. for energies satisfying

n?h?m?

Et+Vo= ma?

forn=1,2,3... (11.39)

This effect is easily understood in wave terms as due to the complete destructive
interference between waves scattered at the first “step” (for which there is
a phase change on reflection) and the second (for which there is no phase
change). In that case one requires that

back and forth distance across the well = 4a = n\ (11.40)

so that the difference in path lengths between the two waves is an integral
number of wavelengths, while one additional phase change from a reflection
from an edge guarantees a minimum instead of a maximum. This effect is
familiar from geometrical optics and is often used to minimize the amount
of reflected light for optical instruments. A similar effect is seen in atomic
systems (hence in three dimensions) where low energy electrons are scattered



11.3 SCATTERING FROM THE FINITE SQUARE WELL 319

from atoms of certain noble gases (such as neon or argon); in this case, called
the Ramsauer—Townsend effect, the scattering cross-section exhibits dramatic
dips as a function of energy, indicating near perfect transmission.

11.3.2 Repulsive Barrier

All of the formulae for the attractive well can be taken over to the case of the
repulsive barrier by simply letting Vy — — V), provided that the incident energy
is larger than the step size, that is, E > Vp; for example,

2m
€I=\/§(E—Vo) (11.41)

and the particle now slows down classically over the barrier.

A more interesting case arises when the energy is less than the height of the
barrier, E < Vj. The form of the solutions for |x| > a are unchanged, but in the
barrier region the Schrodinger equation now takes the form

2

where k = /2m(Vy—E)/h?*. We can write the most general solution in the
region |x| < a as

WV (x) = Ae™"* 4 Be™* (11.43)

but we can save considerable work by noting that the case under consideration
can be easily obtained from an analytic continuation of earlier results since we

have
2m . . [2m
q= ﬁ(E_VO) —> 1K =1 ﬁ(Vo—E) (11.44)

The results of Eqns (11.30) and (11.31) can then be taken over by using the
relations

sin(iz) = isinh(z) and cos(iz) = cosh(z) (11.45)
so that, for example, the transmission coefficient is given by

2kk
2k« cosh(2qa) — i(k? — «2) sinh(2qa)

T = [ 2ke (11.46)

We illustrate the corresponding wavefunctions in Fig. 11.8 for a generic case.
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+V,
...................................... E
-a +a
Particle tunnels
through barrier
/\\/\//\l
Figure 11.8. Representation of a plane wave ‘
incident on square barrier showing tunneling -~ Incident —— Transmitted

wavefunction. ---- Reflected

Figure 11.9. Generic potential barrier, V (x),
approximated as a series of square barriers making
connection to the WKB approximation for the
tunneling wavefunction.

A particle incident on such a rectangular barrier would have a probability of
penetration given by

2 2 2
I _ (2kck) %( i ) A (11.47)
112 (K2 + «2) sinh?®(2ca) + (2kk)? k2 + k2

We note that the dominant exponential piece of the tunneling probability in
Eqn. (11.47) is just that given by the WKB formula of Section 10.3.1. We can
make a useful connection between this square well result and the WKB formulae.

We derive this by noting that in order for a particle to tunnel through the
general potential of Fig. 11.9, it must successfully tunnel through each of the
thin rectangular barriers in turn, with probability P;(x;) for each barrier; we
make the following identifications.

width, 2a — Ax
Kk —> k(x;)

P = ¢ 20020 __, pi(x;) = ¢ 2K(xiDAx (11.48)
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Because each of the “successes” is an independent event, the total probability is
the product of the P;(x;); we thus have

Pr = l_[ Pi(x;)

~ H e~ DA (where Kk (x) = /2m(V(x) — E)/1?)
i
— e*ZZl—K(x,')Ax

o 6_2 fab Kk (x) dx

b
Pr =exp (—2,/ ZH—T/; VVi(x)— de) (11.49)

where a, b are the classical turning points. We will use this approximate expres-
sion for the transmission probability for barrier penetration in the examples
discussed in the next section.

11.4 Applications of Quantum Tunneling

11.4.1 Field Emission

A subject which is often discussed in modern physics courses is the photoelectric
effect in which electrons are emitted from a metal by the absorption of sufficiently
energetic photons. The effect is illustrated in Fig. 11.10(a) where the Fermi
energy of the filled electron sea is still an energy W below the threshold for a free
particle; W is often called the work function of the metal. A photon of energy E,
can extract an electron from the sea provided that E, > W, with any remaining
energy transferred to the electron as kinetic energy. Such experiments provide

(@) (b)

Y W — eex

Vacuum Metal Metal Vacuum

Figure 11.10. (a) Allowed electron states for a metal showing the filled Fermi sea and the photoelectric
effect; (b) An external electric field is applied illustrating the triangular barrier giving rise to field emission.
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evidence for the photon concept and the quantization of the electromagnetic
field energy.

A completely different form of electron emission which relies instead on a
purely classical electric field, but which makes use of quantum tunneling, is
field emission. In this case, shown in Fig. 11.10(b), an external electric field & is
applied to the sample; electrons at the top of the sea can now tunnel through the
triangular-shaped potential barrier. In this simple approximation, the probability
of tunneling corresponding to Eqn. (11.49) is (P11.8)

4 [2mwW3 1 &o
Pr = exp _g Tz = exp —? (11.50)

This expression shows the strong dependence on the local value of the work
function W at the surface. The resulting electron current due to quantum
tunneling should be directly proportional to this probability, namely

[ =Ie &/ or log(I) =log(ly) — % (11.51)

We compare this prediction with some of the data from one of the original
experiments' in Fig. 11.11.

107

1040

1 15 2 2.5
1/E (1/(VIm) 10°8)

Figure 11.11. Semilog plot of tunneling current, /, versus 1/& where £ is the applied electric field,
illustrating field emission. The data are taken from Millikan and Eyring (1926).

! We replot the data off Millikan and Eyring (1926) in the way suggested by Eqn. (11.51).
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This effect is also used as the basis of an imaging device called the field ion

microscope” (FIM), which was the first microscope to achieve atomic resolutions

enabling one to “see” individual atoms. The device works roughly as follows:

A sharp, metallic tip with radius of curvature in the range 100 to 200 A is
placed in a vacuum and charged to a large voltage, typically 1-20 kV; this
process itself helps to smooth the surface by selective field ionization of the
metal atoms to what can be called “atomic smoothness”.

A very dilute gas of noble gas atoms (often helium) is introduced; this is used
as the imaging gas. These atoms are adsorbed onto the surface of the probe
due to dipole—dipole attractions to the tip atoms (remember that both atomic
species are initially neutral).

The image gas atoms, once attached to a tip atom, can be ionized via field
emission, losing an electron to the tip; the resulting positively charged ions
are then accelerated by the electric field toward a phosphorescent screen some
tens of centimeters, away forming the image. A schematic representation of
the process is shown in Fig. 11.12 and an FIM image is shown in Fig. 11.13.

In this device, the electron tunneling serves only to initiate ion formation and
the electrons themselves do not participate in the image formation. In the
original field emission microscope, the electrons emitted via field ionization
were used to image the surface; this process relied on the local variations of

Q Metal atom

O Helium (imaging) atom

Electric field
\\

Charged helium atom
Q Q___ FElectrons
Q O tunnel here

0
5 » Ao

Figure 11.12. Schematic representation of field ion microscope. The metal atoms (large circles) forming
the surface of the smooth probe tip attract (via dipole—dipole forces) the atoms of the imaging gas (small
circles are helium). Once bound, electrons from the He can tunnel into the tip via field emission. The resulting
charged ions travel along the electric field lines (the tip is held at a large electric potential) and form an
image on the screen.

2 For many technical details, see the excellent books by Tsong (1990) and Miiller and Tsong (1969).
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Figure 11.13. Field ion microscope image of a
tungsten tip of radius ~ 400 A. The original image
had a magnification of 3 million. (Photo courtesy of

T.Tsong.

the work function W on the surface which gives rise to large variations in
the tunneling probability, and in turn the electron current. The large lateral
velocity spread of the emitted electrons, as well as de Broglie wave diffraction
effects, limited this technique to resolutions of the order 20-25 A.

11.4.2 Scanning Tunneling Microscopy

A newer technique which has had great success in obtaining images of atomic
structures on (typically graphite or silicon) surfaces is scanning tunneling micro-
scopy” (STM). A schematic representation of the physics involved is shown in
Fig. 11.14:

1.

Two metal electrodes are placed close together (often only A’s apart), one
being the sample while the other is the tip.

. Their Fermi surfaces differ and electrical equilibrium is reached only when

enough electrons have tunneled through the junction (from left to right in
this case). The resulting charge separation results in an electric field in the
vacuum region between the electrodes.

. An external voltage difference is applied to the tip shifting the Fermi energies

again and allowing electron tunneling to occur.

As the tip is scanned over a plane surface, feedback circuits monitor the tunneling
current, adjusting the tip height to maintain it at a constant value. The resulting
height profile provides a map of the surface.

? See the recent books by Stroscio and Kaiser (1993) and Chen (1993) for many details. The image in

Fig. 1.3 were obtained using this technique.
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(a) Eyac

-

Figure 11.14. Schematic representation of the energy levels
relevant for a scanning tunneling microscope (STM).

Figure 11.15. Typical geometry of the tip of an STM probe. X

An estimate of the lateral resolution possible with this instrument can be made
by assuming a simple shape for the STM tip probe as in Fig. 11.15. Assuming
a parabolic probe with radius of curvature R of say 1000 A, one finds a current
profile as a function of distance away from the closest point d given by

[(x) oc e”2dF+2/2Rc o p=x/R o p=x/p? (11.52)

where p = /R/x; typically k ~ /2mW/h? ~ 1A~". This familiar Gaussian
distribution has a spread in lateral position given by Ax = p/+/2 ~ 20A.
As mentioned above, even smaller tip sizes are possible, but because of the
exponential sensitivity of the tunneling current to the tip-to-surface distance d,
it can well be the case that the best images arise from the tunneling from a very
few surface atoms forming an atomic-scale ‘dimple’ closest to the surface.

11.4.3 a-Particle Decay of Nuclei

One of the most famous early (semiquantitative) successes of quantum tunneling
theory in nuclear physics was the understanding of the process of «-particle
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tunneling. In this process, a heavy nucleus decays to a lighter one by the emission
of an a-particle, that is, the nucleus He*. Using a compact notation, the process
can be written as

Z A (Z-2) \,(A—4 21744
X —>(N_2)Y( ) 4 2He (11.53)

where Z, N, and A are, respectively, the numbers of protons, neutrons, and total
nucleons in the nuclear species denoted by X (the “parent”) or Y (historically
the “daughter” nucleus).

Because this is a two-body decay, the energy of the emitted « is determined
uniquely from conservation of energy and momentum, and can be calculated
from a knowledge of the masses of the parent and daughter nuclear species. For
the nuclei for which a-decay is an important decay mechanism, the range in
numerical values for the appropriate dimensionful parameters in the problem is
not very large,

R~2-4F, E,~2-8MeV, and Z ~ 50-100 (11.54)
while the observed lifetimes have been measured over an incredibly large range
T~ 107 s—10""s (11.55)

A simple model for this process assumes that the a-particle moves in the
potential of the daughter nucleus, modeled by a combination of an attractive
square well (as in Section 8.2), along with the mutual Coulomb repulsion. This
can be written as

-V forr < R
V(r) = (11.56)
Z1Z:Ke*/r forR <r
We would then take Z; = Z, = 2 and Z, = Z — 2 where Z is the charge of
the parent nucleus. This potential is illustrated in Fig. 11.16 and the a-particle
is assumed to have positive energy E, equal, to its observed final kinetic energy;
the model pictures the «-particle as “rattling around” inside the nucleus with a
small (exponentially so) quantum tunneling probability of escaping each time
it “hits” the Coulomb barrier. The tunneling probability for this process is then
given from Eqn. (11.49) by

2 71 Z,Ke?
T—exp|: 1/h/;/ ry 22228 E:|:e_2G (11.57)

where the factor in the exponential (G) is known as the Gamow factor. The
classical turning points are taken to be
lezKez

a=R and b= —— (11.58)
Ey
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/ Ke?Z,Z,Ir

Figure 11.16. Simple model for the effective v,
potential seen by an a-particle undergoing tunneling. R

and we have used the reduced mass u as is appropriate for a two-body problem;
since the daughter nucleus is much heavier than the a-particle, however, one has
U ~ mgy. The Gamow factor can be written in the form

2uct 1 1
G =7 Za | EE / dn = —1 (11.59)
E, w? n

where @ = Ke?/hc as always and w?> = R/b. The integral can be done in closed

form giving
1 [
1
/ dn [——1= % —sin”Nw) — Vor(l — v?)
w? n

J
%forw:w/b/R <<1 (11.60)

One then has very roughly that

2Grg L2 (11.61)
Ey (MeV) '
The decay lifetime itself can be estimated by noting that there is roughly an
¢~2C probability of a tunneling “escape” every time the « “hits” the electrostatic
barrier. The time between such ‘escape attempts’ can be approximated as

2R 2E 1
To &~ — where v, x_—¢ (11.62)
Vo My 20

R
X

and R &~ 5-8F is a typical (heavy) nuclear radius; this gives Top ~ 1072!s,
which is indeed a typical nuclear reaction time. The lifetimes in this simple
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Figure 11.17. Semilog plot of a-decay lifetime (z in seconds) versus 1/+/E¢ (in MeV) for four different
radioactive decay series, the so-called Geiger—Nutall plot. The data are taken from a recent edition of the
Chart of the Nuclides (Walker (1983).)

picture then scale as

+2G ~ _Z-2
or log(t) log(To)+4\/m

This behavior is most easily studied by examining the «-decay lifetimes of dif-
ferent isotopes of the same element (so that the value of Z is fixed and only E,
varies). We plot the lifetimes for several such series (on a log scale) versus 1/+/E,
in Fig. 11.17 (a so-called Geiger—Nuttall plot) and note the reasonable straight
line fits. The simple approximations made here can be refined,’ but they provide

T = Tye (11.63)

convincing evidence for the importance of quantum tunneling effects in nuclear
decay processes.

11.4.4 Nuclear Fusion Reactions

For a-decay of heavy nuclei, the repulsive Coulomb potential forms a barrier
through which a-particles must tunnel to get out of the nucleus. For fusion reac-
tions, we must consider the inverse process in which light nuclei must penetrate

4 See, for example, Park (1992) for a more extensive discussion.
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their mutual Coulomb barrier in order to get close enough to participate in
strong nuclear or weak interactions, which are short-ranged forces.

For example, in the production of thermonuclear energy in stars, protons
(!H) are eventually converted to helium nuclei via the so-called pp cycle. The
overall reaction can be written as

pp cycle: 4'H — *He + 2¢™ + 2v, (Q = 26.7 MeV) (11.64)

where Q is the energy released per reaction. The net reaction is the result of a
series of two-body interactions given by
1 1 2 + —
H+'H—-?H+e"+v (Q=144MeV)
H+'H > *He+y (Q=549MeV)
He +°He — *He+2'H +y (Q = 12.86 MeV) (11.65)
The reaction rate for such two-body processes is determined not only by the
probability for the quantum mechanical tunneling event (given by the interaction
cross-section), but also by the available number of initial particle pairs, and each
of these factors has a very different dependence on the center-of-mass energy
in the collision. The cross-section must include the Gamow factor, e 2%, while

the number density of particles in the hot gas is proportional to the Boltzmann

factor, e E/%8T  This means that the interaction rate is proportional to

reaction rate oc e 2GE/ksT — o—f(E) (11.66)

[2uc2 E
f(E) = 21 Z,Ke*n /j; +kB—T (11.67)

and the maximum event rate corresponds to the minimum value of f(E). The
value of energy at this point is given (P11.10) by

Emax 3/2 MCZ
— Zi Zoma, | 11.68
(kBT) VTN ok T (11.68)

This implies that if one wishes to study the dynamics of the nuclear reactions

where

responsible for stellar fusion at a given temperature, one should do nuclear
scattering experiments in terrestrial accelerators at energies very near Ep,y as
given by Eqn. (11.68); the interaction rate for values not too different from Ep,ax
will be hugely suppressed due to the exponential sensitivity in Eqn. (11.66).
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11.5 Questions and Problems

Ql11.1.

Ql1.2.

Q11.3.

Ql11.4.

Ql1.5.

Ql1.6.

P11.1.

P11.2.

Consider a classical particle of energy E incident from the left on the step
potential of Eqn. (11.10). On the same graph, sketch the classical trajectory, x(t)
versus t, for the cases (i) E =4V, > 0,(ii) E= 1.1V > 0,(iii) E = 0.5V > 0,
and (iv) E= -V > 0.

Consider a wave packet of mean energy E incident on a step potential of height
Vo > 0. What would (x);, Ax;, (p)s, and Ap; all look like as functions of time
for the cases (i) E >> Vj, (ii) E > Vi, and (iii) Vo >> E > 0?

If you wanted to construct a wave packet for the attractive finite well, what
would be the complete set of states you would have to use?

To what temperature would you have to heat a typical metal to remove electrons
by thermal excitations? Why is field emission sometimes referred to as “cold
emission”?

Why are neutrons most often used in initiating fission processes in heavy nuclei?
Would protons work as well? How about antiprotons?

Look up the Arrhenius law in any book on physical chemistry which is used to
describe the rate of chemical reactions. Discuss the similarities to our simplified
discussion of «-particle decay.

Show that the probability flux corresponding to the wavefunction
w(x’ t) — Iei(kx—hkzt/2m) + Rei(—kx—hkz t/2m) (1 169)
is given by
) hk hk
jlo £) = — I = —|R]® (11.70)
m m

Scattering from §-function potentials I. Consider plane waves of amplitude I
incident on a single attractive §-function potential, V (x) = —gd&(x).

(a) Match boundary conditions to calculate R and T in terms of I and the
other parameters of the problem.

(b) Calculate the ratios of the reflected and transmitted flux to the incident
flux and check conservation of flux.

(c) Express the reflected and transmitted fluxes in terms of E and sketch them
versus E.

(d) For what value of E will 99% of the incident flux be reflected? How about
1%¢?

(e) What changes if we choose a repulsive potential instead?



P11.3.

P11.4.

P11.5.

P11.6.

P11.7.
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Absorptive scattering. Consider a potential similar to that of P11.2 except that
the scattering center now has a negative imaginary part, that is,

Vi(x) = (g — ig0)d(x). (11.71)

(a) Repeat the analysis above and show that flux is not conserved in this case.
This result is expected from the discussion of Section 4.2 where we noted
that this type of potential corresponds to absorption.

(b) Calculate the rate of loss of particles ‘into’ the absorption potential and
show that it approaches the incident particle rate when E << Ey, that is,
effectively all of the particles are absorbed below some energy Ey.

Scattering from §-function potentials II. Consider scattering from a twin
repulsive §-function potential defined by

V(x) = glé(x—a) + 6(x + a)] (11.72)
(a) Calculate Rand T.
(b) Show that flux is conserved.

(c) Show that this potential exhibits transmission resonances in the same way
as the square barrier, with the same physical condition being required. (For
a discussion of this problem, see Lapidus 1982c.)

Derive the expressions for R and T in Eqns. (11.30) and (11.31). Also solve for
the E and F coefficients. Show that flux is conserved in this reaction, namely
that the flux is the same in all three regions considered.

The attractive §-function potential, —g8(x), can be thought of as the limiting
case of a deep and narrow attractive well where the width and depth satisfy
2aVy = gasa — 0and Vy — oo. Show that your results for | T/I|? in the last
problem in this limit gives the same result as in P11.2.

(a) Show that the smooth potential function defined via
\4 =V ! 11.73
x) =W m (11.73)

approaches the discontinuous step potential for L — 0.

(b) One can show’ that the ratio of reflected to incident flux is given by

IR <sinh(n(k — q)L)>2

117 = \sinh(z(k + 9)L) (11.74)

Show that the L — 0 limit reduces to the result for the step potential.

(c) Discuss the L — oo, i — 0,and m — oo limits.

5 See Landau and Lifschitz (1965).
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P11.8.
P11.9.

P11.10.

Derive Eqn. (11.50).

Geiger—Nuttall plot for thorium The lifetimes (in various units) and observed
a-particle energies (in MeV) for decays of various isotopes of thorium (Z = 90)
are given below:

Mass number T Ey (MeV)
232 1.4 x 1010yr 4.01
230 7.7 x 10*yr 4.69
229 7.34 x 10% yr 4.85
228 1.91yr 5.42
227 18.7 day 6.04
226 31 min 6.34
225 8 min 6.48
224 1.04s 7.17
223 0.66's 7.29
222 2.9 ms 7.98
221 1.68 ms 8.15
220 10 s 8.79
219 1.05 s 9.34
218 0.11 ps 9.67

Plot log(t) versus 1/+/E, and try to “fit” a straight line through the data points
(either by eye or via some fitting routine if you know how). Also plot the
theoretical expression in Eqn. (11.63) on your graph and compare the “slopes”
and “intercepts” of your lines; this exercise gives some feel for the reliability of
this simplest estimate of tunneling effects.

Evaluate the optimal energy, Enmay, for stellar fusion for the two situations
H-H reactions: Z; = 72, = 1 uA my /2 T =10"K
C—Creactions: Z; =72, =6 n A~ 6my T =10°K

What is the ratio of interaction rates as one varies E = rEn,x over the range
r = (0.5,2). Over what range of energies around E,,,;, does the interaction rate
drop to half its peak value?



TWELVE
More Formal Topics

In this chapter, we investigate in more depth many of the formal properties of
quantum mechanics introduced in Chapters 4 and 6, extending the discussions
of Hermitian operators (Section 12.1), the vector structure of quantum wave-
functions (12.2), and commutators (12.3). We use these techniques to prove
important new results involving uncertainty principles (12.4) and the time-
development of quantum states and its connection to conservation laws (12.5).
We conclude with a discussion of the propagator approach to the time-evolution
of quantum systems (12.6) and a discussion of timescales in bound state
systems (12.7).

12.1 Hermitian Operators

We have stressed (in Section 4.4) that in order for a quantum operator, O, to
correspond to a classical observable quantity, O, it must be Hermitian; we have
defined this by insisting that its expectation value in any quantum state be real,

that is,
=[/w*éw]*=/ (0v)'w L [wow=100 a2

where any proof consists in verifying the equality in question. We also have, even
more compactly, in bracket notation

(W10l = (¥|OY)* = (Oy|y) = (¥|O|y) (12.2)

and we will often use whichever notation is more convenient. From Section 6.1,
we know that Hermitian operators will also satisfy the more general requirement

(x101¥)* = (Ox1¥) = (¥|Olx) (12.3)

It will turn out to be extremely useful to generalize the notion of complex
conjugation used here for average values to the operators themselves. To this
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end, and motivated by Eqn. (12.1), we define the Hermitian conjugate of the
operator O, denoted by O and read as “O-dagger,” by the relation

[(©v)w=[vo (12.4)

or equivalently
Oy ly) = (¥10"y) (12.5)
Using our established definition of Hermitian-ness, we see that:
® An operator is Hermitian provided
W10l = (w0y)* = (OvI¥) = (¥|OT1y) = (wOly)  (12.6)
for all ¥ or, more simply, if
O'=0 (12.7)

This is then a test which is performed directly on the operator. The analogous
condition for a complex number, ¢, to be real is simply

c=c" (12.8)

and it is easy to show for any complex constant

/w*cTw E/(cw)*w sz*c*w so that ¢/ = ¢* (12.9)

This is then our first example of Hermitian conjugation and shows that this
operation reduces to ordinary complex conjugation when applied to complex
numbers. It is similarly easy to show that x" = x in this language so that x is
again confirmed to be Hermitian, as is any real function of x.

A less trivial example is the calculation of (d/dx)" which gives

+o0 . d T oo /4 *
[V (5) v=f (W) v
+00
R BT AU
dx

—o0

+o0o N d
_ /_OO " (_E>¢ (12.10)

d\' d

whence
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Combining these results we presumably then have (see below) for the
momentum operator

o (hd\" aNT AT (h i)_fbi—A (12.12)
= (i) = () (@) (5 (a) =Ta-i

and p is Hermitian. This example demonstrates some of the utility of a definition
of Hermitian-ness involving operators themselves; if one establishes, via direct
calculation, a small class of known Hermitian operators, the Hermitian conjugate
operation and its properties can be used to test new combinations of operators
in a straightforward way.

Some of the most useful properties of Hermitian conjugation (whose proofs
will be left to the problems) are:

* The Hermitian conjugate satisfies the more general relation

(Axly) = (lATy) (12.13)
for all states yr, x.
® This can be used to show that
(AHT = A (12.14)
in much the same way that (¢*)* = ¢ for complex conjugation.
* The Hermitian conjugate reverses the order of a product of operators, that is,
(AB)" = BTAT (12.15)
This can be shown by considering
WIAB) 1Y) = (AB)y1y)
= (ABY)Iy)
= (By|AT|y)
= (v|B"1ATy)
= (y|B"Ay) (12.16)
¢ This implies that

_ If both A and B are separately Hermitian, their product, AB, is Hermitian
provided that A and B also commute, that is, if [A, B] = 0.

This observation helps justify the derivation in Eqn. (12.12).
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® The combinations
AAT, (A+A%/2, and —i(A—ANH)2 (12.17)
are all Hermitian, even if A itself is not; these correspond respectively to
c® =c/’>, Re(c), and Im(c) (12.18)

which are the modulus squared, and the real and imaginary parts of an
ordinary complex number, c.

e The combination
i[A, B] (12.19)

is Hermitian provided both A and B are also; this will prove useful in our
derivations of generalized uncertainty principles.

e For real functions of operators, we have
fO)" =f(Oh (12.20)
which can be seen by using a power series expansion for f (x).

Finally, we can make a connection with the matrix representation of operators
in Section 10.4. If we define the matrix corresponding to some operator using a
complete set of states, u,(x), as

Oum = (ttn| Oltyy) (12.21)
then the definition of Hermitian conjugate gives
(n O 1t) = (Ottt} * = (1t Oltn)*. (12.22)
This can be written in the form

T _ _ T
(O )nm - (O*)mn - <O *>nm (12.23)
where OT defines the transpose of the matrix, that is, the matrix resulting from
interchanging rows and columns (see Appendix F.1); thus

® The Hermitian conjugate of a matrix is obtained by taking its transpose and
the complex conjugate of all its elements, that is, Of = O™*. A matrixis then
described as Hermitian if Ot = O.
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12.2 Quantum Mechanics, Linear Algebra, and
Vector Spaces

We have made occasional reference to the algebraic structure of solutions of
the Schrodinger equation, especially in position-space, noting similarities to the
vectors of a linear vector space. In this section, we wish to extend and amplify
this identification by collecting more examples of the apparent similarities. We
know that the different representations of the Schrodinger wavefunction

1

2mh
+00
Y(x) < a= {an = / ((un ()Y (x)dx; n=1,2.. } (12.25)

—0o0

V(x) «— ¢(p) =

+00
/ dx e PPy (x) (12.24)

all have the same information content and satisfy the same normalization
condition

400 +00 00
1=/ ¥ ()2 dx=/ 6@ Pdp =Y la =a*-a  (12.26)
n=1

—0 —00

This connection of ¥ (x) and ¢ (p) with the discrete, but infinite-dimensional,
complex vectora = {a,; n = 1,2,...} motivates us to consider all three as simply
different representations of the same quantum state vector. Extending the Dirac
bracket notation, we often denote

“ket”vector <«—>  |Y,)  <—  Ya(x),da(p),a
“bra”vector <«— (Y| <«— Y (x),¢,(p),b" (12.27)

The various overlap integrals (and sums) can now be described as an inner-
product or generalized dot-product of two such vectors; their common value is
then given by

+00 +0o0

Yy, () Ya(x) dx = ¢, (p) $a(p) dp =b" -a = (Yylvha) (12.28)
—0o0 —o0
where a “bra” vector “dotted into” a “ket” vector forms the familiar Dirac
“bra”“ket” or bracket representing the overlap of these two quantum states.
We can generalize the notion of a linear vector space to include the following
features:

¢ In position-space, for example, the vectors are associated with square-
integrable functions, v (x), where the continuous label x generalizes the
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discrete label a = {a,;n = 1,2,3...}. Such an infinite-dimensional vector
space, conventionally denoted as H, is often called a Hilbert space.

® We assume that av/,(x) + Bp(x) € H for complex constants «, 8 provided
Ya, Yy are as also. The space H is therefore closed, since linear combinations
of vectors are still vectors, that is, linear combinations of square-integrable
functions are still square-integrable.

® The (suitably normalized) eigenfunctions of a Hermitian operator, which we
know form a complete set, can be thought as a set of orthonormal unit vectors
since (uy|tm) = Spm-

o We will concentrate on linear operators, O, on this space, namely, ones which
satisfy

O (o + Byw) = a (0ga) + B (Ov) (12.29)

A very important set of operators are those which preserve the inner-product
among vectors; these can be thought of as generalized rotations which keep the
“length” of state vectors or functions fixed. We will denote such operators by
U, with the notation |¢') = U|v). If the dot-product is to remain unchanged
under such transformations, we must have

(Wal¥p) = (Wiolvpr) = (UvalUyry) = (Yl UT Ul (12.30)
or
Ut =1 (12.31)

where 1 is the unit operator and we have used the definition of Hermitian con-
jugate. Operators which satisfy Eqn. (12.31) are call unitary operators. Just as
ordinary rotations preserve the length of standard vectors, unitary transform-
ations preserve the norm of a vector in Hilbert space (4/{¥]¥)) and hence
conserve probability.

In a matrix notation (P12.5), where the operator is defined via

a=Ua or a = Z Ujia; (12.32)
J

we have the equivalent statement

u"u=Uu=1 or (UT*U)ij -y (UT*)l_k Ug=08;  (12.33)
k
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Example 12.1. Rotation matrices as unitary transformations

A simple example involving the rotation matrix for two-dimensional real vectors is a useful
reminder. In this case we have

;L x"\ _ [ cos@®) sin@)\ (x
X =Rx or (y’>_(—sin(9) cos(@)) (y) (12.34)

which rotates the vector x through 6 radians. It is then easy to check that

to _ (C0s(0) —sin(@)\ [ cos(0) sin@@)) _ (1 0\ _
RR‘(sin(e) cos(@))(—sin(e) cos(0)>_(0 1)—1 (12.35)

In this case RT = R since R is real.

Example 12.2. Fourier transform as a unitary transformation

An example of such a norm-preserving or unitary transformation of more relevance to quantum
mechanics is the Fourier transform

PP = ﬁ /_:o dx (e~ PH/R (12.36)
which we already know satisfies (¢|¢) = (¥ |v). If we write the Fourier transform in the
form

+00 e—/px/ﬁ +00
d(p) = /_Oo adx (ﬁ) Yx) = /_Oo ax Rpx ¥ () (12.37)

we can note the immediate similarity to Eqn. (12.32) with the discrete labels and summations
replaced by continuous variables and integrations. The ‘rotation matrix elements’ are

1

Rox = ——e P/ (12.38)
P 2mh
and satisfy their own (continuous) version of Eqn. (12.33), namely
+00 1 +o0 . e
f dX (Ro) “Rup = 5— / dx e/ PP/ = 5(p —p) (12.39)
PSS 2nh J_ oo

This identification with norm-preserving transformations makes it even clearer that v (x) and
¢ (p) share the same information content. A very similar set of results for the expansion
coefficients for a complete set of states can also be shown; they follow from the definition

Y ) =Y anun() = Y Usnan (12.40)
n n
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(Continued)
where
a0 = [ dtun0or e = [ dx (U3) v (12.41)
In this case, the norm-preserving condition of Eqn. (12.33) reads
+00 +o00
/ ax (Unx)*Uxm =/ ax up (X)Um(X) = 8pm (12.42)
—00 —00

which is familiar from the orthogonality of eigenfunctions belonging to different energy
eigenvalues. We find similarly for the other (discrete) label that

D UppUnx = Y _ub()un(x) = 8(x — x)) (12.43)

which is useful in the study of propagators in Section 12.6.

The powerful analogy between the Hilbert space of quantum mechanics and
ordinary vector spaces can be used to great benefit to prove new results which
have an obvious geometrical analogy in the more familiar setting of ordinary dot
products. An example is the so-called Schwartz or triangle inequality for vectors
which reads

A’B? > (A-B)? (12.44)

and which in two and three dimensions can be easily translated into the statement
that

A’B? > A’B*cos’(8) or 1> cos’(6) (12.45)

where 6 is the angle between A and B; the equality is only achieved when A, B
are parallel or antiparallel, that is, cos(f) = £1.

A completely analogous result can be proved for complex wavefunctions,
namely,

+00 400
U_ dx|w<x>|2] [/_ dxlx(x)lz}z

or more generally in terms of quantum states,

W) (xlx) = Kol (12.47)

We will prove Eqn. (12.47) in a formal, abstract way by generalizing the standard
argument for ordinary vectors. We begin by considering a general quantum state
given by a linear combination of [y) and |x ), whose “ket” vector is written as

1€) = aly) +Blx) = W xlx) — Dox v (12.48)

2

+00
/ dx r* (x) x (x) (12.46)

—0o0
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where we recall that the overlapso = (x| x)and 8 = —(x|¥) are inner-products
of quantum states and hence simply (complex) numbers. The corresponding
“bra” vector is then

(1= bl = )™ (= O = (lx) (x| (12.49)

The overlap of any generalized vector with itself must necessarily be nonnegative
so that (¢|¢) > 0, with the lower bound of 0 only being saturated if |¢) itself
vanishes. This then implies that
0= (1g) = {x bW = Whox B (xlx) — ) xlv))
= (xOxbO )y = Wb xv) (xlx)
= X OO xdv) + o) ()
= xOxbO i) = ) ) (xdx) (12.50)

or

W) xlx) = W) xdw) = @)W = 1whol? (12.51)

Once again, the equality is only achieved when the state |¢) vanishes identically
which implies that

(xI¥)

) = (—‘”) X) or Y o x() (12.52)
{(x1x)

that is, |1) and | x) are proportional to each other, or “parallel” in a generalized

sense.

12.3 Commutators

Since it is obvious that the commutator of two operators plays such a funda-
mental role in the formalism of quantum mechanics, we find it useful to collect
below some basic results on commutators which can make the evaluation of
complicated combinations easier. We can easily show by direct manipulation
(P12.8) that

¢ The commutator of a nontrivial operator with any (complex) number vanishes
trivially,

[c,A]=0 for any complex number c. (12.53)
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This is related to our assumption that we will only be considering linear
operators, satisfying Eqn. (12.29).

¢ The commutator of an operator with itself vanishes, that is,
[A,A]=AA—AA=0 (12.54)
This statement is not as trivial as it may at first seem.
¢ The commutator “distributes” in that
[A+B,Cl1=1[A, Cl+[B,C] (12.55)

e The commutator of A and B is an antisymmetric function of its arguments,
namely,

[A, B] = —[B, A] (12.56)
so that the ordering of the operators is critically important.

® More involved commutators can often be simplified by repeated use of the
relation

[AB, C] = A[B, C]1+ [A, C1B (12.57)
or its equivalent

[4, BC] = BIA, 1+ [A, BIC (12.58)
We note that the last five relations (Eqns (12.54)—(12.58)) have a structure
similar to the vector- or cross-product of two vectors (Q12.2).

e Commutators can be applied repeatedly so that, for example,
[A,[B,CIl = A[B, C] - [B, C]A (12.59)

which is to be distinguished from Eqn. (12.58).

® A sometimes useful relation amongst double commutators is the so-called
Jacobi identity which states that

[A,[B, Cl + [, [4, B+ [B,[C, All = 0 (12.60)
Note the cyclic permutations.

As an example of the use of these relations, we can make use of the relation
[x, p] = ih to show that

[x, p*] = plx, pl + [x, plp = 2ihp (12.61)

instead of evaluating such quantities directly, as in Section 4.8 or P4.16.



12.4 UNCERTAINTY PRINCIPLES 343

12.4 Uncertainty Principles

We have already seen several cases where it is possible to have simultaneous
eigenfunctions of two different Hermitian operators, A and B; for example, the
energy and parity eigenfunctions for Hamiltonians with a symmetric potential.

In this section, we can combine several of our formal results to derive a general
form for the minimum uncertainty principle product for any two observable
quantities, A, B represented by quantum operators, A, B. To this end, we note
that:

® The spread or RMS deviation in the measurement of any observable is given
by

(AA)? = (Y|(A—(A)?*|y) (12.62)

where (A ) (¥ |A| Yy, with a similar expression for AB.

e Since we are dealing with observable quantities, we will assume that both A
and B are Hermitian.

Using the same trick as in the proof of the Schwartz inequality, we define a
“ket” state given by

1) = (A — (A) [y) + in(B — (B)) |¥) (12.63)

where X is an arbitrary real number. The corresponding “bra” vector is then

¢l=((A-d)v|-ir((B-B)v| (12.64)

The inner-product (£ |¢) is then a function of A and, of course, is nonnegative so
that (¢|¢) > 0. It can then be written as

0= 100 = (15 = (A - (Apy )(f\ i)
Bv)

A [((A ANy |(B B)v)

(B — By ‘(A ),p)] (12.65)

+32((B = (Byw | (B -

We can make repeated use of the fact that A, B are Hermitian, and that (A), (B)
are therefore real, to move all the terms “out from under” the “bra” vector; we
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then write this as
16 = (v | (A= A2 ) + 22w | B = By w) (12.66)
+ iy (A = (ANB = (B) — (B (B)(A — ()| w)
We note that the first two terms can be written as
(AA)? + A*(AB)? (12.67)
while the third term can be written in terms of a commutator, namely
(A—(A))(B—(B)) — (B— (B)(A— (A)) = AB— BA=[A,B] (12.68)

with the simplification due to the fact that the commutator of an operator with
any (complex) number vanishes, as in Eqn. (12.53). The resulting term has the
form

i (v LA, B1| w) = At Flw) (12.69)

where we know that the combination £ = i[A, B] isa Hermitian operator (P12.3)
which must necessarily have real expectation values. We can thus write I(X) in
terms of manifestly real quantities, namely

I(L) = (AA)? + A2(AB)? + Ay |Ely) > 0 (12.70)

Since this is, by construction, nonnegative for all values of 1, it will be so at the
minimum, namely, for A determined by

= 2min(AB)? + (Y |F|Y)  or Amin = W) (12.71)

Al (Amin)
0 = —~Tmn/ —
2(AB)?

dx

The inequality for this value of A can then be written in the form of an uncertainty
product bound, since we have

A~ 2 ~
ICumin) = (AAY + (—M> (AB)? — (M) (WIE) = 0

2(AB)? 2(AB)?
(12.72)
which gives
Blalr) 2 A B2
(AA2(AB) > (iﬁlill/f) _ (WII[A;B]IW (12.73)
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where the right-hand side is obviously real and positive (despite the explicit 1)
since (¥ |F|y) is real. This general result shows that:

e It is, in principle, possible to have simultaneous eigenvalues, that is, states for
which both AA and AB are vanishing, provided [A, B] = 0. The uncertainty
principle product can be written as

[ [itd, 1| )

AA AB >
2

(12.74)

The famous Heisenberg uncertainty principle (for position-momentum) is now
simply a special case with

A=p and B=xwhichgives F =i[A,B]=h (12.75)
so that
h h
AxApz S (Wlv) = (12.76)

This derivation also allows us to calculate the minimum uncertainty product
waveform for the pair x, p as we know that the lower bound Ax Ap = k/2 will
only be saturated when [¢) in Eqn. (12.63) vanishes identically. Using explicit
position-space forms, this occurs when

hd ~ .
0=2¢(x) = (75 - (P)) ¥ (x) +id(x — (x) ¥ (x) (12.77)
or using
h
Amin = _m (12.78)
we have
Ay ip (=)
I — 7 ¥ (x) 2(Ax)? ¥ (x) (12.79)
where (x) = xo and (p) = po. This has the simple solution
Y(x) o« e~ (xm0)?/4(8x)? ipox/h (12.80)

which is the familiar Gaussian wavefunction with arbitrary initial position and
“speed”; this state is thus singled out not only because of the mathematical
simplicity associated with its manipulation, but for important physical reasons.
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12.5 Time-Dependence and Conservation Laws in
Quantum Mechanics

In classical mechanics, Newton’s laws yield not only particle trajectories, x(t),
but through them, the time behavior of all other observables. For example, the
kinetic energy varies in time via

2 dt

In a similar way, we have seen that the time-dependence of the expectation values

2
T(t) = %mv2(t) L (dx(t)) (12.81)

of the quantum operator analogs of classical observables for most quantities
arises solely through the time-dependence of the wavefunctions satisfying the
Schrodinger equation, that is,

(O): =/ dx y*(x,t) Oy (x, 1) (12.82)
—00
Thus, the time-dependent kinetic energy in Eqn. (12.81), has the quantum analog
A +00 ~ hz 400 a , t
(T), = / v T vy L f dx ’M
—o0

—o0 2m ax

2

(12.83)

An important special case occurs in classical mechanics when the time-
development of an observable is trivial, that is, it is constant in time. This results
in so-called conservation laws; examples include the conservation of energy,
momentum, and angular momentum under the appropriate circumstances. The
use of such conservation laws and the study of the conditions under which
they are valid is an important topic in classical mechanics, and in this sec-
tion we extend these notions to the quantum arena by examining in detail the
time-dependence of expectation values of quantum operators.

A deceptively simple result arises when one considers energy eigenstates or
stationary states. In that case the time-dependence is trivial,

Y (x, 1) = Yu(x) e Ent/h (12.84)

so that the average values of operators satisfy

(0), = /*00 0 [W:(x) e-i-iEnt/h] o [wn(x)e—iEnt/h]

—0o0

“+00 R R
- / dxe () O Yru() = (O)o (12.85)

—0o0
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which is trivially time-independent and further justifies the name stationary
state. For a more general state, ¥/ (x,t) = ), an¥y (x)e~"Ent/P no such simple
cancellation of time factors occurs, and in general one has d (0),/dt # 0.
Specializing, for familiarity, to a position-space representation, we can calcu-
late the time-dependence of the expectation value of a generic operator O in
some quantum state, ¥ (x, t), by writing
Aoy, d d

A +oo * A

+oo 30

+00 aw* R . Aaw
+/_Oo dx[ ” Oy + ¢ OE} (12.86)

where we have assumed, for generality, that O itself may have explicit time-
dependence. Since v (x, t) satisfies the Schrodinger equation, we can write

d A oy
_‘/f = Hvy¥ andhence —ih v
ot ot

and using these relations in Eqn. (12.86), and switching to the more compact
bracket notation, we have

d(0);
dar <1ﬂ

ih = (Hy)* (12.87)

90

37 (UIOlHY)

i
h

w>+%<ﬁw|é|w>
(w29 )+ (w1AOW) - wIOAW))
ot h

d(O); _ <BO>+ i<[PAI, é]>t (12.88)

dt ot h

where we have used the fact that H is Hermitian to move it from the “bra” to the
“ket” vector.
This is an extremely important result as it states that:

e If the quantum operator analog O of the classical observable O
— is not itself an explicit function of time and
— if it commutes with the Hamiltonian, that is [PAI , O] =0,

then the expectation value of O in any quantum state is independent of time.
This implies that the classical observable O is conserved.
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Example 12.3. Time-dependent expectation values

Before discussing the meaning of this result in more detail, let us consider several examples.
The quantum momentum operator p obviously has no explicit time-dependence and its
commutator with a generic Hamiltonian is given by

(A, p] = [H*/2m + V (x), f]

sy :
=5 [p% Pl + [V (X),p]

_o_" (dv(x)> ~ (12.89)
i ax i
so that
d . i~
E(ph = ﬁ([/‘/, pl) = (FCO) (12.90)

where F(x) is the classical force. We thus have the quantum version of the familiar classical
condition on conservation of momentum, namely that (6); will be constant in time provided
the classical force, F(x), vanishes. Similar conditions relating to the conservation of energy
can be discussed (Q12.5).

Equation (12.88) can also be used to derive already familiar relations in a more compact
form, such as

d(x); =0+I£([/-A/,X])

dt

_ /. 1 ~)
=+ <ﬁ[p X+ [V(x),x]>

I s . R
= m(p[p, X1+ [p. x1, p)
dix)t (Pt

&= m (121
This can be combined with the result of Eqn. (12.90) to give
d?(x)t d (P dV(x)
m W= ma <7> = ({F(x)) = —< o > (12.92)

This quantum version of Newton's second law is called Ehrenfests theorem.
If we choose O = p2, we find that
dph _ i 522m + V), ) = 1V 00, B2 = (OF Foop)y — (12.93)
at —ﬁ([ﬁ m+V(x),p ])—ﬁ([ ). p71) = (PFx) + FCop) (12,

We can use this general result to note that the expectation value of the kinetic energy, (52) /2m
satisfies

USRS R YT IR
a(ﬂ =m [E(P ):| =3 <mF(X)+F(X)m> (12.94)
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(Continued)
which is the analog of the classical work-energy theorem relating the rate of change of the
kinetic energy to the power done as work; note the symmetric combination of p/m and F(x)
which is the analog of F - v. This result in Eqn. (12.93) is also useful in the evaluation of the
time-dependence of the momentum-spread or uncertainty, Apx.

In a similar way, one can obtain the following general relations

dix?) 1 ..
g E<XP + px) (12.95)
dxp) _ (p% _dipx)
G =t XF(x) = g (12.96)
which can be combined to give
d?ix?) 2| (pY
= [—m + (XF(0) (12.97)

all of which are relevant for the calculation of Ax;' (asin P12.16.)

Returning to Eqn. (12.88), it is easy to understand that a quantum operator
must have no explicit time-dependence in order to be conserved. To appreciate
why the commutator with the H operator arises, let us examine more fully the
role that the Hamiltonian plays in quantum mechanics. The time-dependent
Schrodinger equation can be written as

I (x,t)

ih% = Hy(x,t) or ryamie —%W(x, t) (12.98)

which we can formally integrate to yield
Y1) = ey (x,0) (12.99)

thus solving the initial value problem; recall that the exponential of an operator
is only defined via the series expansion of e, that is,
X An

.~ Ry
SO == (12.100)

A A 1
=140+

n=0
While this relation is of somewhat limited use as a calculational tool’ it does
show that:

® The Hamiltonian acts as the time-development operator in quantum
mechanics.
! See Styer (1990) for a nice discussion of The motion of wave packets through their expectation values

and uncertainties.
2 See, however, Press et al.(2002).
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For example, for small enough times, the approximation
i A
Yix,t+dt) =~  Y(xt)— ﬁ(Hglr(x, t))dt (12.101)

will be a good one, so that the operation of —iﬁdt/h “translates” the
wavefunction ahead in time by an infinitesimal amount dt.

Example 12.4. Time-development of free-particle Gaussian wave packet

One case in which the time-development operation in Egn. (12.99) can be performed in closed
form is for the free-particle propagation of the Gaussian wave packet.” To be consistent with
the notation in Section 3.2.2, we write the initial wavefunction in the form

Y (x,0) = %\/_ e—xt/2al /% [# e—Xz/“W} (12.102)
o T

where we have written ?h% = 2w for use in the “trick” we will employ below; this is the
same form as in Section 3.2.2, but we choose pg = 0 for simplicity.
The free-particle Hamiltonian is simply

. R 92
H=——— 12.103
2m ax?2 ( )

so the time-development operator is
00 A\ DN 00 . 2\ "
i —IHt ith 9

—Ht/h = — 12.104
o -2(5) -2 () e

and we can use the identity

to write Eqgn. (12.104) as

o (ith d\"
Z(’Z—a—> — eclo/v] (12.106)
- m ow

where ¢ = ith/2m; we note that this is true only when acting on Gaussian functions. We
can then use the results of P12.6 to show that

eI E ) = F(w + C) (12.107)

3 See Blinder (1968).
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(Continued)
so that the net result of the time-development operator is to give

vixt) = ety (x,0
=y X, 0w — w+ (iht/2m))

_ [ah 1 X2 /Awtith/2m)
2J7 | Jw + ith/2m

R S e s (12.108)

JahFm

where F = 1+ jt/mha = 1+ it/ty, just as in Section 3.2.2.

Using the identification in Eqn. (12.101), we can now discuss the conditions
under which a quantity might be conserved, that is, have a constant value in
time. If such a quantity O is to be conserved, we should obtain the same value
from a measurement at different times, and we can check this by comparing

H élﬁ(x, 1) < (then evolve in time)(measure O first)

? ?

= = (12.109)

¢ ¢

OH ¥ (x, t) <= ( then measure O later)(evolve in time first)

Thus, whether the operation of measuring O (via O acting on ) and the evolu-
tion of the wavefunction in time (via H acting on V) ‘interfere’ with each other,
as measured by whether [ﬁ , O] = 0 or not, helps determine whether O will
change in time.

iHt/h

Defining the time-development operator as U=e , we note that U is

unitary since
U0, = gtiHt/h gibHt/h — { (12.110)

where we have used the fact (P12.20) that ¢© is unitary if O is Hermitian. This
is the ‘fancy’ version of the statement that Schrodinger wavefunctions, if initially
normalized, stay normalized at later times, the set it and forget it rule.
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12.6 Propagators

The expansion theorem approach to solving for the time-dependence of
quantum wavefunctions can be formally written in a way which is suggest-

ive of yet another solution method familiar in classical mechanics, namely, the

technique of Greens functions.’

12.6.1 General Case and Free Particles

The general solution

Y t) =Y anf(x)e Bt/
with the initial conditions included by using

+00
ap = / dx' i (x") g (', 0)

—00
can be combined to give

w(x,t>=2[f

n —0o0

+oo

ax' YE() P« m} Yn(x)e Ent/h

—00

+o0
= / dx’{Z Y (&) Y () e—“f"f/h}w(x’,m

+0o0
= / dxl K(x, x,; t, O) l/f(x,) 0)

—0o0

where we have defined the propagator

K(x,x';t,0) = Z W) () e~ Ent/

(12.111)

(12.112)

(12.113)

(12.114)

(12.115)

Asits name implies, the propagator dictates the time-dependence, or propagation
in time, of the initial solution. An obvious property of K (x', x; t, 0) is that it must

reproduce the initial state when t — 0, so that one necessarily has

5(x' —x) = K(x',x;0,0) = Y 9 (x) ¥ ()

as already shown in Eqn. (12.43), which is sometimes a useful relation.

4 See, for example, Marion and Thornton (2004).

(12.116)
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A generalization to states with a continuous energy eigenvalue label, such as
for free particles, is straightforward. For that particular case, for example, we can
write

400
K(x,x';t,0) = / dp 3 (x") Yrp(x) e Ept/h (12.117)

—00

—+00 1 ., * 1 ) -
= / dp (_e—sz /h) (_elpx/h) o P t/2mh
—00 2th 2 h

and the integrals can be evaluated using standard Gaussian techniques (P12.23)

m . ’
K(x,x'31,0) = | ——— g=im(x=x)?/2ht (12.118)
2miht

and one can check explicitly that

to give

lim K(x,x';t,0) = 8(x — x') (12.119)

x—>x'

as it should. The time-dependence of an initial Gaussian wave packet,

W (x,0) = 1 e—(x—xo)z/sz—ipo(x—xo)/ﬁ (12.120)
NENES
is then easily evaluated using Eqn. (12.114) (P12.23), and the result agrees with
our earlier derivation in Section 3.2.2.
A similar expansion in momentum-space,

$(p, 1) =Y bupu(p)e Et/h (12.121)
implies a parallel formalism for propagators with
Kp(p's 5 £,0) = Y ¢ (p)gulp)e /" (12.122)
giving
+00
b0 = [ Kyt p'i0.084,0) (12.123)

or suitable generalizations to continuous labels.

12.6.2 Propagator and Wave Packets for the Harmonic Oscillator

Any time-dependent state composed of a linear combination of harmonic oscil-
lator eigenfunctions can easily be shown to exhibit a purely periodic behavior.
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The general solution

Yl t) =Y antiy(x)e” /0 (12.124)

n=0

when evaluated after one classical period, T = 27 /w, is given by

W(x; t + T) - Z anun(x) e_iEn(t—F'[)/h
n

_ Z a1y () ¢~ Ent/ g iln1/2)2

n

=e¢ TY(x,t) = —ip(x, 1) (12.125)
This implies that for integral multiples of the period we have
W (x t 4+ mD)]? = (=)™ (x, 0 = [y (x, 1) (12.126)

so that the position probability density is indeed periodic, with similar results
for the momentum-space distribution.

Localized wave packet-like linear combinations of energy eigenstates can be
formed for the harmonic oscillator, which also indicate even more clearly the
expected quasi-classical behavior. A very convenient formulation for their con-
struction is the propagator method introduced in the last section. In this case we
have

K, x'54,0) = i (x) fra(x) e 0 F1/Det (12.127)

n=0

which gives the time-development of any initial state via

+oo
Y(x, t) = / dx" ¥ (x',0) K(x,x; t,0) (12.128)

—00
The periodicity of the classical harmonic oscillator can be obtained from
Eqn. (12.127) by recalling that T = 27 /w, so
K(x,x'st + mt) = (—1)"K(x,x'; t,0) (12.129)

which gives the same result in Eqn. (12.125).
Using the formalism of raising and lowering operators of Chapter 13, one can
actually calculate the summation in Eqn. (12.127) in closed form” with the result

K(x, x/; t) O) — L eXp Zma)((xz _|_ x/2) COS(C{)t) _ 2xxl)
T h2isin(wt) 2hsin(wt)

(12.130)

> See, for example, the excellent discussion in Saxon (1968).
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We note that:

e This expression explicitly exhibits the periodicity in time dictated by
Eqn. (12.129).

¢ Inthelimitin which the value of the spring constant, and hence w, vanishes, the
system describes a free particle; it is easy to check that K (x, x’; ¢, 0) approaches
the free-particle propagator found in Eqn. (12.118) (P12.28).

Using this form and a Gaussian wave packet representing a particle with initial
position and momentum equal to xp = 0 and py, respectively, namely

1 ‘
U (x,0) = ——— ¢~ /2B gibox/h (12.131)
NNz
we can perform the time-development integral in closed form and obtain the
time-dependent position-space wavefunction (P12.30)

U 0) imwx? cos(wt) 1 imwB  (x — xs(1))?
x,t) = ex - exp [ — ;
P 2h sin(wt) [A(t)/TT 2h sin(wt) A(t)
(12.132)
where we have defined
h in(wt
L(t) = B cos(wt) + 1 (—) sin(wt) and x(t) = P()L(a)) (12.133)
mwp
This gives the time-dependent probability density
1 2 2
P(x, 1) = [Y(x, 1) = ————— e~ X(O)7/1A®) (12.134)
v VT IA®)]
where
|A(t)| = \/,82 cos2(wt) + (h/mwp)? sin®(wt) (12.135)

is the time-dependent width. The expectation value of position is easily
evaluated, and one finds

(x)r = x5(t) = % sin(wt) (12.136)

which is consistent with the classical solution of Newton’s equations for the same
initial conditions. The time-dependent spread is more interestingly given by
1AW
V2
which does not increase monotonically with time, but shrinks and expands
periodically. The time-evolution of this wave packet is illustrated in Fig. 12.1.

Ax; (12.137)
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lp(x,0]% versus x it |p(p,b)? versus p

0.00 ﬂ
005] ! A

0.10

0.15

Figure 12.1. Plots of |y (x, l‘)|2 versus x (left) '
and ¢ (p, t)|% versus p (right) for the harmonic
oscillator wave packet in Eqn. (12.132) during the :
first quarter cycle. The dashed curves are the
classical trajectories, x(t) = pg sin(wt)/me and
p(t) = pp cos(wt), corresponding to the initial
conditions. Note the anticorrelation between the
widths of the x and p distributions. —Po/Mme tog/me - —Po *Po

020 ! /\

The oscillatory behavior of Ax; is perfectly consistent with uncertainty principle
arguments, as the corresponding momentum-space distributions show the same
behavior with the appropriate phase relation; specifically, one can show that

Apy = pr(H)/V2 (12.138)

where

pr(t) = \/(h/,B)2 cos(wt) + (mwp)? sin?(wt) (12.139)

The propagator for the momentum-space wavefunctions is obtained as easily,
with the result that

C o 1 i((p* + p*) cos(wt) — 2PP’>)
Kp(p » D5 t) = W €xp < 2hmw Sil’l(wt)

(12.140)

and the momentum-space wave packets also be constructed.
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12.7 Timescales in Bound State Systems: Classical
Period and Quantum Revival Times

In general, the time-dependence of an arbitrary time-dependent bound state
wavefunction, ¥ (x, t), with the expansion in eigenstates, u,(x), of the form

Y =) up(x) et (12.141)

can be quite complicated. However, in many experimental realizations, a loc-
alized wave packet is excited with an energy spectrum which is tightly spread
around a large central value of the quantum number, ny, such that ny >>
An >> 1. In that case, it is appropriate to expand the individual energy
eigenvalues, E(n) = E,, about this value, giving the approximation

E" (np)

E(n) ~ E(ng) + E' (ng)(n — ng) + (n—mp)*+--- (12.142)

where E'(ny) = (dE,/dn) =y, and so forth. This gives the time-dependence of
each individual quantum eigenstate through the factors

e Bt/ — exp (—i/h [E(no)t + (n— np)E' (mo)t + %(n — np)2E" (np)t + - - })

exp (—ia)ot —2mwi(n —ny)t/Tq — 2mwi(n — no)zt/Tm, + - )
(12.143)

where each term in the expansion (after the first) defines an important
characteristic timescale, and we have kept the first two terms, namely

_ 2rth T 2 h
T |E (no)| T E (m)/2

4 (12.144)

which will be associated with the classical period and the quantum revival time,
respectively.

The first term (wy = E(ng)/h) is an unimportant, n-independent overall
phase, common to all terms in the expansion, and which therefore induces no
interference between them; it is similar to the time-dependent phase for a single
stationary state solution and has no observable effect in |/ (x, t)|?.

The second term in the expansion is familiar from correspondence principle
arguments (as in Section 1.4 and P1.16) as being associated with the classical
period of motion in the bound state. This connection is perhaps most easily
seen using a semiclassical argument and the WKB quantization condition from
Section 10.3.2.
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For a particle of fixed energy E in a one-dimensional bound state potential,
V(x), we have E = mv(x)?/2+ V(x) and the short time, dt, required to traverse
a distance dx can be obtained from this and integrated over the range defined by
the classical turning points; this then gives half the classical period since

dt = (12.145)

ﬁzxgm

implies that

——/bdt—\/E/bL (12.146)
Lo V2 ), VE-V '

as discussed in Section 5.1. The WKB quantization condition (from Eqn. (10.53))
in this same potential (with the same classical turning points, a, b) can be written
in the form

b
VZm/ VE, = V(x)dx= (n+ C,+ Cr)h (12.147)

in terms of the appropriate matching coefficients Cr, Cr. Both sides of this
expression can then be differentiated implicitly with respect to the quantum
number, 1, to obtain

b
«/ﬁ/ ;clEE’“/—\/% —7h (12.148)

This, in turn, can be related to the classical period in Eqn. (12.146) to give

2 h
T = J_/ m = B = Ty (12.149)

(via WKB methods) (via general expansion)

Example 12.5. Classical periods

The most obvious example of such a connection is for the harmonic oscillator, where the WKB
condition gives the exact eigenvalues, E, = (n + 1/2)hw, and the classical period from
Eqgn. (12.144) is

2th 2h _ 2

= = e = (12.150)

as expected. For the special case of the oscillator, all wave packets are exactly periodic and all
higher-order derivatives (E”, E”, .. .) vanish, so no other longer timescales are present.
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(Continued)
For the other standard example in one-dimensional quantum mechanics, namely, the infinite
square well, we have

2 2522 22
_pp _ nhm ;. Dh‘w
n= S = et sothat |E,| = pow) (12.151)
giving
2th  2ma?
d= n, = (12.152)
|En| hmn
which is consistent with entirely classical expectations for the period as given by
2 2 2ma?
_«@a__ 4@ _‘dma (12.153)

Vn  pp/m  hmn

where we use p, = nmh/a.

For future reference, even in the presence of higher-order timescales, we can
define the classical component of the wave packet to be

o
Yalx, t) = Z anun(x)e_hi(”_”(’)E;t/h = Z aguy(x)e~ R Ta (12.154)
n=0 k

where we define k = n — ny. This component can be used to describe the short-
term (t & Tq << Trey) time-development and is especially helpful in discussing
quantum revivals.

The next term in the expansion in Eqn. (12.143) is given by

__ 2mh (12.155)
O E"(mp)l/2 '

TI'GV

which will be associated with the quantum revival timescale. This timescale
determines the relative importance of the (n — ny)? term in the exponent for
t > 0.Itisresponsible for thelong-term (¢t >> T,;) spreading of the wave packet
in the same way that the difference in the p-dependence of the px and p*t/2m
terms in exp(i(px — p>t/2m)/h) in the plane wave expansion of free-particle
wave packets gives rise to dispersion.

More interestingly, for times of the order of Tiey, the additional exp(2wi(n —
19)*t/ Trey) phase terms all return to unity, giving the t &~ 0 time-dependence
in Eqn. (12.154) and a return to approximate semiclassical behavior. This type
of behavior was first discussed in Section 5.4.2 in the context of the infinite
square well. Using the more general approach described here, we can write for
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the standard infinite well

PR 25 & 4wh  4ma?
|E,| = o Trey = 1B = (12.156)
n

which is consistent with the result in Eqn. (5.78).

12.8 Questions and Problems

QI2.1.

Q12.2.

Q12.3.

Ql2.4.

Q12.5.

Q12.6.

P12.1.

P12.2.

P12.3.
P12.4.

P12.5.

Using the infinite well eigenfunctions as an example, can you write a program
which would test the result in Eqn. (12.43)? For example, can you generate a
two-dimensional plot of the left-hand side (versus x, x) for increasingly large
numbers of states in the summation, and see if it looks like the right-hand side?

What are the analogous expressions to Eqns (12.54) to (12.58) for the cross-
products of ordinary vectors?

Is the complex conjugation operator, defined in P6.13, a linear operator as
defined by Eqn. (12.29)

Would the operator O = xp have an observable classical counterpart? How
would you decide?

Using the ideas in Section 12.5, discuss under what conditions the average value
of the energy operator will be constant in time.

Are there circumstances under which the Gaussian harmonic oscillator wave
packets in Section 12.6.2 can propagate in time with no change in shape, either
in position-space, or momentum-space, or both? Such solutions are called
coherent states.

Which of the following are Hermitian operators?

(a) xp.
(b) xp+ px.
(c) Ex.
(d) xpx.

~N\T ~
Show that (AT) = A.
Show that the combinations in Eqn. (12.17) and (12.19) are Hermitian.

If A is Hermitian, show that (Y |A2|y) > 0 for any ). Why do we expect this
kind of result?

(a) Consider the matrix operator relation defined by Eqn. (12.32). Show that
ifa’ -a’ = a- a, then the matrix U satisfies Eqn. (12.33).
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(b) Show that the rows and columns of a Hermitian matrix can be thought of
as orthonormal vectors.

(c) Show that the matrix

1 4—4i 3-—3i
Uzﬁ( CoS ads ) (12.157)

is unitary.

(d) Find values of b and ¢ for which the matrix

| . .
U=- < S VI ) (12.158)
5 b ci
is unitary. Are your choices unique?
P12.6. Consider a translation operator defined by
To = e/ = (o0 (12.159)

where a is a constant.
(a) Show that T, f(x) = f(x + a). Hint: Expand both the operator and the
function in a series expansion and compare.
(b) Show that T, isa unitary operator and interpret this statement.
P12.7. Show that the set of translation operators, T4, where a is any real number,

form a group. Hint: Show that this set satisfies all of the group requirements in
Appendix F.2.

P12.8. Verify the commutator relations in Eqns. (12.53) to (12.60).

P12.9. Exponentials of operators

(a) Since we know that an operator commutes with itself, we would expect
that

010 b0 _ Gla+)0 (12.160)

since there would be no problems with operator ordering. Show this
explicitly by comparing series expansions for both sides, that is, show that

(@0 [ (kO™ 2 [(a+bOY
(Z - )(Z — ):2:T (12.161)

n=0 m=0 J=0

Hint: Relabeling the sums and using the binomial expansion helps.

(b) A more general identity, valid for any two operators A and B, is given by
the so-called Campbell-Baker—Hausdorff formula, namely

eAeb = (0 (12.162)
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P12.10.

P12.11.

P12.12.

P12.13.

where

1

O=A+B+ A B+ (114, B1,B1 + [4, 14, B1))

N =

45 1B, ALAL B+ (12.163)

is an infinite series of nested commutators. Verify this relation to second
order.

Using explicit representations of operators in momentum-space, find the
minimum-uncertainty wavefunction corresponding to Eqn. (12.80) for the
X, p pair.

Consider a general quantum state which has been expanded in energy eigen-
functions, ¥ (x,0) = Y, anu,(x). What is the effect of operating on v (x, 0)

with the time-development operator, U; = e~1t/72

The quantum version of the virial theorem.

(a) Use the fact that average values of operators in energy eigenstates are time-

1
n)=5<n

independent to show that
dv(x)
dx

when evaluated using energy eigenstates. Do this by considering the time-
dependence of the expectation value of the operator xp, that is, calculate

T

(n x

n> (12.164)

d N
_ 12.1
dt(n|xp|n) ( 65)

as in Eqn. (12.96), but specialize to energy eigenstates.

(b) This relation often can give information on how the potential and kinetic
energy in a quantum system are “shared.” Show this by considering power
law potentials of the form V (x) = Kx" and finding the fraction of the total
energy which, on average, is in the form of potential and kinetic energy;

specifically, show that
1% 2 T
V) _ and L _ " (12.166)
E n+2 E n+2

(c) Try to confirm your results in (b) by considering both the harmonic
oscillator potential (n = 2) and infinite well potential (n = 00).

(d) Compare this problem to the classical results of P5.2.

Bound on quantum correlations. Recall the definition of the quantum versions
of the covariance and correlation coefficient in P4.18, generalized here to any
two quantum operators, A and B, namely

A A 1 A A A A A A A A
cov(A,B) = 3 [(A— (AnB - (B) + B— (ByA - (Ap]  (12167)
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and

(A4, B) = cov(d, B) (12.168)
PRI = NA AB '

We will assume that both A and B are Hermitian, and that the expectation
values can be evaluated in any acceptable quantum state.

(a) Use a variation on the proof of the general uncertainty principle in
Section 12.4 to derive the bound on the quantum correlation coefficient,

(12.169)

A, By 1
2AA - AB

mdﬁWsl—[

Do this by using a general complex number k = ¢ + id in Eqn. (12.63)
instead of a pure imaginary number, iA, used in that analysis.

(b) Recalling P4.18 (d), show that this bound is saturated (i.e. there is an
equality) for the standard free-particle Gaussian wave packet in Eqn. (3.35).

P12.14. Assuming that the operator O it not tself time-dependent, show that the second
derivative of the expectation value is given by
. 1

(0 =~

i ([H, [H, O1)) (12.170)

What new term is introduced if O does depend on time?

P12.15. If A and B are arbitrary, perhaps time-dependent operators, show that

~a [OA ) A N AN S

—(AB)={—B)+ AE + ﬁ([H,A]B) + ﬁ(A[H, B]) (12.171)

P12.16. Time-dependent expectation values and uncertainties for free-particle wave
packets.

(a) For free particles, where V(x) = 0, use Eqns (12.90) and (12.91) to show
that the expectation values for position and momentum are given very
generally as

A

(P)e = (Pho (12.172)
(x) = (pot/m ~+ (x)o (12.173)

(b) Using Eqn (12.93), show that (p?); = (p*)o, so that the time-dependent
spread in momentum for any free-particle wave packet is actually constant,
namely, Ap; = Apy.

(c) Using Eqns (12.95-12.97), show that

(PProt* ¢t

(x%) = =—5— + —(xp — px)o + (x%)o (12.174)
m m
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P12.17.

P12.18.

P12.19.

P12.20.
P12.21.

which then gives the time-dependent spread in position as

2
(Ax)? = () — (x)2 = <ﬂ> + (Ax)?

m
+ i((x — (x)0)(p = (Po) + (P — (P)o)(x — {x)0)) (12.175)

Thus, in the most general case, the long-term uncertainty in position is
dominated by the Axy &~ Apyt/m term, just as argued in Section 3.2.2 for
the Gaussian example.

(d) Compare this general result to that for the general Gaussian wave packet
in Eqns (3.35) and 3.36). Are all of the terms in Eqn. (12.175) present?
What is the origin of the term linear in ¢ in Eqn. (12.175), and what does
it mean?

(e) Consider the modified Gaussian wave packet in P3.5. Show that Ax; for
that packet includes the term linear in ¢.

Repeat all parts of P12.16, but for the case of a constant force, namely, when
F(x) = +F and V(x) = —Fx. Specifically, show that the results for Ap; and
Ax; are the same as for the free-particle results.

(a) The use of Eqn. (12.99) is not restricted to position-space wavefunctions.
What is the time-development operator for free-particle momentum-space
wavefunctions?

(b) Generalize the result of Example 12.4 to include the case where the Gaussian
wave packet has a nontrivial initial position (xp) and momentum (py).

(c) Can you generalize Example 12.4 to find the explicit time-dependence of
the initial wavefunction

¥ (x;0) = x e~ ¥ /2 (12.176)

2
VT’
Hint: You will need to generate a new “tricky identity” to replace
Eqn. (12.105).

Use the Hamiltonian for a particle subject to a uniform force, corresponding
to V(x) = —Fx, to calculate the effect of the time-development operator on
both position- and momentum-space wavefunctions. Hint: Use the Hausdorff
formula in P12.9.°

Prove that ¢'© is unitary is O is Hermitian.

(a) If welet
W), = e Ry (12.177)

6 And if you get stuck, look at Robinett (1996b).
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P12.22. (a)

(b)
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show that the time-dependent expectation value of any operator can be
written as

(O); = (WoleT MO HIRY =y | O(t) o) (12.178)

where é(t) = e+’ﬁ t/h O e_iH t/7 1n this view, the quantum state vectors,
|0), are fixed once and for all, but the operators evolve in time; this is often
referred to as the Heisenberg picture of quantum mechanics as opposed to
the Schradinger picture which we have adopted.

Use these results to show that the time-derivative of a Heisenberg operator
can be written as
o= o (12.179)
dt h

in the case where O itself has no explicit time-dependence. Hint: Simply
recall the definition of derivative as

do(t) . (é(t+dr) - é(t)) (12.150)

At di—>0 dt

This result generalizes Eqn. (12.88) for the time-development of matrix
elements of operators.

Using the results of the last problem, find the time-dependent operators,
£(t) and p(t), in the Heisenberg picture in the free-particle case where the
Hamiltonian is H = p?/2m; comment on any classical analogs to your
results. Hint: Use the operator identity

A

N ” A A 1 ~ ~ A 1 A A A A
et Be A=B+[A,B]+E[A,[A,B]H;[A,[A,[A,B]]Hm
(12.181)

Repeat part (a), but use the Hamiltonian corresponding to the case of a
constant force, F, in the +x direction, namely

R P’
Hp =< —Fx (12.182)
2m

P12.23. Free-particle propagators.

(a)

(b)

Do the necessary Gaussian integral (assuming that it converges, or adding
a convergence factor) to obtain Eqn. (12.118).

Apply it to the initial Gaussian wave packet in Eqn. (12.120) and show that
you obtain the general, time-dependent Gaussian in Eqn. (3.35).

P12.24. (a) Show that the propagator for two arbitrary times t, > f; is given by

K(oxs0,0) = ) Y (x)y(x) e P/ (12.183)
n
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P12.25.

P12.26.

(b) Show that the propagator satisfies the identity

+oo
K(x,x/§t3)tl):/ dx" K(x,x";13, ) K(x", x', o, 1) (12.184)

—0o0
and interpret the result in terms of propagating from t; — t, - 3

(c) Check the result of part (b) explicitly for the case of the free-particle
propagator in Eqn. (12.118).

Position-space versus momentum-space propagators.
(a) Show that the free-particle position-space propagator can be derived from

the one in momentum-space via

’ +oo .
K(x',x;t,0) = dp e / dp e~ Px/" Kp(p', p; 1,0)
—0Q0

(12.185)

2mh

Give the corresponding expression for K,(p',p;t,0) in terms of
K(x/, x;t,0).

(b) Use the continuous generalization of Eqn. (12.122) to evaluate the
momentum-space propagator for a free particle. Apply it as in
Eqn. (12.123) to an initial Gaussian wavefunction ¢ (p’,0) and show that
it reproduces the result of Eqn. (3.36).

Propagators for uniform acceleration. Consider the accelerating particle from
Section 4.7.2, described by the time-independent Schrédinger equation in
momentum space

—¢>E(p) — ihF ¢E;p) = E¢g(p) (12.186)

where ¢ (p, t) = ¢ (p)e”F/R,

(a) Show that an appropriate solution is
$p(p) = Ce™#/6mE o=iEp/h (12.187)

where C is an arbitrary constant.

(b) Use the fact that eigenstates corresponding to different eigenvalues should
be properly normalized to evaluate C and show that C = 1/+/27hF.
Hint: Use the fact that

+00
/ dp ¢ (p) ¢E(p) = 8(E — E') (12.188)
—00
(c) Construct the momentum-space propagator by evaluating

K, (p',p;1,0) = f dE ¢5(p) pr(p) e /M (12.189)



P12.27.

P12.28.

P12.29.

P12.30.
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where the summation is over the continuous E label. Show that the result,
including the appropriate constant C, is

Ky (pl, ps t,0) = e (= FO’=P)/6mRE 5\ _ 7 _ Fpy (12.190)

and show that when applied to an initial momentum-space wavefunction
it reproduces Eqn. (4.133). Show also that this propagator satisfies the
appropriate initial condition and that it reduces to the free-particle result
when F — 0.

Using the results of Problem P12.24 and P12.25, find the position-space propag-
ator for the accelerating particle. Show that it reduces to the free-particle case
when F — 0.

(a) Show that the @ — 0 limit of Eqn. (12.130) gives the free-particle
propagator.

(b) Use Eqn. (12.130) to find the v (x,t) for the initial Gaussian in
Eqn. (12.131).

(c) Evaluate (x); to confirm Eqn. (12.136).
Discuss the position-space and momentum-space probability densities for a

general harmonic oscillator wave packet at t — ¢ 4 7/2 and show that

[yt +1/2)F =Y (—x 0> and |p(p,t +1/2)]> = |¢p(—p, )|
(12.191)

and interpret your results.

Harmonic oscillator wave packets.

(a) Usingthe propagator in Eqn. (12.130), and the initial state in Eqn. (12.131),
do the the necessary integral in Eqn. (12.128) to confirm Eqn. (12.132).

(b) Evaluate (x); and Ax; for this state and confirm Eqns (12.136) and
(12.137).

(c) Are there circumstances where the time-dependent spreads in position
(Ax;) and momentum Ap; for the SHO wave packet do not oscillate in
time?

(d) Use the propagator approach to evaluate ¥ (x, t) for the initial state

1
U (x,0) = —— g~ (mx0)?/28 (12.192)

NN

corresponding to initial values (x)g = xp and (p)o = 0. Use your result
to derive |/ (x, t)|? and to evaluate (x), and Ax,. Hint: To minimize the
algebra, in the integral make the change of variables y = x’ — xo.

(e) Finally, show that the most general initial Gaussian given by

¥ (x,0) = J;T o= (x=x0)?/28% p+ipox/h (12.193)
B

)
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gives a time-dependent wave packet with probability density

R (x — ¥(1))?
pen = e o () (2199
where
X(t) = xo cos(wt) + P sin(wt). (12.195)
mw

P12.31. Momentum-space wave packets using propagators.

(a) Using the p-space propagator in Eqn. (12.140) and the initial state

o(p,0) = /% e~ (0=p0)*/2 (12.196)

evaluate ¢ (p, t) and show that

1 o <_(p— po cos(wt)?
IOV PL(D2

and evaluate (p); and Ap;.

P(p,t) = |p(p, 1)]* = ) (12.197)

P12.32. Wave packet for unstable equilibrium. The unstable quadratic potential,
V(x) = —Kx?/2, can be trivially obtained from the stable harmonic oscillator
by the identification K — —K.

(a) Show that this corresponds to the substitution ® — iw.

(b) Use this and the relations of Appendix C (for complex numbers and
functions) to show that a wave packet satisfying the time-dependent
Schrodinger equation

1 929 (x, 1) e
T + V@) Yxt) = th (12.198)

with initial mean position and momentum fixed as xo = 0 and py is given

by
1 . 20T 2
Xt 2 _ . e—(x—po/mwsmh(wt) JIL(1)] 12.199
e F = —— (12.199)
where
IL()]* = B* cosh*(wt) + (h/mwp)” sinh (wt). (12.200)

(c) Evaluate {x); and show that it is consistent with the classical solutions of
Newton’s equations with the same initial conditions.
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P12.33. Classical period of a “bouncer.”

(a)

(b)

(c)

(d)

Show that the WKB approximation for the energies of a “quantum
bouncer,” defined by the potential

f 0
V(y) = ey ey = (12.201)
oo fory<0
gives
972 173
E, = <ng2h2) (n+3/4)*3 (12.202)

Use the result in Eqn. (12.144) to evaluate the classical period in this system
as a function of n.

If we equate the quantized energies with the classical potential energy via
E, = mgH, we can relate the maximum height reached by the particle with
the quantum number n. Use this association to rewrite the expression for
T in part (a) to reproduce the standard classical result that Ty = \/8H /g
for a ball bouncing without loss of energy.

Evaluate the quantum revival time, Trey, for this system and compare to T.
Compare Tiey for this case with the result for the infinite well in Eqn. (5.78).

P12.34. Classical period and revival time for hydrogen atom states.

(a)

(b)

Use the Bohr result for the energy spectrum of the hydrogen atom in
Eqn. (1.42), namely

1 ( m(Ke?)?\ 1 €0
Ep=——— )= =—-— 12.203
2 ( h? n? ( )

to derive the classical period for this system, comparing it to the result in
Eqn. (1.41).

Using Eqn. (12.155), evaluate the revival time, Tiey, for hydrogen-atom
wave packets and show that Tyey /Ty = 2n/3. Compare this to the dis-
cussion in P5.19 where the revival time was estimated using the infinite
square well result as a simple model. Recall that revival behavior on these

timesscales has been observed with large n Rydberg atoms; see Yeazell
et al.(1990) or Wals et al.(1994).

P12.35. Wigner distribution for a harmonic oscillator wave packet. Evaluate the
Wigner quasi-probability distribution, Pw (x, p; t) in Eqn. (4.149), for the time-
dependent oscillator wave packet in Eqn. (12.132). For simplicity, assume that
B = /h/mw, which simplifies the algebra considerably. Is Py (x, p; ) every-
where positive-definite? Does its behavior in time mimic the corresponding
classical phase-space description of a particle undergoing simple harmonic
motion, as in Appendix G, especially Fig. G1?



THIRTEEN

Operator and Factorization
Methods for the Schrodinger
Equation

13.1 Factorization Methods

The special and recurring role that the simple harmonic oscillator (SHO) plays in
quantum mechanics can be attributed both to its physical relevance and its simple
solutions. The fact that the ground state solution is the minimum uncertainty
wave packet (Section 12.4) and the highly constrained connection between the
position-space and momentum-space wavefunctions (P4.23 and Section 9.2.2)
also indicates that this problem occupies a special niche. The symmetry between
x and p present in the solutions is obviously a reflection of the fact that only
for the SHO is the potential energy function quadratic in x. It is often the
case in physics where systems with a high degree of symmetry are amenable to
solution in a variety of ways, sometimes quite unexpected. In this chapter, we
discuss a powerful method of solving the harmonic oscillator problem involving
the factorization of the differential equation using differential operators; we
then (briefly) discuss extensions and applications of operator methods' to other
physical problems.
Factorization methods are often used in the solution of linear differential
equations with constant coefficients, that is, equations of the form
n n—1

d” (x)+an 1

One standard approach is to define a differential operator, D = d/dx, and write
Eqn. (13.1) in operator form as

d
e IY(X)‘F"“{‘QIE}’(X)-FQ())/(X):0 (13.1)

(anD”Jran,lf)”‘l +~--+a1f3+ao) y(x) =0 (13.2)

! One of the most comprehensive treatment of operator methods in quantum mechanics is DeLange
and Raab (1991).
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which is similar to a polynomial equation in D. If we can factor the associ-
ated polynomial, finding its real and imaginary roots, r,, we can write this
equation as

an | (D= 1D = re) - (D= )]y =0 (13.3)

where the 7; are the # roots of the polynomial equation a,x" + - - - ajx 4 ag = 0.
The n independent solutions of Eqn. (13.1) are then obtained from

(Di—ri)yi(x) =0 fori=1,...,n (13.4)

Each such simple differential equations has an exponential solution of the form

yi(x) = Cie™ " (13.5)
so that the general solution is
n
y(x) =Y Cie " (13.6)
i=1

Special care is necessary when there are multiple roots, but the extension to that
case is mathematically straightforward (P13.1). This method then allows us to
solve an nth order differential equation in terms of # first-order ones. A trivial
example is the differential equation in Section 5.2 for the infinite well

Ay (x)

dx?

+ Ky (x) =0 (13.7)
which we can write as
(b2 + k2> v (x) = D+ iD= ik (x) =0 (13.8)

which has the solutions ¥ (x) = exp(=£ikx), usually written as sin(kx) and
cos(kx), as expected.

13.2 Factorization of the Harmonic Oscillator

The form of the Hamiltonian for the harmonic oscillator problem

72

Hy(x) = (f—m + %mw2x2> VU (x) = E¥(x) (13.9)
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gives rise to a differential equation which does not have constant coefficients.
Nonetheless, the form of H suggests that a similar factorization might be possible
as classically one would have

p_2 1 5, (P . [ mw? p . [me?
2m+2ma)x = —m+1 5 x N i 5 x (13.10)

and the lack of commutivity between the operators x and p in quantum mech-

anics will make things only somewhat less simple. We are therefore motivated to
consider such a possible factorization, and to that end we first write

. p? mo
H=nh — 13.11
@ (tha) + 2h * ) ( )

as we know, if only on grounds of dimensional analysis, that the energies will be
given in terms of iw. We then define an operator

A= [—x+i——— (13.12)

from which one can immediately obtain

S

o [mo ; p
VYV 2n V2mhw

because both x and p are Hermitian. We first note that A, A are not Hermitian
operators themselves (as AT # A) and so cannot represent physical observables.
They do not commute either as

[AAT]—[ mwx—i—i P /mwx—i-i P ]
’ V 2h V2mho N 2k 2mhw

{—[xp1+[p,x]} =1 (13.14)

(13.13)

i
"~ 2h
since [x, p] = —[p, x] = ih. Thus, we have

AAT=ATA+1 and ATA=AAT -1 (13.15)

which will prove useful.
To see if these operators factorize Eqn. (13.9), we can invert Eqns (13.12)
and (13.13) and write

R . R s
x=\/——(A+A") and p=if (AT - A) (13.16)
2mw 2
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If we substitute these into the Hamiltonian, we obtain

- 1 mhw (AT A>2 . mw? h (A n AT>2
- 2m 2 2 \2mo
h

A 1
= hw (N+5> (13.17)
where we have defined a new number operator via
N = ATA (13.18)

Because of the lack of commutativity of x, p we have not achieved a com-
plete factorization, but we have shown that the Hamiltonian can be put into a
form which is highly suggestive of the known result for the energy eigenvalues
themselves. Thus, instead of considering the energy eigenvalue problem using
the Hamiltonian, written as

Hyr(x) = Ep¥ra(x)  in position-space (13.19)
Hepn(p) = Enn(p)  in momentum-space (13.20)

we abstractly examine the eigenvalues of the number operator in Eqn. (13.18),
that is,

N|n) = n|n) (13.21)

While we label the number eigenstates by 7, we cannot assume (at least initially)
that they are nonnegative integers; however, since N is Hermitian, because

~ e AT ~p A ~
Nt = (ATA> —AtA=N (13.22)

we do know that the eigenvalues of N are real.
To examine the effects of A and AT, and to provide constraints on the “number
spectrum,” we first note that

& <A|n>) = ATA) (Am))

—(n—1) (Am)) (13.23)
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where we have used the commutation relations between A and A'. This can be
interpreted as saying that the number operator, N, acting on the state A|n) yields
the same eigenvalue, namely, n — 1, as when it acts on the state |n — 1). A similar
derivation shows that

N(AT|n>> —(n+1) (Aﬂn)) (13.24)
Taken together, these imply that:

¢ The operator A (Ah acting on |n) must give, up to an arbitrary constant, the
state [n — 1), (|n + 1)), that is,

An)x|n—1) and Af|n) « |n+1) (13.25)

¢ The eigenvalues of the number operator are thus separated by integer differ-
ences and the A and A operators act to move on up and down the ladder of
possible eigenvalues, as shown in Fig. 13.1. For this reason, A and AT can be
called lowering and raising operators, respectively; collectively they are called
ladder operators.

It is still not clear (from this algebraic derivation) that the number eigenvalues
are given by integers (and not say, w,m + 1,7t 4+ 2...) or even if the spectrum
is bounded from below. To address the second question, using the explicit form
of N and the definition of Hermitian conjugate, we can easily show that the
expectation value of the number operator in the state |n) satisfies

n = n(n|n) = (n|N|n) = (n|ATA|n) = (An|An) > 0 (13.26)

Thus, the n are nonnegative numbers and therefore there must be a smallest one
which we label #y,. By assumption, there can be no state with a lower value
of n, so we must have

Alfimin) o |fimin — 1) = 0 (13.27)
|n+2>
At
[n+1>
In>

Figure 13.1. The operation of the raising (or creation) operator AT
and lowering (or annihilation) operator A on number states for the
harmonic oscillator. [n-1>

pN
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since | min — 1) does not exist. The number operator when acting on this lowest
state then gives

Nmin | Amin) = Nmmin) = (ATAA> |n) = AT (A|”>> =0 (13.28)

so that nyj, = 0; we sometimes say that A “annihilates the vacuum.” Thus, the
number and energy spectrum are given by

N|n)=n|n) n=20,1,2...

~ 1
H|n)=hw(n+5)|n) n=0,1,2... (13.29)

and these results have been obtained in a purely algebraic way.

While these techniques have yielded the energy spectrum in an elegant
fashion, we might also wish to extract information from the position-space or
momentum-space wavefunctions. The first step toward obtaining the wavefunc-
tions is to note that any desired state can be obtained from the ground state by
successive applications of the raising operator, namely

In) o (AT)” 10) (13.30)

provided we have an explicit representation of the ground state. This representa-
tion can be obtained by using the fact that the lowering operator annihilates the
lowest state, that is, A|0) = 0. Using an explicit position-space representation,

we write
R [mw . D
0= Ayp(x) = ( BT + lm> Yo(x)
| h mw d (13.31)
V2mho <7x + 5) Vo) '
giving
dro(x) mw x
o = —x (S o) = 3% (13.32)
or
1 252
Yo(x) = ——=e¢ ¥/ (13.33)
’ Ve

when finally normalized. The corresponding momentum-space wavefunctions
can be obtained from (AT)" ¢y (p) by solving Ady (p) =0.
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The nth eigenstate is obtained by repeated applications of the raising operator
on the ground state as in Eqn. (13.30), and we can easily determine the precise
normalization by considering

In) = c,(AN™0) or equivalently (n| = (0|A"¢, (13.34)
Assuming that all states are to be properly normalized, we note that

n = n(n|n) = (n|N|n)

= (n|ATA|n)
— (n] (AAT _ 1) In)
= (n|AAT|n) — 1 (13.35)

so that
n+ 1= (nlAAT|n)
= L 0I(A)" (AA") (AH10)

= 2(0]A"T1(AT)"H|0)

2 (n+1n+1)
= Ci’l—z
Cn+1
2
C
=t (13.36)
Cn+1

Thus, the normalization constants are related via
il = Vn+1c¢, which implies that ¢, = Vn! (13.37)
since ¢y = 1. Thus
1n) = ~/nl(AH"0) (13.38)
and this can be used (P13.3) to show that
Alny=Vnln—1) and Afn)=n+1n+1) (13.39)

These same techniques can be used to show explicitly that eigenfunctions
corresponding to different eigenvalues are orthogonal (P13.3).
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Example 13.1. Expectation values for the harmonic oscillator

The power of these general algebraic methods which is evident in generating the properly
normalized wavefunctions can also be used in the efficient evaluation of expectation values
of many operators. For example, the vanishing of (n|x|n) is physically obvious from the parity
properties of the wavefunctions. In operator language, this relation arises because

(nix|ny = < Ve (A +A" >
p— h A AT
— /m{<n|A|n)+(n|A In>}

x+/nnn—="1 ++~n+1nn+1) =0 (13.40)

because these states are orthogonal; this proof gives no new information, but does illustrate
the method. The expectation value of the potential energy, V(x) = mw?x? /2, requires

h . o A A
(n|x%ny = LT (n ‘Az +AAT+ ATA —|—AT2‘ n>
_ " (2N + 1)|n)
T 2mw
h 1
=——(n+3) (13.41)

so that

R 1 1
(NIV(0ln) = 7‘”(n +) =5k (13.42)

with a similar result for (n|T|n) = (n|p2|n)/2m.

13.3 Creation and Annihilation Operators

The importance of raising and lowering operators is not limited to the study
of the quantum version of the classical oscillating particle. We have seen in
Section 9.1 that the vibrations of the electromagnetic field can be represented
by an ensemble of effective harmonic oscillators where the “amplitude” is essen-
tially the vector potential A(k, t). This similarity can be pushed even further
if we define generalized ladder operators, g, and 2111, for each wave number’
mode k.

% Por simplicity, we neglect the additional labels which describe the photons state of polarization; see
Baym (1976) for more complete details.
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To proceed formally, we need only specify the appropriate commutation
relations, that is,

[, 31 = 8¢ (13.43)
while we also note that the ay, &17: always commute with themselves, that is,
[, &) =0 and [&,a]1=0 (13.44)

The number operator for each mode is simply N = 2111 ax with corresponding
integer eigenvalues #; the Hamiltonian is simply H = (Nk +1/ 2) hwy. We

then formally have relations such as

allm) = V/mc+1/m) and  alm) = /mlm — 1) (13.45)

corresponding to increasing or decreasing the energy of the system by one
unit of Awy where wy = |k|c. These results are consistent with the following
interpretation:

® The radiation field, quantized using such ladder operators, consists of an
ensemble of photons, each of quantized energy hwy

¢ The number of photons of wave number k is given by

¢ The shift operator Ezli (ay) increases (decreases) the number of photons by one;
this justifies the use of the term creation (annihilation) operator for &E (ay).

Such operators, describing the particle-like quanta of the electromagnetic
field are useful in many aspects of quantum optics, laser physics and beyond. It
turns out that they are also the prototypes of the general class of creation and
annihilation operators for an entire class of particles. Particles can be classified
by the value of their intrinsic angular momentum or spin, J, with particles of
integral spin, ] = 0,1,2.. ., being called bosons, while those with half-integral
spin ] = 1/2,3/2,5/2,... called fermions. This last class includes the most
familiar components of matter, the spin 1/2 electrons, protons, and neutrons
which are known to satisfy the exclusion principle.

The creation and annihilation operators for bosons are obviously inappro-
priate for fermions as they allow arbitrarily many particles to be in the same
quantum state. Remarkably, the corresponding operators for fermionic degrees
of freedom satisfy a set of commutation relations, which are very similar in
appearance to Eqns (13.43) and (13.44), namely

(b b)) = Sue (13.46)
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and
{hobi) =0 and (b))} =0 (13.47)

The new symbol, {, }, denotes the so-called anticommutator of two operators and
is defined by

(A, By = AB+ BA (13.48)

It is also sometimes written {A, fB} = [A, B]+.

While the formalism of anticommutation relations is superficially similar to
that for commutators encountered earlier, the physical implications of these
anticommutation relations are entirely different:

e The anticommutation relation of o' with itself implies that
bibl =0 (13.49)

which may at first appear to be somewhat puzzling. This is simply the restate-
ment of the exclusion principle that no two identical fermions can be put
into the same quantum state; the state |0) with no quanta (the ground state or
“vacuum”) and k) = Z){LlO) with one quantum are both allowed, but operating

twice with bli always gives a vanishing result.

® The number operator, Nk = i)li i)k, satisfies (with the k label suppressed)

N =0bth=N (13.50)

This implies that the corresponding number eigenvalues, given by N |n) = n|n),
satisfy n> = n, which has only the trivial (but appropriate) solutions n = 0, 1;
again, at most one fermion is allowed per quantum state.

® Ordinary numbers or operators cannot satisfy the anticommutation rela-
tions of Eqns (13. 46) ; and (13.47). One can check that an appropriate matrix
representation of the band b is given by (P13.8)

< (01 ~ (00
b_(o 0) and b _<1 O) (13.51)

One of the most important implications of this formalism is that the wave-
functions for multiparticle quantum states are highly correlated. For example,
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if we label a state of two particles of similar type, say both photons or both
electrons, as |1; 2) we can write

[1;2) = &I&;IO) = +&;r?11r|0) = +|2;1) for bosons (13.52)
while
11;2) = bibl|0) = —blb]10) = —|2;1)  for fermions. (13.53)

Such wavefunctions are classified respectively as being symmetric or antisym-
metric under the interchange of the two particles. This constraint on systems
of similar particles imposes important new constraints on the Schrodinger
wavefunction. This will be explored further in the next chapter.

We see that far from being only a clever way to solve a special problem in
quantum mechanics, the method of factorization, with its resulting ladder oper-
ators, plays a central role in the description of systems of particles of all possible
spins.

13.4 Questions and Problems

P13.1. Factoring differential equations I. Multiple roots. Consider the factorized
differential equation

Y (x) = 21y (x) + 2y(x) = (D — r)*p(x) = 0 (13.54)
which has r as a double root.

(a) Show that y(x) = e’ is still a solution.
(b) To extract the second, linearly independent solution, imagine that there are
two different roots, r, s. The linear combination given by
o™ _ o5
yx) = —— (13.55)
r—s
will also be a solution in this case. Let s — r to obtain a second solution and
explicitly check that it works.
(¢) Extend these results to the case where there is a root with an N-fold
degeneracy.

P13.2. Factoring differential equations II. Complex roots. In classical mechanics, the
equation of motion for a damped oscillator is given by

2
md x(t) n bdx(t)

= 13.
Fre) I + kx(t) =0 (13.56)
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where Fgamping = —bv(#) is a velocity-dependent frictional force. In the study
of circuits, there is an identical equation describing a damped LC oscillator,
given by

dq(t) da(t) 1

+R—=+ a1 =0 (13.57)

L
dr? dt

with obvious terms representing the effects of the inductance (L), the capacitance
(C), and the electrical resistance (R).

(a) Factor either equation to find two different roots. For small values of the
damping/resistance, show that you obtain two complex conjugate roots.

(b) Use these to solve for the motion of a damped oscillator corresponding to
the initial conditions x(0) = xy and v(0) = 0.

Confirm that Eqn. (13.39) gives the proper normalization for the action of A
and At ona general state |n).

Orthogonality of harmonic oscillator states. We can use purely algebraic tech-
niques to show that the harmonic oscillator states are mutually orthogonal,
namely that

(nlm) = 8n,m (13.58)
It is easiest to use a proof by induction as follows:
(a) Since |n) o« (AT)"|0), we also have (n] o (0|(A)", so that
(nl0) = (01(A)"|0) = (0I(A)" " Aj0) =0 (13.59)
since A “annihilates the vacuum state.” This gives
(n|0) =0 for n>0 (13.60)
(b) Assume that it has been shown that
(njm) =0 (13.61)
for all n values for some value of m. Show that
(nlm+1) o« (m+ 1)(n—1|m) (13.62)

Show that these two pieces, taken together, constitute a proof by induction.

Consider a Hamiltonian written in terms of raising and lowering operators of
the form

= (m) Yo (A + AT) (13.63)

where €, are real constants with units of energy and [A,AT] = 1.
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P13.6.

P13.7.

(a) Show that H is Hermitian.

(b) Find the energy eigenvalues of the Hamiltonian in a purely algebraic way, that
is, do not transform back to x, p operators. Hint: Introduce new operators
D = aA + B (which defines D) and choose the «, 8 so as to make the
resulting problem look like the harmonic oscillator.

(c) Repeat for the Hamiltonian
A=e (ATA) + ey (A - AT) (13.64)

(d) Transform these Hamiltonians into position- or momentum-space differ-
ential operators, solve the differential appropriate equations, and show that
the spectra are the same as given using purely operator methods.

Use raising and lowering operators to show that

n
(nlxlk) = | —— («/n F1 Spprs + /1 sn_l,k) (13.65)
2mw

and

h
(nlx?1k) = (%) [V + D0 +2) 81

F@1+1) Spp + (n(n—1) an_z,k] (13.66)

Find the corresponding relations for the momentum operator, p. These rela-
tions are useful both for the matrix formulation of the harmonic oscillator in
Example 10.7 and for perturbation theory as in Example 10.9.

Raising and lowering operators. (a) Show that the raising and lowering operators
satisfy
[H,Al = —hwA and [H,A"] = hwA" (13.67)

(b) In the Heisenberg picture (see P12.21), where operators have a nontrivial
time-dependence, we can think of the harmonic oscillator states, |n) as being
time-independent while the raising and lowering operators are given by

At) = ett/h § g=ift/h (13.68)
and similarly for AT(1). Show that [A(t), AT(H] = 1, independent of t. Show

that the commutation relations of part (a) are also valid for the A(t).

(c) Use these facts, and the time-development equation for operators,

do) i . -
=0 (13.69)

to show that A(t) = A(0)e ™' and AT(t) = AT(0)et®’. Use the defining
relations for the A(0), AT(0) to find expressions for the time-dependent operators
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%(t) and p(t), namely
x(t) = x(0) cos(wt) + p(0) sin(wt) / mw (13.70)
p(t) = —mwx(0) sin(wt) + p(0) cos(wt) (13.71)

P13.8. Show that the matrices in Eqn. (13.51) satisfy the anticommutation relations in
Eqns (13.43) and (13.46).



FOURTEEN
Multiparticle Systems

Just as in classical mechanics, the study of single particle systems in one dimen-
sion provides invaluable experience in the use of quantum mechanical concepts
and techniques. To extend these ideas to more realistic applications (to be able
to enter the Quantum World of Part II) we also need to develop the formalisms
necessary to handle multiparticle systems. In this chapter we will discuss separ-
able systems (in Section 14.2), the important special case of two-body systems
(Section 14.3), notation for spin-1/2 wavefunctions (Section 14.4), and lastly,
in Section 14.5, the important constraints placed on quantum wavefunctions of
multiparticle systems due to indistinguishability.

14.1 Generalities

In classical mechanics, Newton’s laws for a multiparticle system have the form
J#i

= Fi(x) + Y _ Fj(xi —x;) fori=1,2,...,N (14.1)
j

d%x;(t)
S

where we have specialized to the case of external forces, F;(x;), which act on
each particle separately and mutual two-body interactions, Fjj = F;j(x; — x;); the
functional form of the F;; is consistent with Newton’s third law which requires
that Fjj = —Fj;. When solved self-consistently, these equations predict the time-
dependence of the coordinates of all of the particles, x;(t), once the initial
conditions are specified.
The time-development of the corresponding quantum system is dictated by
the multiparticle Hamiltonian operator
A 132 i>j
H=3" "L 43 Vi(x) + Y Vij(xi — x) (14.2)
i ! i

2m —
1,]
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Here the external and two-body potentials give the corresponding forces via
Vi(x) aVij(xi — xj)
0x; 0x;
and the restriction i > j on the double sum is to avoid double counting.
The momentum operator corresponding to each coordinate is p; = (h/i)d/0x;
and one has [x;j, pr] = ihAdj.
This acts on a multiparticle wavefunction ¥ (x;, %y, . .., x,; t) as the time-
development operator and generalizes the Schrédinger equation to

Fi(xi) = — and  Fjj(xj — xj) = — (14.3)

N 0
Hyr(x1,%0,...,xn3t) = ihal,ﬁ(xl,xz, ey X t) (14.4)

If none of the potentials actually depend on time, the usual exponential time-
dependence is found so that

x5 2N 1) = YE( X0 ) € (14.5)
where Y satisfies the time-independent multiparticle Schrodinger equation
Hyg(x, %, - XN) = EYp(xa, %, XN) (14.6)

The multiparticle wavefunction is then associated with a probability amplitude,
so that

P(x1, %0, 5 xN5 1) = [ (x1, %2, . . . N3 )| (14.7)
is a multivariable probability density. A more concrete definition is:

e The quantity |V (x1, X, . .., X3 1)|* dxy dxa, . . ., dx, is the probability that a
measurement of the positions of the N particles, at time ¢, would find

particle 1 in the interval (x1, x; + dxp)
and
particle 2 in the interval (x;, x; + dxy)

and

(14.8)
and
particle N in the interval (xn, XNy + dxn)

Just as with any multivariable probability distribution, this implies that the
wavefunction must be normalized so that

+00 +o0 +o0
/ dxl/ dxy - - / dxy | (X1, %25 . X3 D2 =1 (14.9)
—00 —00 —00
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and the total probability of measuring “something” is unity and not, for example,
N since we have more than one particle; we emphasize that | |? does not “count
the number of particles,” but rather specifies the probability of the entire system
of particles being in a particular configuration.

All of the usual conditions on the smoothness and convergence of one-
dimensional wavefunctions can be easily generalized, as can the expressions for
expectation values; for example, one has

R +oo +0o0 +00
<O>t=/ de/ dX2'--/ dxn
—0oQ —0o0 —0o0
X Y (X1, X2, -« XN3 1) O W (X1, X2+ . > XN5 ) (14.10)

for the average value of any operator 0.

Example 14.1. Correlations in two-particle wavefunctions
Consider a two-particle wavefunction

- (ax%+2bx1 X2 +cx22)

Y (x1,x2) = Ne (14.11)

where we must have a,¢ > 0 in order for the wavefunction to be normalizable. The
normalization constant is determined by the condition that

+0o0 +00 )
= f dxi f o [ (1, x2)|
-0 —00

+00 )y [T )
— N2/ dX2 e—(cfb /a)x; / dX1 efa(x1+bxz/a) (14.12)
—00 —00
R

vac — b?

This form (obtained by completing the square in the exponent) is useful in that it shows that
one must also have ac — b% > 0 in order for the state to be acceptable. It is then easy to
show that (x1) = (xp) = 0, while the covariance (measuring a correlation between the two
particles) is given by
b

(ac — b?)
This shows that the positions of the coordinates are correlated with each other, so that a
measurement of one provides nontrivial information on the other. When b — 0, we note

that the wavefunction becomes the (uncorrelated) product of two Gaussians, and is simply a
product wavefunction.

(1 = X)) 2 — (x2)) = Xixp) = (14.13)
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14.2 Separable Systems

A great simplification occurs if the mutual interactions of the particles can be
ignored (Vj; = 0), because the Hamiltonian then takes the form

° .
H= Z%-l—ZV(M) =Z(2p—r;i+V(xi)> = ZH, (14.14)

1

With no mutual interactions present to give rise to dynamical correlations, it is
natural to assume a product solution of the form

VEXL, X255 XN) = Y1(x1) ¥2(2) - - - v (xn). (14.15)

The time-independent Schrodinger equation, Eqn. (14.6), can then be written as
E[Y1(a)¥a(a) - Y] = [Hiya )] vate) - o)
160 [Favato) | n ) (1416)
YY) | A g ) |

Using the usual separation of variables trick, we divide both sides by Eqn. (14.15)
and find that

[y ()] | [y ()] [An YN (xy)] _E (14.17)
Y1 (x) V2(x2) VN (xN)
This is only consistent if
Hii(x) = Ei(xi) fori=1,2,...,N (14.18)

where E; + E; + --- + Ey = E; we then have to solve N “versions” of the
one-dimensional problem. Several comments can be made:

¢ If each component wavefunction is properly normalized, then the product
solution is also, since

400 +o00 +oo
[ e de|w<x1,x2,...,xN>|2=]‘[U dxi|wi(x,->|2]=1

—00 —00 i —0o0

(14.19)

¢ The overall time-dependence can also be factorized since

e—iEt/ﬁ — e—iE]f/h . e—iEnt/ﬁ (14.20)
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which implies that

w(xla X25 .+ .>»XN> t) = wl(xla t) wZ(xZ) t) Ut 1ﬁN(xN) t) (1421)

This is potentially useful as wave packets for each particle can be constructed
using superposition techniques, so that products of such wave packets will also
be valid solutions for the noninteracting case.

Example 14.2. Degeneracy in two-particle systems

Consider two particles of the same mass m confined to the standard infinite well; for the
moment, we neglect any mutual interactions.” The general solution to this two-particle
system is

2 . /nmaX
Y(n1,ny) X1, X2) = Uny) (X1) U(ny) (X2) where un(x) = \/;sm <T) (14.22)

with the corresponding energy spectrum

2.2
Eryny = % (n?+n3) (14.23)

The ground state energy is i%?/ma?, corresponding to (ny,ny) = (1,1) and is
unique. The first excited state, given by the two choices (1,2) and (2, 1), is doubly degen-
erate, and the corresponding wavefunctions can be written as ¥, = v¥1,2)(X1, X2) and
Y =121y (X1, X2); these two choices are not unique because we can invoke the linearity
of the Schrédinger equation to show that any (appropriately orthogonal) linear combination
of these two is also a solution with energy £1.2) = 5h?m?/2ma® = Eq.y).

We can now use this example to illustrate the methods of degenerate perturbation theory,
as outlined in Section 10.5.2. We add a small mutual interaction term given by V' (x1, x;) =
98(x1 — X) where positive (negative) g corresponds to a repulsive (attractive) interaction
between the two particles. Referring to Eqn. (10.134), we require the various matrix elements
of the perturbing interaction; for example,

Hey = Vel VO — x2) W)
a a
- /O o /0 o (U1 (U2 06)] (8 (x1 — x2)) [ur (X1 U2 (62)]

2 ra
(E> / dxq sin’ <7T—X1> sin’ <_2nx1)
a) Jo a a

(14.24)

v WQ

/ —
Haa -

! If they are both in the same one-dimensional well, this implies that they are somewhat “ghostlike”
as they must be able to “pass through” each other.



14.3 TWO-BODY SYSTEMS 389

(Continued)
with identical answers for H;Sﬁ and foﬁ- The condition determining the (split) energy
eigenvalues (Eqn. (10.134)) then reads

E+g/a—E g/a _
det( g/a £+g/a—E)_O (14.25)

where £ = E(3,1) = E(1,7) is the initially degenerate energy level. The resulting polynomial
equation is easily solved and yields

g1 949 (14.26)
a a

The two energy eigenvalues and corresponding (normalized) eigenstates are given by

1
ED =& yDx) = i (Va2 0. x2) = Yantax))  (14.27)

F—e+ D YO0 = — (Va1 %) + Y (x1,x))  (14.28)
a V2
The antisymmetric combination state, corresponding to £¢, is unshifted in energy because
the v (=) wavefunction vanishes where the perturbation has any effect, namely, for x; = x,.
The symmetric solution has a larger probability of having x; = x; than do either v, or ¥
individually and it can “feel” the effect of the perturbation; the energy of the symmetric state
is therefore increased or decreased depending on the sign of g.

14.3 Two-Body Systems

While much of classical mechanics is concerned with the motion of single
particles under the influence of external forces, many standard problems, espe-
cially in gravitation, are concerned with the motion of two bodies subject only
to their mutual interaction. While general methods of solution for the N-body
problem” (with N > 3) do not exist, a simple change of variables is often enough
to transform Newton’s equations for two particles into an effective one-particle
problem which can then be approached using a variety of familiar techniques.

Such techniques are perhaps even more important in quantum mechanics
where many of the “textbook” examples are two-body systems; examples include
diatomic molecules, the hydrogen atom, the deuteron (proton—neutron bound
state), and quarkonia (quark—antiquark bound states). In these cases, we are
often more interested in probing the (sometimes unknown) force between the
particles, so that not having to deal with the complications of many particles

2 See, for example, Symon (1971).
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is extremely important. Even though it is implemented in a very different way,
the same coordinate transformation “trick” works in both classical and quantum
mechanics and we begin our study by reviewing the classical case.

14.3.1 Classical Systems

The classical equations of motion for a two-particle system with no external
forces and only mutual two-body interactions are

mxi(t) = F1(x1 — x2) and  mpXo(t) = Fia(x1 — x2) (14.29)

and we recall that F = F,; = —F;, from Newton’s third law. Two combinations
of these equations then immediately suggest themselves and naturally select out
a new set of variables. If, for example, we add the two equations in Eqn. (14.29),
we obtain

0 = F1 + Fip = miX1(x) + mpXp(t)

my X (x) + mz%z(t))
my + my

= (m1 + my) ( (14.30)

0=MX(t)
where we define the total mass, M = m; + m;, and the center-of-mass coordinate

X(1) = myx1 (f) + mpxp(¢) (14.31)
B my + my .

We note that Eqn. (14.30) gives the standard result that if there are no net external
forces, the center-of-mass of a system moves at constant speed. A related variable
is the total momentum, given by

P(t) = MX(t) = mvi(t) + myvy(t) = p1(t) + pa(t) (14.32)

so that Eqn. (14.30) also shows that the total momentum is conserved.
If we now divide both sides of Eqns (14.29) by the respective masses, and then
subtract, we find

F (i + i) = e = X1(t) — X2(t) (14.33)
my my nmq my
or
F(x) = wx(t) (14.34)

where we have defined the reduced mass via

1 1 1 mymy
—=—4+— or u=—"+— (14.35)
2 1 m my + my
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Figure 14.1. Center-of-mass (R) and relative (r = rq — r)
coordinates for a two-body system in two-dimensions, which
generalizes Eqn. (14.31). You should be able to estimate the ratio
myq/m; from the figure.

and the relative coordinate via
x(t) = x1(t) — x(1) (14.36)

while F(x) = F,1(x1 — x). The nontrivial dynamics of the system is then
described by Eqn. (14.34); the “interesting” physics is all contained in the relative
coordinate which describes the motion of a fictitious particle of effective mass p.
The change of variables can also be inverted to give

=X m d =X “ 14.37
x1(t) = (t)+ﬁx(t) and x(t) = (t)—ﬁx(t) (14.37)

so that the motion of each particle can be extracted if so desired. The same
variable change works in more realistic two- and three-dimensional systems and
we visualize the new coordinates in two-dimensions in Fig. 14.1.

14.3.2 Quantum Case

The quantum version of the two-body problem requires us to solve the two-
particle Schrédinger equation given by

HY (x1, %) = Er (x1, %) (14.38)
where the Hamiltonian is given by
82 ~2
H:p_l+p—2+V(X1—x2)
2my  2mp

G S
- 4 V(x—x 14.39
2m 8x12 2my 8x22 (=) ( )
if there are no external forces. The change to center-of-mass and relative

coordinates,
myxy + npx
X= 2T and x= X1 — X (14.40)
my + nnp

(where we drop the t dependence, as these are no longer classical coordinates,
but quantum mechanical labels) is trivially implemented for the potential energy
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term where V(x; — x;) = V(x). For the kinetic energy operators, we need to
rewrite

R h a
bi= = fori=1,2 (14.41)
1

in terms of the spatial derivatives of the X,x coordinates which give the
momentum operators corresponding to those variables, namely

~ h o ~ ho

P=-—— d = —-——. 14.42
iax ¢OPET5% (1442)
This requires the chain rule relation
d X 90 dx 0
— 4 2 (14.43)
0x1,2 dx12 0X  0x12 0x
which, using Eqn. (14.40), gives
~ mi A A ~ ny A ~

We note that adding these two equations gives P= p1 + P2, now as an operator
relation. The kinetic energy operators in the Hamiltonian can now be written as

£2 2
pi D 1 (ml A A) <m2 A A)Z
2m1 + 2TYI2 271’11 M +P + nyp M P

L (ms,
= — P — (pP+ P
2my <M2 + (p + p)+p)

Lo (may  ms sy o
= P——(P P)
+ (Mz = (pP+Ph) +

21712

(14.45)

~2 ~2 52 ~2
A + P_Z — P_ + P_
21711 2m2 2M Z,u
While we have been careful with the ordering of P and p, it is easy to see that
[P, p] = 0. This can also be used to confirm that the total momentum of the
system is a constant since P commutes with the Hamiltonian operator, that is,

N PR SRy b
[H, P] = 2M[P , P1+ 2M[p ,P1+[V(x),P1=0 (14.46)

We emphasize that this is true only under our assumption that the potential
is only a function of the relative coordinate; if there are external forces, an
equivalent classical result is obtained (P14.3).

Most importantly, in the new coordinates, the Hamiltonian is now separable
since

. p? P . .
H= T (— + V(x)) = Hx + H, (14.47)
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so a product wavefunction of the form

[q/(X)e—iEXf/ﬂ [lﬁ(x)e_iExt/h] (14.48)
satisfying
HyW(X) = Ex¥(X) and H¥(x) = Ex¥(x) (14.49)

is a solution. The center-of-mass equation has trivial plane wave solutions of the
form

Wp(X) = o/ (PX=P!/2M)/h (14.50)

(with P a number) from which wave packets, representing the constant velocity
motion of the center-of-mass, can be constructed.

Example 14.3. Reduced mass effects in two-particle systems

A simple model of a one-dimensional diatomic molecule consists of two masses my, m;
interacting via the potential V (x; — x2) = K(x1 — x; — )2/2 where / is the equilibrium
separation of the two masses. The equation for the relative coordinate,

A2
(f_M—H/(X_/)) Y (x) = Exyr (%) (14.51)
has the standard harmonic oscillator solutions v (x) = ¢n(x — /) with quantized energy
levels given by EM = (n+1/2)hw where @ = /K/u. The dependence on w of the
zero-point energy of vibrational states in diatomic molecules was mentioned in Section 9.3.

In systems where m; & m;, the reduced mass is roughly u ~ m; /2 ~ m, /2
and its effect is obviously important to include. In cases such as the hydrogen
atom, where one has m; = m, << mp = my and u = m./(1 + me/mp) ~ m,
the effect is much smaller (since m, /m, ~ 1/2000) and is sometimes not stressed
sufficiently. The discrete energy spectrum of a hydrogen-like atom (a single
electron interacting via a Coulomb force with a nucleus of charge Z) is given by
Eqn. (1.42) as

1 2,01
E,= ——ucZa"— (14.52)
2 n?
where the reduced mass « now properly appears. The frequencies of the photons
emitted in a transition are

1 1

1
hwy = W2 fy = E, — B = ~pc* 2% | = — — (14.53)
2 nz 12
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The dependence on p implies that the corresponding lines in atoms with the
same value of Z, but with different nuclear masses (i.e. isotopes) will have slightly
differing wavelengths. This effect was utilized in the discovery of the “hydrogen
isotope of mass 2,” now known as deuterium. (See P14.6 for details.)

14.4 Spin Wavefunctions

In describing the quantum state of a particle, we have concentrated on the
wavefunctions corresponding to observable quantities such as position (¥ (x)),
momentum (¢ (p)), or energy eigenvalues ({a,;n = 0,1...}). The “spin-up”
and “spin-down” label necessary to describe spin-1/2 particles must also be
included in the multiparticle wavefunctions for such particles. A more compre-
hensive discussion of spin in quantum mechanics is given in the next chapter,
but we introduce here, for convenience, some of the basic formalism for spin-1/2
particles.

A convenient (matrix) representation of the spin operator (quantized along
some convenient direction, often the z-axis) is given by

hi(l1 o0
SZ_E(O _1> (14.54)

which acts on a (complex) spinor wavefunction

x = (Z) (14.55)

In order to be normalized, such spinors must satisfy

o

B

The eigenvectors and eigenvalues of S are seen to be

) x = @, 8% ( ) = laf* + 81> =1 (14.56)

h

xt = ((1)) with S,xT = +EX+ (14.57)
h

= (?) with S.x~ = ~5x (14.58)

Since S, is a Hermitian (matrix) operator (note that SI = S;),itis not surprising
that its eigenvalues, //2, are real. For the same reason, the eigenfunctions (in
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this case eigenvectors) also satisfy the usual orthonormality conditions since

Y B =1 = N and  (xP) O = 0= () x®
(14.59)

(x

and there is a corresponding expansion theorem, written as

) 1 0
(= (Z()) e (()) 4 <1> — B L aO O (14.60)

This form makes it clear that [a‘™|2(|a‘P|?) is the probability that a measure-
ment of the spin (projected onto the z-axis) will yield a value of +4/2 (—h/2);
it is also consistent with the expectation value

B (10 a h
(x1S:1) = (@D, a9 (o —1) <a<—>) =5 (17 = 1a7)
(14.61)

A spin-1/2 particle can then carry information on its spin state in its quantum
wavefunction, ¥ (x, x), and inner products between different quantum states
must be generalized. For example, the overlap “integral” of v/, (x) x, and ¥, (x) xp
will be

400
(Waltry) = [ / dx Y (x) Wx)] [0 0] (14.62)

—00
and wavefunctions can be orthogonal because of different spin dependences. An
expansion in energy and spin eigenstates might then have the form

Y(x, x) = Z (a,(f) un(x) x T + au,(x) x(_)> (14.63)

n

Example 14.4. Expansion in energy and spin eigenstates

Consider a spin-1/2 particle in a harmonic oscillator potential described by the wavefunction
Y0 =N (3%000x ) = @+ Di00x D + Yoy eox®)  (1464)
The normalization constant can be determined by the requirement that

> (as? 1 +lan(—)1H) =1 sothatN = 1//20 (14.65)

The average value of the energy is

o 9 1 546 3 21
=) (37) + (Cap) (Go) = gt~ 409
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(Continued)
while the expectation value of S is

h(9+6 h(5 h
6A=§(3F)——(m)=z (14.67)

The combined probability that a measurement will find S; = +#4/2 and E = 3hw/2 is
P =3/10.

For multiparticle wavefunctions, we have to specify the position and spin label
for each particle,3 for example, W (x1, X1 %2 X2; - - -3 Xn> Xn)- We will often denote
all of the relevant labels for a given particle by simply specifying the common
numerical index, that is ¥ (1;2;...; N).

For example, for two (noninteracting) electrons in an infinite well, the
following wavefunctions will all turn out be physically acceptable:

Ya(l;2) = Xl( )X2(+) Xl( )X2(+)) u1 (x1) 1 (x2) (14.68)

1
5
U512 = x PP L ) ) — i (x)u (a)) (14.69)

V2

Ve2) = —= (w1 — wem e OxuY) 1470
V2
The inner product for spin-states for different particles is generalized to be

(x1 x2lx1 x2) = Galx) (elxe) = (e > + 111D (eal* + 1217) = 1
(14.71)

You should now be able to show that the wavefunctions in Eqns (14.68)—(14.70)
are properly normalized and mutually orthogonal and be able to calculate the
energy of each state.

14.5 Indistinguishable Particles

Thus far, we have focused for the most part on exploring the consequences of a
wave description of particles, its implications for observable phenomena, and the
connection between the classical and quantum limit; we have thus concentrated
on what we have termed “A physics.” But there is another dichotomy between
the extreme quantum and classical limits of particles which was introduced

> We do not consider other possible degrees of freedom which might be labeled, such as “isospin” for
nucleons and “color” for quarks.
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in Chapter 7 which we can describe as “indistinguishability physics”; hereafter,
indistinguishable will be abbreviated IND for convenience.

Unlike a set of billiard balls which have different colors and even distinct
numeric labels, each of the electrons in an atom is seemingly equivalent to every
other electron. In the same way, all protons are effectively identical, all neutrons
are equivalent, and so forth; no experiment has yet been able to discern any
measureable differences between individual electrons, individual protons, and
so on. The same statement holds for other particles other than just the “building
blocks of nature,” such as photons and all other “elementary” particles.

We can roughly define:

* A set of indistinguishable (IND) particles is one in which the interchange of
any two particles has no observable effect on any property of the system.

The notion of indistinguishability raises an interesting question when one
considers the total number of wavefunctions which can have the same total
energy, thatis, the degeneracy. For simplicity, say we have a product wavefunction
of N IND particles of the form

V(152..5N) = ¢a(1)pa(2) - - - a(N) (14.72)

where each particle is in the same quantum state; the total energy is simply
Eiot = NE,. The assumption of indistinguishability means any permutation of
the indices will give a state with the same energy. Because of the special form of
Eqn. (14.72), however, the resulting exchanges do not change the wavefunction
and there is only one distinct wavefunction with this energy.

Contrast to this is the situation where all N particles are in totally different
one-particle configurations,

Y(152;5...5N) = ¢a, (1)a,(2) - - - Pap (N) witha; #ay #--- #an
(14.73)

with energy Eiot = E;, + E4, + - - - + Egy. One can use N different labels for the
first state ¢, , leaving N — 1 for the second state ¢,,, and so forth; there are thus
N! different permutations of the labels, each of which gives a state of the same
total energy and, in this case, all N! wavefunctions are distinct. For example, with
three particles in the n = 0, 1, 2 levels of the harmonic oscillator, we might have
(ignoring spin labels) the 3! = 6 different states

Do (x1)P1(x2)2(x3),  Po(x1)P1(x3)P2(x2),  Po(x2)P1(x1)P2(x3)

(14.74)
D0(2)h1(x3)P2(x1),  Po(x3)P1(x1)P2(x2),  Po(x3)P1(x2)P2(x1)
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For distinguishable particles, each of these choices corresponds to a different
physical system since one can, by definition, tell the particles apart; the probability
density for a hydrogen atom with an electron “here” and a proton “there” is
obviously different from the exchanged system. For IND particles, however, we
have the possibility of N! wavefunctions which supposedly all describe the same
(presumably unique) physical system and the obvious question is:

® Which one (if any) of these N'! choices is the appropriate wavefunction?

To help answer this question, we first formalize the notion of interchange by
defining the exchange operator, £j;, which has the effect of exchanging particles
and j with all their appropriate labels. Recalling the notation

W (X1, X135 %2 X25 - - -3 XN XN) = Y (1;25...5N) (14.75)
we define the exchange operator such that
é,jw(l;Z;...;i;...;j;...;N) =v(152...50...55...3N) (14.76)

so that x; <> xj and x; < xj.
If, for example, one has two IND spin-1/2 particles in the infinite well with
wavefunction

Y(152) = ug ()7 () ™ (14.77)
we will have
Y (21) = Env(1;2) = ug(x) uy(x) x\ xS (14.78)

The two-particle wavefunctions in Eqns (14.68)—(14.70) are easily seen to be
antisymmetric under the action of £ 12.

There are N(N —1) distinct éij which, by themselves, exchange labels pairwise;
the complete set of all the N! permutations of the particle indices is generated
by taking products of the individual éij. For example, when N = 3, we have

¥ (3251) = 3P (132;3) (14.79)
while
¥ (253;1) = Env(1;3;2) = £12630(152;3) (14.80)

The set of the f:’,-j and their products forms a permutation group (P14.7).
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We can establish several important properties of the exchange operators using
two-particle systems as an example, for ease of notation:

¢ The exchange operator is Hermitian. We show this explicitly for the position
degree of freedom by noting that

R +00 +00 . *
()" = [/ dx / dxy ¥ (x1, X%2) Ejj ‘ﬂ(xl,xz)}

—0o0 —00

400 +00
_ / i, / dxs Y (s x1) ¥ (x1, %)

—0o0 —0o0

+00 oo
:/ dy, / dy1 ¥ (v, 2) ¥ (y2 1)

—0o0 —00

+00 +o0 R
= / dyz/ dyr ¥* iy, 32) E12 Y (1, 02)
—0 —0

() = () (14.81)

where a simple relabeling of the dummy integration variables is used; the
similar proof for spin wavefunctions is discussed in P14.8.

® The operator éij certainly commutes with the many-body Hamiltonian
because

[H,E0v (1;2) = ALy (1;2) — EnHY(1;2)
= Hy(%1) — EiEan v (152)
= (Ep1) — Eq2)¥(1;2) =0 (14.82)

since the energy is an observable which should be unchanged by interchange.
We then know that the states of the system are simultaneous eigenfunctions
of both the energy and all the exchange operators.

® The square of the exchange operator is just the identity since

A \2 A oA A
(&) w2 = 8oy =€y G D = v (1483)

Just as with the parity operator (Section 6.6), this fact implies that the eigen-
values of the exchange operator are £1, corresponding to states which are
symmetric (41) and antisymmetric (—1) under interchange of any two
particles, that is

symmetric: ¥ (2;1) = élzlﬁ(l;Z) =4y (1;2) (14.84)
or

antisymmetric: ¥ (2;1) = £IZW(1;2) = —y(1;2). (14.85)
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This is certainly consistent with the fact that the probability distribution of
two exchanged wavefunctions should be the same under exchange, namely
that

P21 =y DIP = £y (152)P = P(1;2) (14.86)

® These last two points, taken together, imply a very powerful constraint on
the total wavefunction (by which we mean both position and spin degrees of
freedom), namely:
The wavefunction of N IND particles must be either totally symmetric
(S) or totally antisymmetric (A) under the exchange of any two of the IND
particles, that is either

totally symmetric: éijws(l; 2;5...;N) = +v¥s(1;2.5N) (14.87)
or
totally antisymmetric: éiij(l;Z; .3 N) = —v4(1;2.;N) (14.88)
for all possible pairs (i, j).

This important result is the key ingredient in determining the correct form
of the quantum wavefunction for a system of IND particles. Using the states in
Eqn. (14.74) as an example, we see that none of them satisfy either (14.87) or
(14.88) by themselves. One can see, however, that the linear combinations

Ys(152;3) = Cs [@o(x1)d1(x2)P2(x3) + Po(x1)1(x3)P2(x2)
+ ¢o(x2)P1(x1)P2(x3) + Po(x2) 1 (x3) P2 (x1) (14.89)
+d0(x3) 1 (x1)P2(x2) + Po(3)P1(x2)P2(x1)]

and

Ya(15253) = Ca [Po(x1)P1(x2)P2(x3) — do(x1)P1(x3)P2(x2)
— @0 (x2) @1 (x1)P2(x3) + Po(x2)P1(x3)P2(x1) (14.90)
+ ¢o(x3)P1(x1)P2(x2) — Po(x3)P1(x2) P2 (x1)]

are respectively symmetric and antisymmetric under the interchange of any
two labels; the constants Cs, C4 are determined, of course, by the overall
normalization.

A general prescription for the construction of such properly symmetrized
or antisymmetrized linear combinations is easy to generate. For the symmetric
combination, one can take

completely symmetric: ¥s(1;2;...5N) = Cs Z v(1;2;...5N) (14.91)
P
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where )", denotes the sum over all possible permutations of the N indices;
this form certainly reproduces Eqn. (14.89). While there can be as many as N!
terms in this sum, if the IND particles are not all in different quantum states,
the number of terms can be far less. For example, if the N particles are all in the
same state given by Eqn. (14.72), the permutations in (14.91) are all identical
and we find

Ys(1;2...;5N) = Cs N ¢ (1;2;...5N). (14.92)
In this language, the antisymmetric combination can be written schematically as
completely antisymmetric: ¥4(1;2;...;N) = Cy Z(—I)PW(I; 2;...5N).
3

(14.93)

® Here np is the number of two-particle permutations or exchanges which are
required to achieve the overall permutation denoted by P starting from the
canonical ordering (152 . . . ; N); this factor gives the alternating signs required
by the antisymmetry.

As an example of this last case, we note that
Y(251;3) = Eny(1;2;3) = np =1, (1" = -1
.. (14.94)
V(3 1;2) = E13E3Y(1;2;3) = np =2, (-1 = +1
as in Eqn. (14.90). This form also implies that:

® No two particles described by a totally antisymmetric wavefunction can be in
the same quantum state,

which we can see as follows. Suppose particles i and j were in the same quantum
state, namely, i = j; then since the overall wavefunction must be antisymmetric
under Eij, we have

Y2 50505 3 N) = =¥ (152554 . .57 .. .5 N) by antisymmetry

[
Y125 500505 N) = =¥ (1;2;.54;...54;...; N) since i = j, implying
v(1;2;...54...58...;N) =0 (14.95)

The more careful way of stating this result is that:

® The wavefunction (and hence the probability density) for two particles in a
completely antisymmetric state to occupy the same quantum “niche” vanishes.



402 CHAPTER 14 MULTIPARTICLE SYSTEMS

For the case of noninteracting particles where the wavefunction can be written
in product form, the antisymmetric combination can be written in an especially
simple form using a determinant, namely

() G, (1) --- Pay(D)

1 ¢u1 (2) ¢ll2 (2) e ¢11N (2)
Ya(l;2;...5N) = det . . ) :

VNI

(14.96)

b0 (N) ¢, (N) -+ ¢ay(N)

The“recipe” for constructing this matrix is to put the N (necessarily different)
single-particle wavefunctions in succeeding columns while the particle state labels
1,2,...,N are then inserted in different rows. The overall antisymmetry of
the wavefunction is guaranteed by the linear algebra result that the exchange
of any two rows (or columns) of a matrix introduces a factor of (—1) in the
determinant. The overall normalization constant is correct provided each ¢,
is properly normalized (P14.9). This form is called a Slater determinant and is
useful even when the particles interact with each other as it can be used as a trial
wavefunction for a variational calculation.
A similar shorthand notation for the symmetric state is

o (D) P (1)  --+ Pay(D)

$a,(2) 95 (2) -+ Pay(2)

¥s(1;2;...5N) = Csdet (14.97)

b0 (N)  ¢a,(N) -+ hay(N)/ |

where the + subscript indicates that the determinant should be taken with all
positive signs. For symmetric states, more than one particle can be in a given state,
not all of the resulting terms will necessarily be different, and the normalization
must be determined case by case; an example is Eqn. (14.92) and P14.9.

The requirement that IND particles have totally symmetric or antisymmetric
wavefunctions has therefore reduced the possible ambiguity in the number of
quantum states describing the same physics from being as large as N! possible
choices to only two. The physical property of the particles in question that
determines which choice is actually realized in nature is their intrinsic angular
momentum or spin, specifically whether the particles have integral spin (J =
0,1,2...) or half-integral spin (1/2,3/2,5/2,...); the former are called bosons
while the latter are known as fermions. This distinction is the content of the
spin-statistics theorem which states that:

® The total wavefunction (including both spin and position information)
of a system of indistinguishable bosons (fermions) must be symmetric
(antisymmetric) under the interchange of any two particles.
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The exclusion principle, as stated in Section 7.1 that “no two electrons may
be in the same quantum state” is seen to be an immediate consequence of this
result from Eqn. (14.95). The same result must then hold for neutrons and
protons in nuclear systems, quarks inside nucleons, and all other particles with
half-integral spin. Besides yielding a “no-go” theorem for what is not allowed,
the spin-statistics theorem provides a prescription for the construction of the
appropriate wavefunction for a system of IND particles via Eqns (14.91) and
(14.93) and, as such, is a much more powerful statement about how nature
organizes itself.

Example 14.5. Two electrons with spin in a box

Consider two noninteracting electrons in an infinite well potential. The ground state of the
system is achieved when both particles are in the lowest allowed energy state with Erot = 2E7.
This is allowed provided their spins are different (as in Fig. 14.2(a)), in which case the Slater
determinant wavefunction is

1 ur o) u o)
¥(1;2) = — det ! 1
V2! uexs " u)xy”
[N T s
= U1(X1)U2(X2)ﬁ (X1 X2 T Xy X ) (14.98)

The antisymmetric wavefunction with both particles in the ground state and with spins aligned
vanishes, as in Eqn. (14.95).

For the first excited state of the system, one electron can be “elevated” to the next energy
level so that Eqot = E7 + E7 and both spin configurations in Fig. 14.2(b) and (c) are possible;
the corresponding wavefunctions are then

1 uenx ™ w o™
1,2) = —— det 1 i 14.99)
V=5 (m(xmﬁ“ u02)x;~ (

+) (=)
1 X2

1 _
= 5 (nenea ™ x” - wenuoox”x)

Figure 14.2. Allowed states of two
indistinguishable spin-1/2 particles in an infinite e L %%}7 | % o | %7 B
well; Case (a) is the ground state, while (b) and (c) !

show two possible first excited states.
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(Continued)
and
1 o wenx ™
V(1) = —=de ! ! (14.100)
V2! uie) X wo) ™
1
= X1(+)X1(+)ﬁ (U1 (X)) U2(x2) — U2 (X1)U1(X2))

with a similar state with both spins down also possible. These are just the wavefunctions of
Eqns (14.68)—(14.70).

We know that the presence of mutual interactions between particles will induce
dynamical correlations between them which are reflected in their quantum
wavefunctions. What is more surprising is that IND particles exhibit such cor-
relations even when they do not interact, simply due to the requirement of
indistinguishability; these can be called an effective “Fermi repulsion” and “Bose
attraction” which we illustrate in the next example.

Example 14.6. Correlations due to indistinguishability

Consider two particles of mass m in a harmonic oscillator potential; assume that we somehow
know that there is one particle in the ground state (o) and one in the first excited state (1)
We define the three wavefunctions

Yo (X1, X2) = Yo(X1)¥1(x2) (14.101)
1

YB(X1,X2) = Wi (o (x1) Y1 02) + ¥ (X)) Yo (x2)) (14.102)
1

Yr(X1,X2) = % (Wox)Y1(x2) — Y1 (x1) o (x2)) (14.103)

where

Yo(x) = /#exz/zf’2 and  ¥1(x) = %(%) e /20" (14.104)

are the appropriate SHO position-space wavefunctions, and the labels stand for distinguishable
(D), boson (B), and fermion (F), respectively. We imagine for example that the bosons have
no spin so that their wavefunction must be symmetric in the position coordinate, while
the fermions have a symmetric spin wavefunction (which we do not exhibit) implying that
their position-space wavefunction must be odd under exchange. There is, of course, another
distinguishable wavefunction with 1 < 2.
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(Continued)

Figure 14.3. Three-dimensional plots (left) and contour
plots (right) of [ (x1, X2)|% versus x;, x; for the case of
(top) distinguishable particles, (middle) indistinguishable

bosons, and (bottom) indistinguishable fermions.

Figure 14.4. A "slice” through the contour plots of K v kS
Fig. 14.3 along the X1 = x; direction. The fermion \
probability distribution vanishes (Pauli principle), and the =
identical boson configuration is twice as likely asthe ~ ~7 777 Identical bosons

indistinguishable particle state. Distinguishable

To see the correlations contained in these wavefunctions, we calculate expectation values
and note that (x1) = (x2) = 0 for all cases but:

D:(x{)=p"/2 (5)=3p"/2 (xixp) =0 (00 —x)%) = 2p’

B: (i) =p"  (G)=p" ) =+p%/2 (1 —x)?) =p’ (14.105)

Frody=p" 03y =p" (i) =—-p"/2 (00 —x)") =3p’
The two particles described by the fermion (boson) wavefunction are, on average, farther apart
(closer together) than if they were distinguishable particles. This is illustrated in Fig. 14.3(a—c)
for the three cases where we plot | (x7, X2)|? versus x1, x. A “slice” through these plots
along the line x; = Xy is shown in Fig. 14.4 where we see that the totally symmetric

wavefunction is twice as probable to be found with the particles in the same state; the totally
antisymmetric wavefunction, of course, vanishes identically in this case.
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(Continued)
We can further explore the implications of these correlations by “turning on” a mutual
interaction between the two particles of the form

/ (X2 — X2)°
V (Xz X2, d) \/_ <_T> (14106)
This function has the nice property that
dlimO[V(xz —x2,d)] = A8 — x2) (14.107)

so that the particles only interact when they are on “top of each other” in this limit. This form
is also convenient as an estimate of the effect of this interaction can be made using first order
perturbation theory and the necessary overlap integrals can all be done analytically (P14.10).
The shift in energy due to this perturbation at this order can be written as

A pl+d? [ 1422
E“) AEp S N /A I e
T m @l d)T T P Qg2
2 2 i 2]
%) A 2,0 +d _ 2+Z
= 24032 2\3/2 :
N RN A IV Ew Ry (14108
A d? 2]
ED A= =V | ——
P Qe+ dyr T P | 2+2)%7

where Vp = A/by/m and z = d/p; we plot these results in Fig. 14.5. One sees that
when d << p (z << 1 or "range of mutual interaction” << “particle separation”), the
perturbation “samples” the various wavefunctions in a region where the correlations are
dramatic, and the resulting energy shifts are very different; when d >> p (z >> 1) the
effects of indistinguishability are less important.

............. Boson
—— Distinguishable
...... Fermion

Figure 14.5. Energy shift, AE(z), versus the range of the
mutual interaction, z = d/p. Results for the distinguishable
(solid), indistinguishable boson (dotted), and

indistinguishable fermion (dashed) states are shown. z=dlp
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14.6 Questions and Problems

Q14.1. What are the dimensions of an N-particle wavefunction in one dimension? in
three dimensions?

Q14.2. Does the notion of probability flux generalize to multiparticle wavefunctions?

Q14.3. Referring to Fig. 14.1, show how to estimate the ratio m; /m,.

P14.1. Multiparticle momentum-space wavefunctions.

(a)

(b)

(0)

Show that the definition

1 +00 ~+00 . 5
d(p1,p2) = %/ dx, / dxy e P12 tpax2)/ W (x1,%2)
—00 —00
(14.109)

is appropriate for the momentum-space wavefunction corresponding to
a two-particle position-space v (x, x2); specifically, show that ¢ (p1, p2) is
normalized if ¥ (x, x) is, that the appropriate inverse relation holds, and
anything else you think is important.

Evaluate the momentum-space wavefunction corresponding to ¥ (x1, x2)
in Example 14.1 and show that it is proportional to

2 2
(@} —2bpip+ apz)> (14.110)

¢ (p1,p2) = exp ( 12 (ac — 07
Normalize this wavefunction, show that this form has the right limit as
b — 0and ac — b* — 0,and interpret your results.

Find the covariance for the variables p;, p» and show that it is opposite in
sign to that for x;, x, and interpret your result.

P14.2. Consider two distinguishable and noninteracting particles of mass m moving
in the same harmonic oscillator potential.

(a)

(b)

(c)

What is the ground state energy Fy and wavefunction v (x;, x;) of the
two-particle system? Is the ground state energy degenerate?

Show that the first excited state E; is doubly degenerate and write
down the two wavefunctions, 1//1”’h(x1,x2). Consider a §-function inter-
action between the particles as in Example 14.2, V'(x; — x) =
g8(x1 — x2)-as a small perturbation. Find the perturbed energies and
eigenfunctions.

Show that the second excited state is triply degenerate and write down the
possible wavefunctions. Show if a g&(x; — x,) mutual interaction is added
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P14.3.

P14.4.

that the resulting eigenstates are given by

1
Yi(x1, %) = 7 [Yo(x)¥2(x2) — Y2 (x1)¥o(x2)]
1
PG = 3 [Yola) () = V2Y1 ()Y () + Yo (avo(x) |
1
Y Gan) = 5 [ Vol ata) + V21 ) v () + V(e Yo )

where the v, (x) are the one-particle SHO eigenfunctions. Show that
these states are mutually orthogonal. If the mutual interaction is repuls-
ive (g > 0), which state has the highest energy? the lowest energy? What
are the energy eigenvalues? Hint: For this three-state system you have to
diagonalize a 3 x 3 matrix. You presumably know one linear combination
which would be unaffected by the perturbation and hence one eigenvector
and eigenfunction. Extracting this one helps you solve for the other two.

Consider the operator representing the total momentum of a multiparticle
system, namely

~ ~

P=pi+p+--+pn (14.111)

The time-dependence of the expectation value of this operator will be given
(recall Section 12.5) by

i

(P) = ﬁ“H’ I3 (14.112)

S

where H is now the multiparticle Hamiltonian in Eqn. (14.2). Show that this
can be written as

(P) = (Fi+ Fo+ -+ Fn) = (Feot) (14.113)

S

where Fior corresponds to the total external force; if this vanishes, the total
momentum is conserved as in the classical case. Note: This result implies that
the effects of the two-body mutual forces cancel and you should show that

aVij n BVij

=0 (14.114)
0x; 0x;

In changing to center-of-mass and relative coordinates for a two-body system,
the wavefunction in terms of the original x;, x, coordinates can be recovered
by using

V(X)) ¢(x) = W (X (x1,X2)) ¢ (x(x1, %2)) —> ¥ (x1, x2) (14.115)
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We have stressed that a probability interpretation requires not only the value
of ||, but also the measure, so it is more relevant to compare

W (X (x1, 32)) (x (1, x)) |7 dX dx <> [, x0) [Py dxy  (14.116)

Use the Jacobian of the transformation from x;, x; to x, X to show that dX dx =
dx; dx,. Hint: The Jacobian of a coordinate transformation from (w;, v) to (x, )
is given by
aw/ox ow/dy
= 14.117

dw dv ‘det(av/ax dv/dy dx dy ( )
(As a test, recall the change from Cartesian to polar coordinates and show that
dxdy = rdrdb.)

Consider two distinguishable particles of mass m moving in the potential

1 1
Vix,x) = zma)lez + Emwzx/zz (14.118)

(a) Using the fact that the potential is separable in the x;, x; coordinates, find
the energy spectrum and ground state wavefunction. Since this is a product
wavefunction, there can be no correlations between the the two particles;
show that cov(xy, x2) vanishes in any state. Recall that

cov(xy, 1) = ((x1 — {x1)) (%2 — (x2))) (14.119)

(b) Show that the potential also separates when expressed in center-of-mass
(X) and relative (x) coordinates and find the energy spectrum and ground
state wavefunction in these coordinates. Show that the degeneracy is the
same in each representation and that the ground state wavefunctions agree.

(¢) Add an additional mutual interaction of the form
V() = V(n — x) = Ax — x)° (14.120)

and find the energy spectrum exactly using center-of-mass and relative
coordinates. Are the energy levels changed in the way you expect from the
form of V'?

(d) When such a mutual interaction is present, we expect the positions of the
particles to be correlated. Evaluate cov(xi, x;) for the ground state wave-
function and show that it is proportional to A when A is small. Convince
yourself that the correlation should be positive (negative) when A > 0
(< 0). Hint: Use the coordinate transformations to show things like

1
(x1) =<X—i—§x>=0+0 (14.121)

and

(x) = (X?) + (Xx) + }l(xz) (14.122)
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P14.6. Reduced mass effects in “heavy hydrogen.”

(a)

(b)

The energy levels of hydrogen-like atoms with a proton nucleus (ordinary
hydrogen or H') will be slightly different from those with a deuteron
nucleus (so-called “heavy hydrogen” or deuterium, H?) which has roughly
twice the mass of a proton, due to reduced mass effects. Show that the shift
in wavelength of a given line for H? relative to H! is roughly

AL 1 1
—xm— - — (14.123)

where Mp =~ 2m,. Evaluate this fractional change numerically.

The original discovery of deuterium was made by looking for such shifts
in the visible, atomic Balmer spectra of hydrogen. The original paper4 says
that

When with ordinary hydrogen, the times of exposure required to just record the
strong H'! lines were increased 4000 times, very faint lines appeared at the calculated
positions for the H? lines” . . . “on the short wave-length side and separated from
them by between 1 and 2 A.”

Using the result of part (a), quantitatively explain the wavelength shifts
observed. Estimate the relative abundance of H? and H'! in normal
hydrogen.

P14.7. Permutation groups. We have seen that permutations play an important role
in the physics of IND particles and in this problem you are asked to study some
of the properties of the permutation group, using the case of three particles as
an example. Consider three (N = 3) objects, labeled a, b, and ¢ which can be
in the three positions 1,2, and 3; there are then N! = 3! = 6 different ways in
which the labels can be placed. These permutations can all be obtained from
one standard labeling, say (a, b, ¢) by the action of 6 permutation operators;

1(a,b,¢c) — (a,b,¢)
(12)(a, b,c) —> (b,a,¢)
(13)(a, b,c) — (¢, b,a)
(23)(a, b,c) — (a,¢,b)
(231)(a, b,c) —> (b, ¢, a)
(312)(a, b,c) — (c,a,b)

The element 1 is the identity operator. The natural multiplication on these
group elements is obtained by letting the permutations act in order, for example,

(gl : gZ)(a) b) C) - 81 (gZ(a) b) C)) (14124)

* Urey, Brickwedde, and Murphy (1932).
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P14.11.
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so that, for example,

(12) - (231) = (13) and (23) - (13) = (312) (14.125)

Complete the multiplication table below and show that these elements form a
group satisfying all of the requirements in the definition of Appendix E.2.

1 (12) (13) (23) (231) (312)
1 1 (12) (13) (23) (231) (312)
(12) (12) (13)
(13) (13)
(23) (23) (312)
(231) (231)
(312) (312)

(a) Generalize the proof in Eqn. (14.81) to show that the exchange operator éij
is Hermitian by showing that (éij) is real when evaluated with any multiparticle
position space wavefunction.

(b) Show that the expectation value of 5’12 is real when evaluated between
spin-states, that is, show that

(s xalénalxs xa) = (@, B2 (e, Béw (;1) (Z) = el + BLBEI

(14.126)

is real.
(a) Show that the Slater determinant in Eqn. (14.96) is properly normalized.

(b) Four spinless particles move in the same harmonic oscillator potential;
two are in the ground state and two in the first excited state. Write down the
normalized wavefunction for this system.

Confirm the results in Eqn. (14.108).
Consider two IND spin-1/2 particles which interact via the potential V (x; —
x2) = k(a — x)%/2.

(a) Ignoring spin for the moment, show that the position-space wavefunctions
can be written as

¥ (31, x2) oc P2y () — ) (14.127)

where the v, are the harmonic oscillator eigenstates.

(b) Show that under the exchange 1 <> 2 that these solutions satisfy

En(x, %) = (=1)" Y (x1, %) (14.128)
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P14.12.

(c) Add the appropriate symmetric or antisymmetric spin wavefunctions and
find the allowed states of the system.

Consider the following very simplified model of the lithium 7 nucleus (”Li),
consisting of 3 protons and 4 neutrons in a one-dimensional infinite well of
width a. Assume that the protons and neutrons do not interact with each

other.

(a) What is the ground state energy for this system?
(b) Write down the normalized wavefunction for the ground state.

(c) What is the energy of the first excited state?
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FIFTEEN

Two-Dimensional Quantum
Mechanics

One-dimensional (1D) systems provide examples of many of the most import-
ant features of quantum mechanics, but it is also instructive to consider
two-dimensional (hereafter 2D or planar) systems for several reasons:

e Systems with two spatial degrees of freedom provide more opportunities
to study multivariable probability concepts, separation of coordinates tech-
niques, and new mathematical methods and special functions. They also allow
for the visualization of many quantum phenomena which arise in more real-
istic three-dimensional (3D) systems, but which are obviously difficult to plot
in 3D.

* Two-dimensional systems naturally exhibit symmetries not present in 1D sys-
tems, and provide a glimpse of the intimate connection between symmetries
and the degeneracy of energy levels.

¢ Two-dimensional systems allow one to study rotational motion and its sym-
metries as well as the properties of angular momentum, both quantum mech-
anically and in its approach to the classical limit. For example, charged particles
in a uniform magnetic field classically can undergo circular planar orbits (see
Section 18.5); a similar quantum system of electrons in two-dimensions in
a uniform B field has important implications for the understanding of the
so-called quantum Hall effect in condensed matter physics.

e Finally, and perhaps most importantly, while often considered of pedago-
gical use only, 2D systems of particles are rapidly becoming of more practical
importance as their realization in surface physics becomes increasingly easy. It
is now possible, using modern crystal growth techniques such as molecular-
beam epitaxy and other methods, to fabricate semiconductor nanostructures,
artificially created patterns of atoms whose atomic composition and sizes are
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Insulator-semiconductor

interface
+20+
Figure 15.1. Semischematic representation of .
the potential energy, V() (solid curve), and 2 0
electron wavefunction, |1pe(z)|2 (dashed curve), £
versus the distance from the surface, z, for a 2D LLIO 20 Y2)
electron gas near an insulator-semiconductor w 5 .
interface, indicating the approximate localizaton |/ Ie(2)I” (arb. units)
distances and energy scales. Adapted from von -40
Klitzing (1987).

controllable at the nanometer scale, which is comparable to interatomic dis-
tances. At such length scales, quantum effects obviously become increasingly
important. Even more dramatically, scanning tunnel microscopy (STM) tech-
niques can now be used to manipulate individual atoms and molecules' with
atomic scale precision. The quantum corral shown in Fig. 1.3 was constructed
in this manner.

As an example of such a system, consider a 2D electron gas, bound to a surface
or interface between surfaces by the potential shown in Fig. 15.1. The typical
localization scale (determined, say, by the thickness of the interface layer) might
be L ~ 40 A; this implies quantized energies in the direction perpendicular to
the surface (here the z direction) of the order of

h??n?

2
———— ~ n“25meV 15.1
2m,L2 (15.1)

n

so that the energy required to excite the electrons in this direction would be
roughly AE ~ 75 meV. This can be compared to other typical energy scales for
the two-dimensional electron gas which might be either:

® The thermal energy, kgT < 25 meV, for temperatures at, or below, room
temperature (300 K) or

® The Fermi energy of the system. Recall from P7.2 that

hr
EPD = Z2,0D) (15.2)

(4

! See, for example, Stroscio and Eigler (1991).
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where nEZD) = Niot/L? is the electron surface density in two dimensions.
Using a typical value for nfD), this can be written in the form

(2D) flgm)

and we see that typical 2D collisions will not be able to “excite” electrons
in the z direction, provided the density is not too high; thus the electron
wavefunctions will stay effectively localized within the interface or on the
surface (as in Fig. 15.1), and one can study an effectively 2D problem.

15.1 2D Cartesian Systems

The simplest example of a quantum system in two-dimensions is one described
by Cartesian coordinates with a Hamiltonian of the form

~ 1 n n
A= (R4 5)) + Vi) (154)
where
A h o N h o
=-— and py=-— 15.5
Px 10x and by idy ( )
with a wavefunction
Y yst) = ¥(xy) e Et/h (15.6)

satisfying the time-independent Schrédinger equation

. R [ 92 92
Hyr(x,y) = 3 (@ + 8_)/2) Y(x,y) + V)Y (xy) = EY(x,y)
(15.7)

The probability density (now in two-dimensions) is given by | (x, y, t)|?, which
must satisfy

+oo +oo
/ dx/ dy |W(x, y30)> =1 (15.8)

and average or expectation values are calculated in the usual way via

A +oo +oo A
<O>tz/ dx/ dy ¥ (x, 73 8) O G 5 ) (15.9)
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If we consider separable potentials of the form
V(x,y) = Vi(x) + Vy(p) (15.10)
we can assume a factorized form for the wavefunction
V(x,y; 1) = X(x) Y(y) e " EFEI/R (15.11)

where each coordinate satisfies its own, 1D Schrodinger equation

22
%X(x) F Ve (0)X(x) = EX(x) (15.12)
Py
%Y(y) +V,WY() =EY(y) (15.13)

and the total energy of the system is given by E = E, + E,.

15.1.1 2D Infinite Well

A simple and instructive case is that of the 2D infinite well (or square box) with
walls at x = 0, L and y = 0, L; this is of the form above as we can define

0 for0<z<lL
Vip(z; L) = ) (15.14)
oo otherwise

in which case the 2D potential is of the form
Vop(x, ) = Vip(xs L) + Vip(y; L) (15.15)

The fully normalized solutions can be written in the form

Uin,m) (%, ) = up(X)um(y) = %sin (m;x) sin (mfy) (15.16)
with
E(nmy = En+ Em = s (n* + m?) (15.17)
’ 2mlL?

and the spectrum is illustrated in Fig. 15.2. The wavefunctions for several sets of
n, m are shown in Fig. 15.3 illustrating the wave properties of the system. We note
that if the 1D infinite well corresponds to waves on a string with fixed ends, then
this case corresponds to the vibrations of a square drumhead. Such wavefunc-
tions are not only of pedagogical interest, as very similar patterns of “standing
electron waves” can be directly observed on surfaces using STM techniques.’

2 For one of the first experimental realizations, see Crommie, Lutz, and Eigler (1993).
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Figure 15.2. The spectrum of the 2D infinite square well. The values of (n,m) | —----—-1 (1.2
for the lowest-lying states are shown; states for which n # m are doubly ] (11
degenerate and shown dashed.
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Figure 15.3. Plots of [u¢y m)(x, y)|2 versus (x, y) for the 2D infinite square well for (a) (n, m) = (1, 1)
and (b) (n,m) = (3,4).

Particle-like, wave packet solutions for this separable potential can be formed
by using the linearity of the Schrédinger equation to write

Ywp (%, y5 ) = Yrwp (s ) Ywe(y, t) (15.18)
where one has
ad -1 (x)
Yrwp(x, ) = Z a,(f)un(x)e_’E” t/h (15.19)
n=1

and similarly for y. For simplicity, we can use Gaussian weighting factors
al® = ¢~ =05V 2 g=ipnxo (15.20)

with p,, = hn/L, asin Section 5.4.2, or the more rigorous version in Example 6.4.
We can localize the packet initially such that it is centered at (xp, p) with a central
value of momentum p, = (p(()x), péy )). The ballistic propagation of such a wave

packet with elastic collisions from the walls is illustrated in Fig. 15.4 where we
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Figure 15.4. Series of snapshots (taken at equal
time intervals) showing the propagation of a
quasi-Gaussian wavepacket in a two-dimensional
infinite square well; the packet is initially localized in

the center of the well, with initial momenta

pe” =20y

have chosen (xo, yo) = (L/2, L/2) and p, = 2p(y0). Thus, the system can exhibit
both wave- and particle-like behavior in a fashion similar to the 1D case. (2D
infinite well potentials of this type, of arbitrary shapes or “footprints,” are often
called quantum billiard systems.)

The energy eigenfunction solutions also form a complete set in that the time-
dependence of any allowable wavefunction in the 2D infinite well can be written
in the form

oo 0

Y, yst) = Z Z A(n,m) U(n,m) (x, y)e_iE("’m)t/h (15.21)

n=1 m=1

where |a(y,m|? is the probability that a measurement of the energy associated
with ¥ (x, y) will yield the value E,, ,,. The form in Eqn. (15.18) is then a special
case of the time-development of such a solution.

The most interesting new feature of this system is the fact that more than one
independent energy eigenstate corresponds to the same energy level, at least for
n # m, where the exchange n <> m gives the same energy. Such a system is said
to exhibit degeneracy and we say that:

® The quantum value of an observable quantity is degenerate when two (or
more) independent eigenfunctions of an operator yield the same eigenvalue.

In this case, the degeneracy is easily traced to the symmetry of the potential
(and kinetic energies) since the exchange of labels x <> y has no observable
effect on the system, leading naturally to a doubly degenerate set of levels (when
n # m.) We can formalize this notion by introducing an exchange operator,
IAE(X,),) , defined via

Epf(x,9) = f(3, %) (15.22)
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which can be easily shown to be Hermitian even though its classical connection
is far from obvious; this operator is very similar to the multiparticle exchange
operator, Sij, used in Chapter 14.

Following the discussion of Section 12.5 on conserved quantities, we note that
the statement above that the exchange x <> y “has no effect on the system” can
be associated with the fact that this operator commutes with the Hamiltonian,
that is,

(A — Eap H) v () =0 or [, By =0 (15.23)

This implies that there will be simultaneous eigenfunctions of both H and

A

Ey ;. By invoking the same arguments used previously for both the parity and

. 2
exchange operators (mostly the fact that (E(x,y)> = 1), the eigenvalues (eigen-

functions) of the exchange operator can be seen to be £1 (even-odd functions
under exchange), that is,

EapfP ) = +fP(p)  and  EupfOnp) = —fFOx)
(15.24)

The u(n,m)(x, y) solutions individually do not, however, immediately satisfy
this requirement. We note that any linear combination of degenerate energy
eigenstates will also be an energy eigenstate with the same energy eigenvalue
since

ﬁ (Z aEwE(x)> = ZaEﬁWE(X)
E E

= Eagye(x)
E

—F (Z aElpE(x)> (15.25)
E

We are thus free to take appropriate linear combinations of degenerate solu-
tions provided they remain orthogonal, and it is easy to see that the required
combinations are

1
+
uEn,fn) (x,y) = 7 () (% ¥) £ Uy (%, 7)) (15.26)
which do satisfy Eqn. (15.24). (See P15.8 for an application of these linear
combinations.)

It is something of a “folk-theorem” (meaning roughly a statement which is
universally accepted as being true, but difficult to state precisely and to prove in
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each case) that:

® Most degeneracies are necessarily a result of some symmetry (sometimes not
obvious) of the system under consideration.

The study of symmetries in quantum mechanics (under the guise of group the-
ory) has had profound applications in atomic, nuclear, and elementary particle
physics.

15.1.2 2D Harmonic Oscillator

Another separable Cartesian system is described by an isotropic harmonic
oscillator, that is, a 2D mass and spring, defined by the potential energy

1 1
Vix,y) = EK(X2 +yH) = Ema)z(x2 + 7). (15.27)

The product wavefunctions are given by

Vinm) (% 9) = Yn(X)¥m(y) (15.28)

where the 1,(x) are the solutions of Section 9.2.2. The energy spectrum is
given by

Epm=Ep+ Ep= (n+m+ Dho = (N 4+ Dho (15.29)

which is illustrated in Fig. 15.5. As before, the energy levels with n <> m are
degenerate. The total degeneracy, that is, the number of distinct states, N, with
energy value labeled by N is Ny = Nj; this is much larger than expected solely on
the basis of the x <> y symmetry. The enlarged degeneracy is partly due to the
fact that the system also exhibits a symmetry under rotations, since the potential
can also be written in the circularly symmetric way

V( _ lK 2 2N l 2

X, y) = 5 x*+y7) = 2Kr = V(r) (15.30)
E(ﬂx, n,) (ny, ny)
3he — (2,0),(1,1),(0,2)
2hw — (1,0, (0,7

Figure 15.5. Energy spectrum and degeneracies for the he 0.0

2D simple harmonic oscillator potential using Cartesian
coordinates. Values of (nx, ny ) for each level are shown. (E=0)
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and the system can then be separated in cylindrical coordinates as well, as we
will see in Section 15.3.3.

Two-dimensional wave packets, a la Eqn. (15.18), can also be constructed
in this case using, for example, the special Gaussian packet of Section 12.6.2,
and can be shown to undergo semiclassical motion (P15.12). This is especially
interesting in the case of an non-isotropic spring, that is, a potential of the form

1 2, 1 2
Vix,y) = EKxx + EK},y (15.31)

which is still separable. In this case, the natural vibration frequencies are different,
wx,y = \/Kxy/m, and the “trajectories” of the wave packets will, in general, not
be periodic. In the special case where the the frequencies are commensurate,
namely, rational multiples of each other, that is

Ox _ P (15.32)

wy q

(with p, g integers) the classical motion is periodic and the quantum wave pack-
ets can reproduce the classical “Lissajous figures” discussed in many classical
mechanics texts.’

15.2 Central Forces and Angular Momentum

15.2.1 Classical Case

Cartesian coordinates may not be the most natural set of variables for the
study of many systems, and this is especially true for 2D systems described
by a cylindrically symmetric potential of the form

V() =V(r,0)=V(r) (15.33)
In this case, the classical force is given by

F(r) = —VV(r,6)

_ _8V(r,0)f B 18V(r,6)5
ar r a6
_dv(n
T dr r
Fr)=F(rr (15.34)

3 See, for example, Marion and Thornton (2004).
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where £ and  are unit vectors in the radial and tangential directions, respectively.
Thus, for a central potential, the force is directed radially toward (or away from)
the origin.
The corresponding classical torque, T = r x F, then vanishes and the relation
dL
i

guarantees that the classical angular momentum, L, is conserved, that is, is con-

=0 (15.35)

stant in time. Because of its importance as an additional conserved quantity
(along with the total energy), we will discuss the quantum version of angular
momentum extensively, in 2D in Section 15.2.2 and in 3D in Chapter 16.

The classical equations of motion for the particle in polar coordinates can be
derived from those in Cartesian coordinates, namely,

F(r) = F(r)t = ma(t) (15.36)
giving
For (22 = e (15.37)
y: E(r) (M) = my(t) (15.38)
r(1)
and by using the relations
x(t) = r(t)cos(8(t)) and y(t) = r(t)sin(6(1)) (15.39)
to obtain
F(r)

- cos(0) = 7cos() — 27 sin(0)0 — r cos(9)6> — rsin(0)d (15.40)

S sin(0) = 7sin(0) + 27 cos(0)0 — rsin(9)6% + r cos(0)6. (15.41)

The linear combination of equations given by (15.41) x (7 cos(9)) — (15.40) x
(rsin(6)) implies that

e d .
0=2ir0 +r*f = = (r’6) =0 (15.42)

which is another statement of conservation of angular momentumas L, = rp =
mrv = mr®6 in polar coordinates. Using this identification, the other obvious
combination, (15.41) sin(0) + (15.40) cos(9), then gives the dynamical equation
of motion for the radial coordinate,

2

F(r) = m¥ — mr6* = m¥ — 23 (15.43)
mr
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which is the standard Newton’s law result, including the familiar “centrifugal
force” term. The derivation makes clear that this term is solely due to the proper
accounting of the rotational motion and not to any “fictitious force.”

Most importantly for connections to quantum mechanics, the total energy
will be constant for a conservative potential, so we can write

L
E= zmv (1) + V(x,p) (15.44)

and the chain rule, and Eqn. (15.39), gives

V=vitv =X+ =i+ 76 (15.45)

so that the total energy can be written as

m 242 miz Lg
E=—0G+r6)+V(r,0)=—+ + V(r,0) (15.46)
2 2 2mr?
The second term can be put in the form
T, L ! 262 11 2 (15.47)
=—2=-—mrb° =-lw )
T am?2 T 2 2

where I = mr? is the rotational moment of inertia for a point mass; this makes it
clear that it represents the rotational kinetic energy. It is this form for the energy
which can be most easily generalized to a quantum mechanical Hamiltonian.

15.2.2 Quantum Angular Momentum in 2D

To extend the notion of angular momentum to quantum mechanical operators,
it is most natural to start from the classical definition

L=rxp (15.48)

so that the relevant component for 2D motion is the angular momentum about
the z-axis, namely

L; = xpy — ypx (15.49)

Motivated by the position representation of operators, we replace the classical
momentum components by their operator analogs and define

classical quantum mechanical

. . N h( 9 d
L—L=xpx—ypy=~\x——y— (15.50)
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It is easy to show that iz is Hermitian (P4.21), and that it is also the infinitesimal
generator of rotations around the z-axis (P15.13), just as py is responsible for
translations along the x-axis.

To express this more naturally in polar coordinates, we again use the defining
relations

x=rcos(#) and y = rsin(9) (15.51)

or their inverses

r=,/x*+y?> and tan(d) == (15.52)
and the chain rule to find
ad . d cos(f) o
— = 0)— — 15.53
o~ Sn@FT 26 (1553)
d in(@) 9
9 osiy L @ 9 (15.54)
ay ar r 00
This then gives
I H 5 10 (15.55)
= X _ = —_—— .
@ = XTI = T

and 0, L, can be seen (P15.13) to have many similarities with the conjugate pair

X, Px-
The eigenfunctions of angular momentum (in 2D), labeled ©,,(0), are then
determined by the equation

h d®,,(0)
i do

=1,0,,0) = L,0,(0) = mh©,,(9) (15.56)
(operator L) (eigenvalue L;)

which yields
gimo

Var

where we have chosen to write the dimensionful angular momentum eigenvalue,
L,, in terms of the natural unit of 4. The normalization constant is chosen so as
to satisfy

Om) = (15.57)

2w
1 :/ d6 |©,,(6)? (15.58)
0

which is natural for an angular wavefunction.
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One difference between these solutions and momentum eigenstates arises
because of the periodic nature of the variable 6; this presumably requires us
to identify coordinates separated by & = 2m as representing the same physical
point,4 that is,

Ou@ +27) =0, 0) = 7" =1 (15.59)
or m = 0,%£1,%2,... and the angular momentum is quantized
L, =0,%h, £2h,... (15.60)

This quantization once again arises because of the need to impose (appropriate)
boundary conditions. It also guarantees that eigenfunctions corresponding to
different eigenvalues are orthogonal, namely

2w 1 21 ) % .
(nlm) = / OF(6) Om(0) d = —f (el”e) e 4o = 5, . (15.61)
0 21 Jo

These complex angular wavefunctions correspond most closely to the plane
wave solutions (traveling waves) for momentum; linear combinations can yield
®(0) = sin(mb) or cos(mb), which are more like standing waves, and which
may be more appropriate for some bound state problems, or for visualization
purposes.
The appropriate Hamiltonian operator in Cartesian coordinates,
pRt+py G, 02
. L+ Vix,y) = - (@ + a_y2> + V(x,y) = —%V2 + V(x,y)

(15.62)

can be written in polar coordinates by expressing the 2D gradient squared in
terms of (r,0) by extending the chain rule arguments used above. One finds
(P15.14) that

PV (y) Yy 10 [ 0y(r,0) 1 0%y (r,0)
= —-— — 15.63
9x? * ay? ror <r ar ) + r2 962 ( )
The Hamiltonian operator in polar coordinates can thus be written as
A, (2 MR i + V(r,0) (15.64)
==+ -——+=—= 1, .
(r6) 2u \ar?  rar  r?936?

where we have expanded the radial derivative (9/dr) operators. We will
also henceforward write the mass as p to avoid confusion with the angular
momentum quantum number ; this will also be appropriate for two-body

* This is true for the angular momentum associated with the orbital motion of particles; for the case
of intrinsic angular momentum (spin), see Section 16.4.
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problems where the use of the reduced mass  is natural. The angular derivative
term can be written in the form
2 92
A = 9 1 5,

Ty = — — = L 15.65
o 2ur? 9602 2ur: ? ( )

which is indeed the obvious quantum operator analog of the classical energy of
rotation in Eqn. (15.47). The appropriate Schrédinger equation is then

Hr o)V (r,0) = Eyr(r,6) (15.66)

along with the normalization condition for the corresponding probability
density,

o] 2
1 :/ rdr dao |y (r,0)|? (15.67)
0 0

This condition is associated with the fact that the probability of finding the
particle simultaneously in the small coordinate intervals (r, r + dr) and (6,6 +
do) is

dProb(r,0) = |V (r,0)|? r dr do (15.68)

and we will see that the additional factor of r in the “measure” is important.
The case of central force motion for which the potential has no angular
dependence, that is, V(r) = V(r), is the most important and we note that:

e In this case, [F, L] = 0, so that the energy eigenfunctions will also be eigen-
functions of the (planar) angular momentum; this fact also implies that the
angular momentum will be a conserved quantity.

® The Schrodinger equation is separable in this case, so we can assume solutions
of the form ¥ (r,0) = R(r) ©,,(6).

Performing the separation of variables in the Schrédinger equation, we find that

r? d’R(r)  1dR(r) 21 1 d*0,(0)
R() {_ ( i dr ) V- E)R(”} = 0,0
= —m’ (15.69)

so that the Schrodinger equation for the radial wavefunction (the quantum
analog of Eqn. (15.43)) is

” (dsz ldR(r)) (V hzmz)R —ER(r)  (15.70)
2p \ dr? + rodr H{V+ 2pur? ()= ER( .
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Given the already defined normalization properties of the ®,,(6), the radial
wavefunction must satisfy

1= /Oordr|R(r)|2 (15.71)
0

A simple example of 2D motion for which this formulation is useful is the case
of a mass connected to a light, but rigid, rod of length r, free to rotate around the
origin; such a system is sometimes called a rigid rotator or rotor. In this case, the
Hamiltonian is simply H = ig /2ur? with eigenfunctions given by the ©,,(6)
and quantized energies given by E,, = h*m?/2urZ. Solutions corresponding to
=+ m have the same quantized energies corresponding, in turn, to the equivalence
of clockwise versus counterclockwise motion. The same result can be inferred
from the complete radial Schréodinger equation Eqn. (15.70) if we assume that
there is no potential (V(r,0) = 0) and that the radius is fixed (so that spatial
derivatives of R(r) vanish). We turn to less trivial examples of rotational motion
in the next section.

15.3 Quantum Systems with Circular Symmetry

15.3.1 Free Particle

The Schrodinger equation for a free particle in polar coordinates reads

h_2 (dzR(r) N 1dR(r)> N h2m?

— R(r) = ER 15.72
2u \ dr? rodr 2ur? ") " ( )

which can be written in terms of the dimensionless variable z = kr (where

k = /2uE/Rh?) as

d’R(z) 1dR(z) m? _
ot (1 — ?) R(z) =0 (15.73)

which can be recognized from the mathematical literature as Bessel’s equation
(see Appendix E.4.) Similarly to the case of a free particle in one dimension,
it has two linearly independent solutions for each value of m?, the so-called
regular solution, Jj,;(2), standardly labeled cylindrical Bessel functions of order
|m| (or Bessel functions of the first kind), and the irregular solutions, Y}, (2),
(Neumann functions or Bessel functions of the second kind); we will explore
the mathematical properties and physical meaning of these solutions in this
section.



430 CHAPTER 15 TWO-DIMENSIONAL QUANTUM MECHANICS

We can exhibit the behavior of the solutions for large z by noting that the
equation in this limit becomes approximately
d*R(z2)
dz?
so that the behavior is oscillatory, that is, R(z) — sin(z), cos(z) or exp(=£iz).
We can do better by assuming a solution of the form

R(z) —> z% cos(z) (15.75)

= —R(z2) (15.74)

where we assume that @ < 0, and substitution into Eqn. (15.73) implies that
(P15.15) the next order term (z* 1) also vanishes when @ = —1/2. These results
help justify the well-known asymptotic expansions

Jim|(z2) —> A/ écos (z — @ — %) [1 + O(l/zz)] (15.76)
Vi (2) —> ,/% sin (z _ @ — %) [1+00/]  (15.77)

which are valid for z >> 0 This behavior has an immediate physical
interpretation as the probability density times measure gives

dProb(r,0) = |R(r)©|,(0)|*r dr d6

2
X €OS (kr—@—%) dr do (15.78)

implying that, in a spatially averaged sense, there is a uniform distribution of
probability corresponding to constant speed motion everywhere in the plane;
compare this to the case of the 2D free particle in Cartesian coordinates (P15.1)
and the corresponding probability distribution. This can also be contrasted with
the 1D case of the unstable harmonic oscillator (Section 9.5) where ¥ (x)
1/4/x as well, but which there corresponded to an (exponentially) accelerating
particle. This is a reminder of the importance of the coordinate measure in the
implementation of a probability interpretation. In Fig. 15.6, we plot |Jo(kr)|?,
both with and without the extra factor of r, to show the effect.

A similar analysis can be used to examine the r — 0 behavior and we assume
a series solution of the form

o0
R(z) —> Z a;z° = a,gz/8 + aﬁ+1zﬁ+l + .- (15.79)
s=pB
with B to be determined. Once again, substitution into the differential equation
Eqn. (15.73) yields the condition

Br=m> or B==+|m| (15.80)
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|Jo(2)|? versus z
2|Jo(2)[? versus z

Figure 15.6. Plots of |Jo(2)|2 (solid) and z | /g (2)|2
(dotted) versus z showing the effect of the “measure”
for the free-particle wavefunction in two dimensions in
polar coordinates. The horizontal dashed line
corresponds to a probability distribution for constant
speed motion in the plane.

Figure 15.7. Plots of the regular Jo 1(2) and ; %
irreqular Y7 (2) solutions of Bessel’s equation, ," — U2 —(2Im2)"?
showing the small and large z behavior. The behavior o 5(2)

for large z is consistent with Eqns (15.76) and :

(15.77). oo T Y4(2)

The regular, that is, well-behaved at the origin, Bessel functions are convention-
ally chosen to have B8 = +|m]|, while the ill-behaved Neumann functions are
described by B = —|m| near the origin.” (The behavior of the two functions is
somewhat similar to the exponentially growing and decaying solutions found in
tunneling problems, the rotational kinetic term A?m?/2r? playing the role of
an “angular momentum barrier” in this case; see P15.16.)

Because of its divergence at the origin, it is often necessarily to exclude this
solution by hand, that is, use the freedom to pick its coefficient in the most
general solution to vanish. We plot Jo ; (z) and Y;(z) in Fig. 15.7 for illustration.

The small r behavior of the Bessel functions solution is also intuitively physical.
The probability of being ‘near’ the origin when the particle is in a state of angular
momentum *mh is given by

dProb o (kr)*"™*+1 whenr — 0 (15.81)

where the additional factor of r comes from the measure. This suppression can
be understood as arising from the centrifugal barrier term in Eqn. (15.65), which
demands a large cost in energy to be near the origin for rotating particles. The
behavior of the first few Bessel functions, J,;(x), for m = 0,1,2,3 for small

> The behavior of Yy(z) near the origin requires special treatment as m = 0 in that case corresponds
to a logarithmic behavior; specifically Yo(z) — 2Jo(2)log(yz/2) /7.
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Figure 15.8. Plots of J;(2) versus z, on
logarithmic scales, showing the power-law behavior
of Jm(2) oc 2™ for small z, arising from the
centrifugal barrier.

argument is shown in Fig. 15.8 for illustration and the plot on semilog paper
demonstrates the increasingly large power law behavior near the origin.

15.3.2 Circular Infinite Well

A simple use of the free-particle wavefunctions arises in the study of the infinite
circular well,” defined by the potential
0 forr<R

\% — 15.82
) oo forr>R ( )

Inside the well, where the particle is free, the solutions are
Y (7,6) = Jijm| (kr)©,,(0) (15.83)
or, perhaps more appropriately for bound states,
Jim|(kr) sin(mf) and  J, (kr) cos(mf) (15.84)

where we have excluded the irregular Y|, (kr) solutions for the reasons discussed

above. The boundary conditions at the edge of the well are satisfied for all values

of 6 provided that J,,(kR) = 0. If we label the nth zero of the mth Bessel

function by a(,,m), we can see that the corresponding radial wavefunction will

have n, = n — 1 radial nodes; we note yet again that imposition of the the

boundary conditions has determined the quantized energies, in this case giving
R k? h?a?

(nr,m) (ny,m)
E, ,, = = 15.85

S For a discussion of the visualization of the solutions for this problem in both quantum and classical
mechanics, see Robinett (1996a).
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Figure 15.9. Part of the energy spectrum for the infinite circular well obtained using the Bessel function
zeros in Eqgn. (15.86). The solid curves correspond to the rotational kinetic energy (or centrifugal barrier)

term, h2m?/2ur?, in the Schrédinger equation. Note the resulting increase in energy of corresponding
levels as m is increased.

Figure 15.10. Plot of v (r, 8)|2 for the ground
state of the circular infinite well with
(nr,m) = (0,0).

The notation 7, is motivated by the fact that it counts the number of nodes in
the radial wavefunction. Some of the lowest-lying zeroes are given by

m = 0:2.40483 5.52008 8.65373

m=1:3.83171 7.01559 10.1735

m=2:513562 841724  --- (15.86)
m = 3:6.38016 9.76102

and part of the resulting energy spectrum is shown in Fig. 15.9. Each state with
m # 0 state is doubly degenerate because the two values of | m/|, corresponding
to rotations in opposite senses, give the same energy.

To see connections to both wave physics and classical particle motion, we plot,
in Figs 15.10-15.12, |/ (r, 0)|? for several cases:

¢ In Fig. 15.10, we show the ground state corresponding to m = 0 and the first
radial zero, that is a(o0) = 2.404, with no rotational kinetic energy and the
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Figure 15.11. Plot of |y (r, 0)|2 for the lowest-lying m = 1 states; both the sin(9) (a) and cos(6) (b)
cases are plotted to help visualize the double degeneracy.

Figure 15.12. Plot of |y (r, 0)|2 for “radial” and “angular” states: Case (a) corresponds to a radially
excited state with (n,, m) = (4, 0), with no angular momentum, while (b) is for (nr, m) = (0, 10) with
large angular momentum (and hence rotational kinetic energy) and little radial kinetic energy (no radial
nodes).

least amount of radial kinetic energy. The similarity to the shape of a circular
drumhead is obvious.

e Figures 15.11(a) and (b) show |/ (r, 0)|? for the lowest lying states with || =
1 (agq,1) = 3.8318...), with both the cos(#) and the sin(#) solutions plotted to
illustrate their similarity and to help visualize their degeneracy.

® Figure 15.12(a) shows a radially excited state (large #,) but still with no angular
momentum, (1., m) = (4,0), with ay) = 14.43. This corresponds to a
classical particle bouncing back and forth through the origin in a particle
interpretation or a spherically symmetric wave reflecting from the walls. We
note that “corrals” of heavy atoms can be constructed which approximate
infinite circular potential wells on surfaces and the measured electron densities
in such a configuration closely matches these predictions; an example was
shown in Fig. 1.3.

e Finally, Fig. 15.12(b) shows a state with large angular momentum (m = 10)
but with the smallest radial quantum number possible, specifically a(,10) with
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aq,10) = 14.48. This corresponds most closely to a particle in such a well
undergoing uniform circular motion and the expected peaking of the quantum
wavefunction near the walls (classically the particle would, after all, roll around
the inner edge) is apparent. This might be the quantum equivalent of a “roul-
ette wheel.” The total energies of the (4, 0) and (0, 10) states differ by less than
1%, but the distribution between radial and rotational kinetic energy is clearly
very different.

It is, in principle, possible to construct localized wave packets and track the
quasi-classical ballistic motion of particles bouncing in the circular well,” but we
will not consider that here due to the technical complexity.

15.3.3 Isotropic Harmonic Oscillator

We return to the isotropic harmonic oscillator in two-dimensions, defined by
the potential

1 1
Vi(r) = zKr2 = E,ua)zrz (15.87)

with the corresponding Schrodinger equation

R (d*R(r) 1dR(r) h2m? w2

2u

A standard change of variables, r = py with p? = h/uw, reduces this to
d*R 1dR 2

O O P A (15.89)
dy> y dy y?

with the dimensionless energy eigenvalue € = 2E/hw. The large y-dependence
can be extracted as in Section 9.2.1, while the behavior near the origin is
guaranteed to be of the form y!”! from Eqn. (15.80). We are thus led to write

R(y) = y™! eV /2 G(y) (15.90)
leading to
2
d Ggy) n (zlml +1 _2y> M +(e—2-2/m))G(y)=0 (1591)
dy dy

A somewhat less obvious change of variables to z = y? then yields the differential
equation

d’G(z) dG(z) {|m|+1 € —2(m|+1)
dz? + dz ( z —1>+G(z)< 4z

) =0 (15.92)

7 See Doncheski et al.. (2003) for details.
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which, to the mathematically sophisticated can be recognized as Laguerre’s
equation as discussed in Appendix E.7. A series solution of the form G(z) =
Y o2, bsz® yields the recursion relation

b1 (s+(Iml+1)/2—€/4) _, I (15.93)
by (s+D(s+|ml+1) s '

in the limit of large s implying (again, as in Section 9.2.1) that G(z) ~ &% ~ ¢’ ’
which would be inconsistent with the desired behavior in Eqn. (15.90). Once
again we find the series must terminate, yielding a polynomial of finite degree
in z. The quantized energies are given in terms of the maximum power of this
polynomial, syn.x = n,, by the condition

€ =2|m| 4+ 2 + 4spmax = 2|m| + 2 + 4n, (15.94)

and we note that n, also counts the number of radial nodes of the resulting
polynomial. This leads to the quantized energies

Eypom = ho (|m| + 2n, + 1) (15.95)

and the corresponding G(z) are generalized Laguerre polynomials, denoted as

L,(erl) (2). The first few of these are given here for later use:

P =1
P =1+k-z (15.96)

1
P = > (24 3k + k2 = 2z(k + 2) + 2°)
The resulting constant polynomials in the case of 1, = 0 are especially important
for the classical limit.

The complete (but unnormalized) solutions in polar coordinates are then
given by

Ynym(1,0) o Il e /207 LMD (12 52y gime, (15.97)

The energy spectrum and degeneracies thusly derived from polar coordinates
are shown in Fig. 15.13 and we see that the degeneracies agree with those found
using Cartesian coordinates. The wavefunctions for a given energy level in the
two different schemes are necessarily linear combinations of each other, which
can be shown explicitly in simple cases (P15.24).

A particularly easy classical limit to exhibit in this case is that corresponding
to uniform circular motion in which case one would use |m| >> 1 and n, = 0
corresponding to the minimum possible radial kinetic energy. In this case, the
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E(nR, m) (nRv m)
3hew — (0,+2), (1,0), (0,-2)
2hw ———  (0,+1), (0,~1)
Figure 15.13. Energy spectrum for the 2D harmonic
oscillator problem as obtained in polar coordinates ho 0.0
showing the same energy level degeneracy as in
Fig. 15.5; values of (nr, m) are shown for each level. (E=0 -—==7—-

Laguerre polynomials, L(‘)m| (z), are constants so the radial probability density is
proportional to

P(r) = |Wom(r,0)2 ~ 2l e=7/0" (15.98)

which has a maximum value when

dr(r 2r2lml+1
0= d(r) = <2|m|T2|m|_1 BT )e_’z/pz or 12 =|m|p*
(15.99)
Recalling the definition p, we find that
mlh L
g = AR _ Lo (15.100)
Ho R

The classical circular orbit, of constant radius ry, is determined by Eqn. (15.43)
where we take 7(#) = 0 implying that
L? L L

Loor g =— < (15.101)

Uty VK N now

in agreement with Eqn. (15.100), and with the correspondence principle. Some-

—pw’ry = —Kry = F(rg) = —

what surprisingly, the form of this Schrodinger equation for a 2D simple
harmonic oscillator (SHO) and its solutions are very similar to that for a charged
particle in a uniform magnetic field (Section 18.5), which partly motivates our
detailed study of it here.

15.4 Questions and Problems

Q15.1. Estimate the zero-point energy and spread in position of an electron bound to a
(horizontal) surface because of gravity. Assume for simplicity that the potential
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is given by

00 forz <0
Vi(z) = (15.102)
megz forz >0

What does this potential look like superimposed on Fig. 15.1?Repeat for the
case of a neutron in the earth’s gravitational potential. Can you imagine how
you might see experimental evidence of Quantum states of neutrons in Earth’s
gravitational field"?

Q15.2. Whatwoulda plotof |¢ (px, py) |2 versus (px, py) looklike for the (n, m) = (1, 1)
state in the 2D infinite square well? How about for (n, m) = (10, 10) or (15, 30)?

Q15.3. What would |¢ (px, py; t)|> look like for the “bouncing 2D wave packet” in
Fig. 15.4 as a function of time?

Q15.4. Recall the wavefunctions in the circular well shown in Fig. 15.12 (a) and (b)
corresponding to “radial” and “angular” motion, respectively. For the “radial”
case in Fig. 15.12(a), it seems that there is a much larger probability of finding
the particle near the origin than elsewhere. Is this consistent with what you
know about the corresponding classical “motion”? The momentum space dis-
tributions for these two cases can be evaluated (numerically) and the resulting
distributions are plotted in Fig. 15.14(a) and (b) Explain why they have the
form they do; no numerical calculations are required, simply use your phys-
ical intuition, and think about what the momentum vectors in 2D would look
like for the two cases of “radial” and “angular” motion. The small “bump” at
(px> py) = (0,0) for the “radial” case seems to imply that there will be a reas-
onable chance of finding the particle with vanishing total momentum; is that
true?

Figure 15.14. Momentum-space probability distributions, |¢(px,py)|2 versus px, Py, corresponding
to the "radial” (a) and “angular” (b) wavefunctions in the circular infinite well of Fig. 15.12(a) and (b),
respectively. Why do they look rather similar?

8 See the paper of the same name by Nesvizhevsky et al.. (2002).
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How would you solve the 2D harmonic oscillator problem using raising and
lowering operators? Go as far as you can in generalizing the arguments of
Section 13.2.

Are there any uncertainty relations in two-dimensions for pairs of variables like
x, py? Can you find an example of a state which has Ax Ap, = 0 or arbitrarily
small?

What are the appropriate commutation relations for 6 and L,? Is there an
associated uncertainty principle? Is there any problem’ due to the fact that 6 is
only defined up to multiples of 27, so that Af cannot be arbitrarily large?

“Can you hear the shape of a drum'’?” The solution of the 2D Schrodinger equa-
tion for infinite wall boundaries of various shapes (“footprints”) has many
similarities with finding the allowed frequencies of vibration of 2D drum-
heads of the same shape, namely, solving the wave equation, with vanishing
amplitudes on the variously shaped edges. To what extent do you think that
knowing the “spectrum” of allowed energy eigenvalues (or allowed vibratory
modes) allows you to determine the shape of the boundary?
(a) Find the plane wave solutions of the time-independent free-particle
Schrodinger equation in two-dimensions using Cartesian components.
Show that they can be written in the form

Y t) = el kex—ky—on _ pilkr—on (15.103)

and find the dispersion relation relating k and w.

(b) Explicitly construct a localized Gaussian wave packet with central
momentum value pg = (p§, pg ) with initial central position 1y = (xp, 3o)-
Calculate (x); and (y); for this state.

Consider a 2D potential given by

0 f 0
ory = (15.104)

Vix,y) =
y {Vo>0 fory >0

which is a 2D step-up potential.

(a) To examine plane wave scattering from such a step, consider a solution of
the form

Teikir—on 4 Reikir—0n)  for <0

Tei(kz-r—wt) fory . 0 (15105)

Y(rt) = {
where the wavevectors ky, ki ,kj are defined in Fig. 15.15. Match the wave-
function along the z = 0 boundary to find a relation between 6, 9{ ,and 0,
and compare to Snell’s law of refraction.

° See, for example, Roy and Sannigrahi (1979).
1% Which is the appropriately speculative title of a famous article by M. Kac (1966).
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Figure 15.15.
for 2D step-up potential.

(b)

(c)

(d)

P15.3. (a)

(b)

()

y>0

y<0

Wave numbers and reflection—refraction angles

Match the derivatives of the wavefunction at the boundary (which direc-
tion?) to determine the reflection and transmission probabilities, namely,
|R/I|> and |T/I|?. Show that your results reduce to those in Section 11.2
for normal incidence, namely, ; = 0.

For a given angle of incidence, 0, what is the minimum incident energy
below which all of the incident particles will be reflected.

Discuss how the notion of probability flux in Eqn. (4.32) can be generalized
to two dimensions and how conservation of flux is realized in this problem.

Find the plane wave solutions to the Schrddinger equation for the 2D
potential

0 forx>0andy>0
(15.106)
400  otherwise

V(x»)’) = {

which is like a “corner (90°) reflector.” What would you expect for the
behavior of a wave packet incident on such a potential from various angles
and for various incident energies?

Can you construct “mirror” or “image” type solutions, by analogy with
those discussed in Section 3.3 for one dimension? How many “images” do
you need? Hint: Use your intuition from optics.

Are there angles besides 90° between the two infinite wall barriers for which

“mirror” or “image” solutions are easily obtained? For example, how about
45° or 60°?

P15.4. Wave packet for projectile motion:

(a)

(b)

()

Write down the Schrodinger equation describing a particle moving in a
vertical plane subject to a constant downward gravitational force, and show
that it is separable.

Use previously obtained results for the free particle (Section 3.2.2) and
uniformly accelerating (Section 4.7.2) wave packets to write down a wave
packet solution, Y¥rwp(x, y; t), for this problem.

Evaluate (x); and (y), for the wave packet.
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Consider a wavefunction in the 2D infinite square box of Section 15.1.1 given
att =0by

Y (x,y30) = Nx(L — x)y(L — y) (15.107)

(a) Find N such that v (x, y, 0) is normalized.

(b) What is the probability that a measurement of the energy of a particle
described by this state would yield the ground state energy of the system
at time ¢t = 0? What is this probability at later times?

Show that the exchange operator IA:"x,y in Eqn. (15.22) is Hermitian and that it’s
eigenvalues are 1.

Accidental degeneracies?

(a) Find the energy eigenvalues for a particle in an infinite rectangular well
with sides of lengths L; # L,. Show that, in general, that no degenerate
energy levels.

(b) Show that if L; and L, are commensurate, that is, if L;/L, = p/q is a
ratio of integers, that two different levels characterized by pairs of integers
(n1,my) and (pny/q, qn1/p) can be degenerate. Show that an example is
when L; = 2L, and the pairs (4, 1) and (2, 2) give rise to degenerate energy
states. This phenomenon is often called “accidental degeneracy” as it is not
due to any obvious symmetry. (Exchange symmetry is not an obviously
useful idea for this asymmetric box.)

(c) For the special cases discussed in (b), consider a “bigger” square infinite
well of size L = gL; = pL, on a side and show that the original box “fits
into” the lower left-hand corner. Show that the degenerate wavefunctions in
the original box, when extended to the larger box, are simply the standard
degenerate pairs discussed in the text. This is illustrated in Fig. 15.16 for
the explicit example in part (b).

Isosceles triangle infinite well. Imagine the 2D infinite well defined by
Eqn. (15.15) cut in half diagonally by the inclusion of another infinite wall
along the x = y direction, as in Fig. 15.17. The lower half of the potential is
now an infinite well, but with an isosceles triangle (45° —45° —90°) footprint.

(a) Show that one of the linear combinations solutions in Eqn. (15.26) not
only satisfies the Schrodinger equation for the new well, but also satisfies
all of the relevant boundary conditions.

(b) What is the energy eigenvalue spectrum for this shape? Evaluate the 30
lowest-lying energy levels. Do you find any degeneracies?

Show that there are N different states of the 2D SHO which have energy
(N + 1)hw, that is, calculate the degeneracy of each level. Use the solution
in Cartesian components.
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Figure 15.16. Accidental degeneracies in 2D rectangular boxes. Cases (a) and (b) correspond to the
degenerate (nx,ny) = (4,1) and (2, 2) levels in a box with Ly = 2Ly; (c) and (d) then correspond to
the same levels in the related “extended” square box with L = Ly = 2L, where the levels are “naturally”
degenerate.

Figure 15.17. Isosceles (45° — 45° — 90°) infinite well footprint AN
made by cutting a 2D square well in half along a diagonal. 0 L

P15.10. Evaluate the expectation values of x, y, px, and p, in any energy eigenstate of
the 2D SHO of the form in Eqn. (15.28). Show that the expectation value of
L, also vanishes in any such state. How then can we have states of the 2D SHO
with definite nonzero values of quantized angular momentum?

P15.11. Investigate possible accidental degeneracies in the energy spectrum of the non-
isotropic 2D harmonic oscillator. What happens, for example, when k, = 4k,?
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If you find any degeneracies, can you find any similarities with the discussion
of P15.72

2D harmonic oscillator wave packets.

(a) Using the explicit 1D SHO wave packets in Section 12.6.2, write down
the probability distribution for a wave packet undergoing uniform circular
motion in the isotropic 2D harmonic oscillator potential. Hint: Choose
a wave packet for the x coordinate with appropriate initial position, but
vanishing initial momentum and oppositely for the y coordinate packet.

(b) Calculate (x), ()7, {Px)s>and ( ﬁy)t for this state and show that they behave
as expected.

(c) Calculate the expectation value of the angular momentum (L) and show
explicitly that it is conserved.

(d) Show that you can write the probability density for a wave packet
representing counterclockwise motion in the form

[y (r,0;0)|* = exp (—(r* — 2rxo cos(0 — ot) + x5)  (15.108)

1
wL2(t)
(e) Repeat parts (a)—(c) for a wave packet representing a more general elliptical

classical path.

(f) Repeat parts (a)—(c) for a wave packet under the influence of a “non-
isotropic” spring of the form Eqn. (15.31).

Angular momentum operator.
(a) Show that

el £@) = 6 +a) (15.109)
(b) Calculate [L,,8].

Using the defining relations Eqn. (15.51) or (15.52), derive Eqns (15.53),
(15.54), and (15.55) and show that
32+a2_32+1a+132
ax2  dyr  drr  rar  r?oe?
Substitute the trial solution Eqn. (15.75) into Bessel’s equation and show that
a = —1/2 gives the next to leading behavior for large z.

(15.110)

The long-distance (typically exponentially suppressed) behavior of quantum
wavefunctions was discussed in Section 8.2.2. Use the same ideas, but with
the rotational kinetic energy term, to derive the short-distance behavior of the
solutions of the free-particle Schrodinger equation with circular symmetry.
Specifically, assume that

2

Y(r) ~ exp (:I:,/;—l;/r\/V(r) dr) where V(r) = m h2 (15.111)

2
2ur
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P15.17.

P15.18.

P15.19.

and show that the suppression due to “tunneling” into the angular momentum
barrier becomes a power law behavior.

Classical probability distributions for the circular infinite well.
(a) Use the methods outlined in Section 5.1 to derive the classical radial prob-

ability distribution for a particle in the circular infinite well. Hint: use the
energy relation in the form

E= lm2+ L (15.112)
2 2ur?
to find an expression relating dr and dt, giving P (r) dr o dt.
(b) Show that your result can be written in the form
Pcr(r) = ’ (15.113)

2 2
\/R2 - Rmin\'/r2 - Rmin

where Ryin = +/L2/21E is the distance of closest approach. Discuss the
limiting cases of purely radial and purely angular motion.

(c) Calculate (r) and Ar for discuss their behavior in the same limiting cases.
Consider the wavefunction in the infinite circular well of radius a given by

¥ (r,0) = N(a— r)sin’(9) (15.114)

(a) Find N such that ¢ is properly normalized.

(b) What is the probability that a measurement of L, in this state will yield
0Ah%; £1h%; £2A2; any other value? You should be able to obtain definite
numerical answers for this part. Hint: What is the appropriate expansion
theorem?

(c) What is the probability that a measurement of the position of the particle
will find it in the inner half of the circle, that is, with r < a/2?

(d) What is the probability that a measurement of the energy finds this particle
tobein the ground state of the well? Your answer will be in terms of integrals
with Bessel functions which you do not need to evaluate numerically.

For the infinite circular well of radius R, the angular wavefunctions, ®,,(6),
ensure that eigenstates with different values of # will be orthogonal. For a given
value of m, show that one must have

R
/ ar r Jm(kgny,my ) JmCk(y,myt) =0 if - myp #£ mp (15.115)
0

If you have access to and expertize with an all-purpose computer mathemat-
ics package such as Mathematicag), confirm this by numerical integration for
several cases if you can.
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P15.20. Centrifugal force in the circular infinite well. Classically, a particle undergoing
uniform circular motion would require a force given by
l“’z _ MRZCUZ _ 2Trot

F.(R) = = = Uw’R = = = (15.116)

to keep it in motion. Calculate the force exerted by the rapidly spinning ball in
the infinite well problem by considering the change in energy when the wall is
slowly moved outward a small amount dR, that is,

h?a? h?a?

dW — (nym) (om) gl 4R (15.117)
2uR?  2uu(R+ dR)?

Show that the force exerted by the wall on the particle is consistent with the
classical result.

P15.21. Variational calculation for the circular infinite well.
(a) Make a variational estimate of the ground state energy of the circular

infinite well with radius a. Since this state will necessarily have m = 0, this
amounts to evaluating the energy functional

(Y| H|¥)
Bl == (15.118)
where
ﬁlrz—h—z <d—2+1i> (15.119)
2u \dr?  rdr

* — r* where

Assume a trial wavefunction of the form ¥ (r,6) = R(r) = a
A is used as the variational parameter. Compare your answer to the exact
ground state energy obtained from Eqn. (15.85) and the table of Bessel

function zeroes in Eqn. (15.87).

(b) Because the angular wavefunctions ®,,(9) form an orthogonal set, one
can actually make a rigorous variational estimate for the lowest energy
state for every value of m (Why?). Recalling the required behavior of the
wavefunction near the origin, use a trial wavefunction of the form

o.m(1,0) = Rom(r) €™ where  Rg.m(r) = (a* — r*)r™
8 (0,m) (0,m)

(15.120)
Show that the variational energy is given by
R (1 1+ A 24142
Eyar(As m) = At mA+AtmQ@Ertam )
2ua? A+ m)
with a minimum value
. R a 442 3 V2
ERP(m) = — [( @+ 2mt G F m) +m)} (15.122)
2ua J2+m
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P15.22.

P15.23.

Compare this to your answer in part (a) and to the exact answers for
m =1,2,3,4in Eqn. (15.87)

(c) Sketch the variational radial wavefunctions versus r for increasing values of
m and note that the probability is increasingly peaked near the boundary.
Using these approximate wavefunctions, find the value of r at which the
probability, that is, 7| Ry, (r)|? is peaked, and show that it approaches a as
m — oo.

Semicircular infinite circular well. Consider a particle of mass p in a “half”

infinite circular potential well defined by

0 for0 <6 <mandr <R
V(r,6) = (15.123)

oo otherwise

(a) Find the allowed energies and wavefunctions in terms of those of the “full”
infinite circular well. Discuss the degeneracy of each level (if any).

A

(b) Show that the angular momentum operator, L, is still Hermitian, and
discuss why.

(c) Showthat I, no longer commutes with the Hamiltonian, so that (iz) ¢+ need
no longer be constant in time.

(d) Consider the wavefunction

Y(r,0;0) = A]o(k(o,l)f’) sin(0) + B]()(k(o’z)r) sin(20) (15.124)

A~

Find the wavefunction for later times and evaluate (L,); and show that it is not
constant. Show that any initial wavefunction with only even m or only odd m
components will have a constant (and vanishing) angular momentum.

2D annular infinite well. Consider a 2D potential with circular symmetry
corresponding to two infinite walls at r = b, a, defined via

oo forr<bdb
V(=430 forb<r<a (15.125)
oo forr>a

(a) Find the allowed solutions and derive the condition which determines the
energy eigenvalues for each value of m. Hint: The origin is excluded from
the region where solutions are to be considered.

(b) Estimate the ground state energy when § = a — b << a, that is, the two
walls are very close together. Is there any similarity in this limit to a long
rectangular potential of dimensions 2w a x §?
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2D harmonic oscillator solutions in polar coordinates.

(a) Confirm that the Ls,lf) (z) given in Eqn. (15.97) actually solve Eqn. (15.92);
for the case of n, = 0, show that the solutions are trivial.

(b) Show that the degeneracy of the level with energy E = Nshw is N.

(c) Compare the wavefunctions for the states with E = (N +1)/iw in Cartesian

and polar coordinates and show explicitly that they can be written as linear
combinations of each other for the cases N = 0, 1, 2.

Consider a particle of mass m moving in the 2D “one-quarter” isotropic
harmonic oscillator potential
Kr?/2  for0 <6 <m/2
V(r,0) = ) (15.126)
00 otherwise

This corresponds (very roughly) to a particle in two-dimensions, tied to a
spring, which is tethered at a square corner.

(a) What are the allowed energy levels and wavefunctions in such a potential?
How do they compare to the “full” harmonic oscillator?

Consider a particle of mass m moving in a modified 2D harmonic potential
given by

K
Viny) == (x> + %) + rxy (15.127)

(a) Show thatthe energy eigenvalue spectrum for this potential can be obtained
explicitly. Hint: Make a change of variables from x, y to X, ¥, using a simple
rotation, in order to eliminate the cross-term. Are there conditions on the
allowed values of K, A for this problem to be well-posed?

(b) Assuming that A << K, write down the three lowest-energy energy
eigenvalues.

(c) Now, treating the Axy term as a perturbation, and using the standard
oscillator problem as the unperturbed system, calculate the first-, second-,
and third-order corrections to the ground state energy using Eqns (10.112),
(10.115), and (10.117), respectively. Hint: Use the matrix element results
in Section 9.2.2. Compare your answers to the exact result as a series in A.

(d) Finally, treating the next two lowest-lying states using degenerate perturb-

ation theory (why?), find how they split in energy, and compare again to
the exact result.
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The Schrodinger Equation In
Three Dimensions

Most “real-world” applications of quantum mechanics arise in three-
dimensional systems where the Schrodinger equation for one particle takes the

form
Hy(r) = Ey () (16.1)
where the Hamiltonian
N p?
H=2+V@ (16.2)
2m

is written in terms of the gradient in three dimensions, p = (h/i)V. Two-body
problems with a Hamiltonian of the form
~ 2 2
a=P P Ly (16.3)
2m1 21712
are intrinsically no more difficult as the use of relative and center-of-mass
coordinates,

Irel =11 — 12 (16.4)
miry + mpr;

Rpm=—""—"— 16.5
cm ——— (16.5)

just as in one dimension (Section 14.3), leads to an effective one-particle
Schrodinger equation

A2
<§— + V(r)> Y(r) = EY(r) (16.6)
m

for the relative coordinate r = r,,; with the reduced mass p as the mass parameter.

Explicit solutions of Eqn. (16.6) require the use of a specific coordinate sys-
tem, the choice of which, in turn, usually depends on the form of the potential
V(r). Solutions in Cartesian coordinates, r = (x, y, z), which generalize the
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results of Chapter 5 and Section 15.1 are possible, and were implicitly used in
the discussion in Section 7.3. For problems with a symmetry about a particular
rotation axis, cylindrical coordinates given by r = (r, 6, z) are often useful (see
Section 18.5 where a uniform magnetic field singles out specific axis) and the
two-dimensional polar coordinate results of Section 15.3 can be trivially exten-
ded. Solutions using less familiar systems such as parabolic coordinates (see
P17.14) are even sometimes employed. For many three-dimensional problems
for which there is no preferred axis, a separation of variables using spherical
coordinates is most natural, and that is the subject of the next section.

16.1 Spherical Coordinates and Angular
Momentum

For many important cases, the potential is spherically symmetric, that is, V (r) =
V(r), and it is natural to attempt solutions using spherical coordinates, namely

x = rsin(@) cos(¢)
y = rsin(f) sin(¢)
z = rcos(f) (16.7)

or

r=./x24y>+ 2

tan(¢) = y/x

cos(0) = z/,/x* + y*> + 22 (16.8)
as illustrated in Fig. 16.1.
The kinetic energy operator can always be written as
52 2 2 2 2 2
A~ P e, he (0 0 0
2 2m 2m <8x2 + ay? + 022 (169)

Using the defining relations for spherical coordinates, Eqns (16.7) and (16.8),
one can (somewhat tediously) show that T can be written in the form

o Mot 20 100 o L PN a0
=—|—4+-——+—=\—= +co —t .
2m | or2  ror 12 \ 962 30 sin*(9) 0¢?
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rcos(0)

rsin (6)cos (¢)

Figure 16.1. Definitions of spherical coordinates. x rsin (@)sin (¢)

which, not surprisingly, is seen to measure the “wiggliness” of the wavefunction
in the r, 6, and ¢ directions. Motivated by the results of Chapter 15, we expect an
intimate connection between the 6 and ¢ derivative terms, the rotational kinetic
energy, and the angular momentum, now in three dimensions.

The vector angular momentum operator,

L=rxp (16.11)
has the Cartesian components
Ly = yp. — zby (16.12)
L, = zpx — xp, (16.13)
L, = xpy — yps (16.14)

which are all obviously individually Hermitian. A change to spherical coordinates
shows that

A h o
L =——

:= 790 (16.15)

which is similar to Eqn. (15.55) in two-dimensions; one should note, however, the
change in notation as the azimuthal angle in three dimensions is conventionally
labeled ¢. The other components have a slightly more complicated form, namely

N h . 0 0
Ly = 7 <— Sln(¢)8_9 — cot(0) cos(q’))@) (16.16)
and
. 9 t(6) si 9 (16.17)
y =7 <COS(¢)8_9 — cot( )sm(q&)%) .

which together give information on the polar angle 6.
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For an object with different moments of inertia about each of the three axes
(I, I, 1), the classical rotational kinetic energy is

2
Tror = %JFZLTZJFZL_EZ (16.18)
which simplifies to
1.2
Trot = i (16.19)

if I, = I, = I, = I. For a single point particle in a spherically symmetric potential,
one has I = mr? while for a pair of point masses the moment of inertia about
the center of mass is I = .12, Motivated by this, we can easily show (P16.2) that

sy a2 9 1

=12+ }2,+L§=—h2(—+cot(0)£+

)
oY ) (16.20)

sin?(6) 9¢?
which only acts on the angular degrees of freedom. This shows that the kinetic
energy operator Eqn. (16.9) can be written in the shorthand form

A

A A L2
T=T 16.21
r+ r? ( )
where the radial kinetic energy operator is
. R* (9% 20
T,=——(—=+2— 16.22
' 21 <8r2 + r ar) ( )

For a spherically symmetric potential, V(r), the Hamiltonian is then clearly
separable, and if we write a solution of the form ¥ (r,68,¢) = R(r)Y (6, ¢) we
obtain

2

2T (5 _ 1 .
w7 (B VO —E) RO = 6 [ve.e] (623

or
F(r) = G(0,¢) = constant = [(I + 1) (16.24)

We have written the separation constant as /(I 4+ 1) in anticipation of the result
that the Y (6, ¢) are the eigenfunctions of the square of the angular momentum
operator given by

L2Y (6, ¢) = I+ DR Y (0, ¢) (16.25)

These eigenfunctions can be studied once and for all for any problem with
spherical symmetry, and their properties will be discussed extensively in the next
section.
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For a given value of /(I + 1), the corresponding dynamical equation which
determines the energy eigenvalues is the radial Schrodinger equation,

2 2 2
N <d R() ng(r)) N (vm N %) R(r) = ER(r) (16.26)

2u \ dr? rodr
The normalization condition
o)
1=/dr|¢(r>|2 :/ r? dr/ a2 |y (r,6,9) (16.27)
0
can then be enforced by demanding that
2 e
1:/ d¢/ sin(9) do | Y (0, ¢) | (16.28)
0 0
and
[e.@]
1=/ 2 dr |R(r)|? (16.29)
0
separately. In three dimensions, an interesting simplification occurs if we write
R(r) = ur) (16.30)
r
in that the radial equation, Eqn. (16.26), becomes
B d*u(r) I(1+ 1)R?

which is of the form of a standard one-dimensional Schrodinger equation with
the inclusion of the centrifugal term I(I 4+ 1)A?/2/ur?, similar to the results in
two-dimensions in Section 15.2. The normalization condition is also similar as
we now require that

foo lu(r)|? dr = 1 (16.32)

0

Because R(r) should be well behaved at the origin, we must assume that
lin}) u(r) =0 (16.33)

Taken together, this form is reminiscent of the “half” potential well problem
considered in P9.10 for the harmonic oscillator. In such problems, which can
be described by some potential V(x) for x > 0, but with an infinite wall at the
origin, we can make use of the odd solutions of the “full well” problem, as they
satisfy the Schrodinger equation for x > 0 as well as the boundary condition at
the wall. (See also the discussion in Section 8.3.2.)
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In a central potential, the classical angular momentum vector, all of its
components as well as its magnitude, will be conserved quantities and can, in
principle, be known with arbitrary precision; we wish to understand to what
extent this holds true in quantum systems. We first note that L? commutes with
the Hamiltonian since

r 1721 179 1 r2 12
[H,L°] = [T, + V() + — L L°]
2ur
~ N 1 An A
= [T, + V(r),L*] + m—rZ[LZ,LZ] =0 (16.34)

since L? acts only on angular variables and certainly commutes with itself. This
implies that:

® The solutions of the Schrodinger equation for a rotationally invariant potential
can have definite values of both the energy E and total angular momentum
I(1+ 1)h2.

¢ The total angular momentum will be a constant in time.

While we may thus be able to know the “length” of the observable corres-
ponding to L? precisely, simultaneous exact measurements of the individual
components are not possible as we have

[ix) fJy] = [)/ﬁz - Zﬁya lex - xf)z]
= [ypz> zpx] — [yPz> xp2] — [2py» 2px] + [2py> xP-]
= y[ﬁZ) Z]}A)x + x[z)];z]ﬁy

ho, o .
= 7 ()’Px - xp}/)
=ihl, #0 (16.35)
One similarly finds that
[L,,L,]=ihly and (L, L] =ihl, (16.36)

both of which have the same form as Eqn. (16.35) with cyclic permutations of
X, 9 2.
On the other hand, one does find that

[Ly, 071 = [Ly, L2 + L} + L2]

=0 (16.37)
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as well as
(L, L2 =L, 11 =0 (16.38)

so that one can measure the pairs (Ly, L?) or (Ly, L?) or (L,,L?) with arbitrary
precision. Since each component operator also commutes with the Hamiltonian,
we find that:

® The maximally large set of commuting operators for a general spherically
symmetric potential will correspond to precisely determined values of the
energy, the total angular momentum squared, and one component of L; the
conventional choice is to look for simultaneous eigenfunctions of H , I:Z, and
L,. These will then be the maximally large set of conserved quantities.

We note that for certain potentials, such as the Coulomb potential considered in
Chapter 17, there can be other conserved quantities because of additional special
symmetries. Because the eigenfunctions of L2 and I, are important for any
spherically symmetric problem, we devote the next section to the examination
of their properties.

16.2 Eigenfunctions of Angular Momentum

16.2.1 Methods of Derivation

The derivation of the eigenfunctions of the angular momentum operators is a
standard one in many books on quantum mechanics. We will briefly discuss
several of the usual methods of analysis of the properties of the Y (8, ¢) before
turning to attempts to visualize them, discussing their classical limit, and their
application in important physical systems. We begin with a differential equation
based approach, and then discuss the usefulness of operator methods to this
problem.
The eigenvalue problem for L? can be written as

. %Y oY 1 8%y
2 _ 32 -
L’Y(0,¢) = —h (—392 + cot(9) 0+ oy a¢2>
=114+ 1KY, ¢) (16.39)

The corresponding problem for L, has already been discussed in the last chapter,
in a different notation, where we found that

Dp(g) = emd (16.40)

1
21
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satisfies
R h a
L Pm(o) = 7%‘Dm(¢) = mh®,(¢) (16.41)
for integral values of m. We are thus led to write
Yim (O, @) = O, (0) P () (16.42)
so that Eqn. (16.39) can be seen to be separable as
2 2 2
sin“(0) [ d“©;,, do; ., 1 do, 5
- : t(6 : I4+1D)O | = —-——5 =—
O1m(®) | e G i e | =

(16.43)

The new information on the total angular momentum eigenvalues, I(I + 1), is
contained in the equation for ®; ,,(6), namely

2
sin?(g) L 2Lm©®) (Z’é’;(@) + sin() cos(@)—d(ai’lg(e)
+ (I(1 + 1) sin*(0) — m?) ©1,,(6) = 0 (16.44)

This equation can be turned into one of the “handbook” variety by noting that

with the substitution, z = cos(6), Eqn. (16.44) becomes

POLn() ) dOn(2)
dz? dz

2

m
(16.45)

(1—2%

which was studied by Legendre. We will not proceed further along these lines
except to quote the result that the well-known solutions to this equation are
polynomials in z, labeled P;"(z), called the associated Legendre polynomials'
which require / to be a nonnegative integer. We will determine and tabulate
more of their properties using other methods below.

A possibly more profitable and interesting approach is to use ladder operators,
factorization techniques, and a more formal notation, as with the harmonic
oscillator in Section 13.2. For example, we can denote the angular wavefunctions
in quantum state notation via

Ym0, 0) = Y m) (16.46)
so that, for example,
L21Y1) = 104+ DR Y n) (16.47)

! For details, see the mathematical handbook by Abramowitz and Stegun (1964), Arfken (1985), or
Appendix E.6.
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and the normalization condition on the angular wavefunctions reads

- / 42 1Yy (0, @) = Yy Yim) (16.48)

In this language, we can argue that
Yyl D21 Ym) = (Yl L2 + L + L2 Y1) (16.49)
= (LaYin| L Yim) + (Ly YigmlLy Yim) + (Lo Yyl Lo Yim)
(Y1l L2 Yy ) = 0
where have used the fact that the sz)y,z are Hermitian, and that the norm of
any vector is nonnegative. This immediately implies of course that /(] + 1) > 0,
which we take to mean that I > 0 as well.

A pair of operators which will have the effect raising and lowering operators
can be defined via

Ly =1Ic+il, and L =1L,-iL, (16.50)

which are not Hermitian, but which do satisfy 121 =1_andi! = Ly. A useful
product relation is

=L+ 1) —inlly L]
Ll = i§+i§+hiz (16.51)
which gives
=10, +12—nl, (16.52)
with a similar derivation yielding
L2=1_L+12+hl, (16.53)
Equally simple manipulations imply that
(I, I_1= 2hL, (16.54)
(L, L) = —hlL, (16.55)
[L_,1,]=+hi_ (16.56)

and

(L, 121 =[L_,L* =0 (16.57)
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The ladder operators, ii, have no effect on the ! quantum number when
acting on a |Y ,,,) state since, because of Eqn. (16.57),

£ (L1¥m) = Ly (E19im)) = 10+ DR (L 1¥)  (16.58)
and similarly for L_. On the other hand, using Eqn. (16.55), we have
Lo (Le1¥im)) = (B Be + L) 1Yi) = on+ DA (L1 %) (1659)

so that the application of the raising operator L, to the state | Y; m) leaves the [
value unchanged, but increases the m value by one unit of 4. This implies that

Ly Yim) o< | Vi) (16.60)
with the similar relation for the lowering operator
LYy m) o< [ Yimo1) (16.61)

For a fixed value of /, the raising and lowering operators move one up and down
the ladder in m in unit steps of % as shown in Fig. 16.2. The normalized versions
these last two relations can be shown (P16.3) to be

LilYym) = VIA+ 1) = mOn + DAY 1) (16.62)
L Yym) = VIA+ 1) = m(m — DAY 1) (16.63)

More constraints can be obtained by using the fact that
(Yl L L Yim) = (LYol Lo Vi) 2 0 (16.64)
which gives
(YL — L2 = BL,|Yy ) = B (10 + 1) — m* —m) > 0 (16.65)

sothat I(I4+1) > m(m+1);asimilar restriction, namely that I(I+1) > m(m—1)
can be derived by considering the expectation value of L_L,. These bounds are
illustrated in Fig. 16.3 from which it is clear that one obtains —/ < m < +I

Yime> ————
L 3
‘Y/,m+1>
Yim> —
Figure 16.2. Effect of raising and lowering operators for the v T L
m=1~

spherical harmonics, |Y] ).
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m(m—1) m(m + 1)

Figure 16.3. Bounds on maximum and minimum values of
m for a given /.

Mmin = -1 Mpax = +1

Figure 16.4. Vector diagram for quantized angular
momentum.

for a given I value. We thus know that there is a state with a maximal value of
m for each [, say m, and clearly the raising operator must annihilate that state,
namely

LilYim,) =0 (16.66)
In this case, the inequality of Eqn. (16.65) is saturated and we have
I+ =my(my+1) or my =+l (16.67)

and L_ acting on the state of minimal m implies that m_ = —I. We are finding
that

® For a fixed value of (integral) / that the allowed values of m are given by
m=—,—(I—-1),...,+(—-1), +I (16.68)
e For a given value of J, there are (2] 4 1) values of m given by Eqn. (16.68).

The quantized values of the magnitude of L? and L, are often presented in a
vector diagram as shown in Fig. 16.4, which will be useful in discussing the
classical limit.
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The raising and lowering operators are also helpful in constructing explicit
solutions for the angular momentum eigenfunctions. Given a value of [, for the
maximal value of m = [, we have

Y116, 9) < ©1(0) '? (16.69)

which, by Eqn. (16.66), must satisfy

~ . 0 0 .
0= 1,Y,0,0) = e <£ + icot(@)%) (@Ll(e) e”¢>

o (dO
0=nhe® ¢ (Wl’l — lcot(@)@l,l(9)> (16.70)

This can be immediately integrated to give
©1,(0)  sin'(0) (16.71)

In the notation of the associated Legendre polynomials, this implies that Pll (z) x
(1 — z2)!/2. This special case is useful for two reasons, one of which is that this
form will be the appropriate one for the classical description of planar orbits.
Perhaps more importantly, the other members of the “family” for a given [ value
which have lower values of m are easily obtained by repeated applications of the
lowering operator, L_, for example,

Y1100, ¢) o< L_Y11(8, )

79 9 .
_ —i¢ o .1 ilg
= he <_80 ZCOt(Q)_E)d)) [sm ©®)e ] (16.72)

and so forth. By repeated applications of these methods, explicit representations
for the Y;,,(0,¢) can be constructed for any values of [, m. We will restrict
ourselves to simply listing many of their most useful properties.

® The Y;,,(0, ¢) are collectively called spherical harmonics (by analogy with the
eigenfunctions of the infinite well which are, in turn, similar to the various
“harmonics” of a vibrating string)

® The properly normalized spherical harmonics are given by

21+ 1 — m)!
47 (I + m)!

1/2
Ym0, ¢) = (=)™ [ ] P"(cos(6)) e™? (16.73)

at least for values of m > 0. For negative values of m, these results are extended
via the relation

Y, m(0,¢) = (=D"Y[, (0,8) (16.74)
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Recall that the phase of an eigenfunction is arbitrary, so that the factors of —1
here are a convention.

® The associated Legendre polynomials appearing in Eqn. (16.73) can be

constructed using the relation

[+ m)! 1 d\'
Pﬁ(z):(—l)”'n%ﬁ1—22)_’“/2(Z) (1-22) (1675

® For use in various problems, it is useful to have the simplest examples for
1=0,1,2:

1
Yoo = — (16.76)

Van

3 .
Yi1 = —/—e?sin(9) (16.77)
8w
3
Y10 =,/ — cos(6) (16.78)
4
15 .
Yo, =,/ — ¢ 5in?(0) (16.79)
’ 32w
15 i
Y1 = —/ —¢"?sin(6) cos(9) (16.80)
8w
Y. =,/i(3cos2(9)—1) (16.81)
20 16 )

¢ From general principles, we know that the (properly normalized) Y; ,, form
an orthonormal set, namely that

(Yr,m | Yim) = / dQQ Yy, (0,¢) Yn(0,8) = 1,v Smm (16.82)
¢ The following average values are sometimes useful, namely

2P 41-14+m?)

-2
(sin“(0)) 1, = Q- DalT3) (16.83)
2 2P +1-1/2—m?)
(cos™(0))1,m = QDT (16.84)
where
(f(9,¢>))l,m=/ A £(0,$)|Y1,m(0, )| (16.85)

® The spherical harmonics, that is, the set of all Y; ,,,(6, ¢), comprise a complete
set of functions over the two-dimensional angular space described by 6, ¢.
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If one has a well-behaved angular function, f (6, ¢), which itself is properly
normalized, that is, [ d<Q |f (0,¢)|> = 1, then one can write

oo m=+I

fO6) =Y amYim®,¢) (16.86)

=0 m=-1

via the expansion theorem. Using Eqn. (16.82), the expansion coefficients can
be obtained via

m = / ds2 Ylikm(e) ¢)f(9’ ®) (16.87)
and will satisfy
oo m=+I
1= " lagml (16.88)
I=0 m=—1

The a; ,,, have the usual probabilistic interpretation, specifically,

— The |ay,,|? is the probability that a measurement of L? and L, will yield
the values I(I + 1)i* and mh, respectively.

In one-dimensional problems, the notion of parity was an important one; in
that case, this was accomplished by the parity operator whose effect was to let
x —> —x. In three dimensions, the parity operator acts via

Pf(r) = Pf(x,y,2) = f(—x,—y, —2) = f(—T) (16.89)

at least in Cartesian coordinates. From Fig. 16.1, we can see that in spherical
coordinates the corresponding effect is

V(@) — Y (—r) = ¥(,0,¢) — Y (r,m—0,1+¢) (16.90)
From direct examination of the defining relations of the Y; ,,,, we find that
Yim@+7,¢) = (=D2MY; 0,6) = (=1)'Y1,,(0,¢) (16.91)

(since 2|m| is integral), so that the parity is given by (—1)/; this is consistent
with the fact that the eigenvalues of P are £1. For two-particle systems where
r =r.] =r] — I, the effect of particle interchange is to give r; <> r; so that
r —> —r. Knowledge of the parity of a two-particle system is then necessary
for understanding the properties of the system under exchange, and is of
fundamental importance for systems of indistinguishable particles.



462 CHAPTER 16 THE SCHRODINGER EQUATION IN THREE DIMENSIONS

Example 16.1.

. - L Aa2
Let us consider a rigid rotator whose Hamiltonian is given by H = L. /2/ and whose (angular)
wavefunction is given by

V0, 9) =N[Y000,¢) + (1+3)Y1,-10,¢) + 2Y2,-1(60, ) + Y206, ¢)]
(16.92)

The normalization constant N is obtained by invoking Eqn. (16.88) to find

oo M=+
ZZ aml? =N+ +9+4+1) — N:}1 (16.93)
=0 m=—/

We then find the following probabilities,
1

Prob(/ =0
rob( ) = %
141 1
P = = —
rob(m =0) = 6 3
10+4 7
PrOb(Lz——h)—T—g
441 5
2 _ g2 _ 2
Prob(L _6h)_—16 T
) 10 5
Prob(E = 2h*/2]) = i (16.94)

The wavefunction at later times is given by
O,6:0 =N [Yo0(0,0) e+ (1431) Yy _1(6,4) e B
H2Y5,1(0,8) + Y2000, ) e 21/1] (16.95)
where £/, = /(I + 1)h?/21. We then have the expectation values

s (TN O0O+ DR 0\ 1+ DRE (441 22+ DA?
w”‘(ﬁ) 2 +<E) 2 +(16> 2

50 K2
37

] 2
Pyy=—(1—-10+4+1)=—= 16.96
(P)t 16( ) 3 ( )

for the energy and parity, respectively.
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16.2.2 Visualization and Applications

The angular dependence of quantum wavefunctions, determined by the spherical
harmonics, can be visualized in three-dimensional plots where the “radius” vector
at a given value of (6, ¢) is given by the magnitude of | Y} ,,, (9, ¢)|%. For example,
the spherically symmetric | Yo (6, ¢)|? is shown in Fig. 16.5(a). For the case of | =
1,we plot Y1,0(0, ¢) in Fig. 16.5(b) in the same way, while for the (I, m) = (1,+£1)
states, we can take real linear combinations (as done in Fig. 15.12) proportional
to sin(¢) and cos(¢), as shown in Figs 16.5 (c) and (d). The /=1 plots may
appear familiar from modern physics or chemistry as being related to p-orbitals
in molecular bonding.
For larger values of I, we choose instead to plot

[Re(Y1,m(®, $))]* o [P} (cos(0))]* cos®(mep) (16.97)

Figure 16.5. Visualization of the spherical harmonics, (a) Yp,0(6, ¢), (b) Y1 0(8, ¢), (c) Re[Y11(8, 9)],
and (d) /m[Y1’1 @, ).
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Figure 16.6. Visualization of the spherical harmonics, Re[Y3 ;, (8, ¢)], for (@) m = 3, (b) m = 2,
(m=1,and(d)m = 0.

For mmax = +1, the ¢ term has the maximum “wiggliness” in the azimuthal
direction. As m is decreased from this value in unit increments, one node is
“removed” from the ¢ direction and added to the 6 direction as the Legendre
polynomials acquire more and more nodes. This behavior is illustrated in
Fig. 16.6 for the case of I = 3 and m = 3,2,1,0. It is also consistent with
the “sharing” of rotational kinetic energy given by

12 2
T, = (-2 = —m? 16.98
¢ <21>l " (16.98)
and
L2+ 1 R
Ty =(—2 =—(l0+1)—m? 16.99
) < 5] >l 2I((Jr) m”) ( )

The connection of the spherical harmonics to the description of “shapes”
is familiar in multipole expansions in classical physics. Many textbooks on
electromagnetism’ show that the electric potential due to an arbitrary charge
distribution at a large distance, R, from the origin has a systematic expansion of
the form’

1 [1 1
#(R) =% [E/ drp(r)—}—ﬁ/ drz p(r)
+%/ dr(3zz—r2)p(r)+---] (16.100)

where p(r) is the charge density; similar expressions are useful for the long-range
gravitational potential of a mass distribution as well. The integral in the first term

% See, for example, Reitz, Milford, and Christy (1993).
* This form assumes a specific set of axes for simplicity.
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simply counts the net charge and gives the monopole term, the second term gives
the electric dipole moment, while the third describes the quadrupole moment. For
a quantum mechanical distribution of charge described by a wavefunction of
the form ¥ (r) = R(r) Y}, (6, ¢), the charge density is p(r) = q| ¥ (r) |2, and the
quadrupole moment can be written in the form

Q= f dr (322 — %) p(r) (16.101)
= q(R(NI?IR()) (Yi,| (3 cos*(6) — 1)|Y1,pm) (16.102)
which is related to an average of Y,0(6, ¢) Pg (cos(#)). The correlations are
Q>0 «— (Z%) > (x%),(y?) «— “prolate”
Q<0 «— (2% > (x?), (y)*) «<— “oblate”

which is illustrated in Fig. 16.7 for two spheroidal shapes.

16.2.3 Classical Limit of Rotational Motion

One of the consequences of the conservation of angular momentum for the
classical motion of point particles in a spherically symmetry potential is that their
orbits must be planar. Because L =r(t) x p(¢), the plane containing r(¢) must
always be perpendicular to the vector L which is fixed in time. If we arbitrarily
call this the z-direction, we also have L = L,Z.

We know that quantum mechanically one can have precisely known eigen-
values for both the operators L2 and I:Z simultaneously. If, in addition, we had

<>

‘»

K
M
/

=S
SO

Figure 16.7. (a) Prolate and (b) oblate spheroids with quadrupole moments that are positive (Q > 0)
and negative (Q < 0), respectively.
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L2 =12 for the eigenvalues, we then know that the values corresponding to
both L, and I:), would have to vanish identically which is inconsistent with
Eqn. (16.36). We see this effect in Fig. 16.4 where the maximal projection of L
along the z-axis will make an angle given by

L ! 1
L~ VITD it

since Mmax = +I. The angle «, which measures the degree to which the total
angular momentum vector can be made perpendicular to the classical plane of
rotation, can thus be seen to become arbitrarily small for a macroscopic system
since « — 0 as | — 00. An estimate of the rate at which this happens can be

cos(o) = (16.103)

made by expanding the terms in Eqn. (16.103) in this limit to obtain

1, 1 1
cos@) ~1— =o'+ = 1— =+~ ——— (16.104)
2 21 1+1/1

ora 1/ V.

This effect is also reflected in the behavior of the probability density for the
angular variables given by the |Y;;(0,)|* in this limit. The square of these
spherical harmonics are plotted in Fig. 16.8 versus @ for increasingly large values
of I: the tendency for the probability to be more and more concentrated in the
plane corresponding to the classical orbit, that is, for & = 7/2, is clear. One can
show (P16.6) that the quantum probability distribution in this limit is given by

Py(6) = |Y1,(0,¢)|* /1 sin?(0) (16.105)

which exhibits the behavior shown in Fig. 16.8. The width of this distribution
decreases with increasingly /, and one can estimate (in a somewhat “rough-and-
ready” fashion) the spread in 6 over which the probability of finding the particle

Figure 16.8. |} (0, #)|2 versus 6 for
increasingly large values of /, illustrating the
approach to the classical limit. To see that the
orbits become increasingly planar in this limit, just 0 1 2 3
turn your head 90°. 6 (rad)
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is spread; calling this spread §, we write

sin?! (% + 3) = cos? (+8)

1 21
=(1-282+...
(-5 )

=1-—8%1+--- (16.106)

so that 8 o 1+/1, which is similar to the result for the angle a. This is another
nice example of the correspondence principle, and shows the classical limit of
planar orbits in a striking way.

16.3 Diatomic Molecules

16.3.1 Rigid Rotators

Even though two atoms are known to bind via an interaction of the approximate
form in Fig. 9.2, as a first approximation in our discussion of rotational states
of molecules, we can consider a diatomic molecule to consist simply of two
atoms with reduced mass p with a constant separation ry, that is, joined by the
famous “massless, inextensible rod” of introductory mechanics problems. In this
approximation, the Hamiltonian is just that of a rigid rotator
N
H=— (16.107)
21

where I = pr¢ and the rotational energies are then given by

BRI+ 1
g - P+

! 57— = I(1+ 1)Ey (16.108)
2ury

Transitions between states due to the emission or absorption of a photon
are possible provided they satisfy certain selection rules (to be discussed
below). In this case, the initial and final values of the angular momentum
quantum number must change by one, that is, Al = =£1; this implies, for
example, that the photon energies measured in an absorption experiment will
satisfy

EP = E - E_, = 2IE (16.109)
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for a purely rigid rotator. For diatomic molecules with o ~ 1—2A,u ~
1—20amu, and I ~ 1-10, these energies are in range E, ~ 1073—10"* eV; this
corresponds to wavelengths of the order A ~ 1 mm— 1 cm, that is, in the far
infrared to microwave regions.

This simple model implies that the ratio EJ(,I) /21 should be constant with
increasing / for a given series of rotational lines. Data for H-CI are plotted in
Fig. 16.9 in this format (with the vertical scale greatly magnified.) to show that
there is a systematic deviation (downward) for larger values of I. This effect can
be understood semiquantitatively as being due to the “stretch” of the diatomic
molecule in response to the increasing angular momentum. If we approximate
the interatomic potential near equilibrium () by a harmonic oscillator of the
form V(r) = K(r —n)?/2, the classical force equation implies that

2

L
ma. = — = K(r—rn) = Fe (16.110)
wr

where we have written the centripetal acceleration in terms of L. If we call the
deviation from equilibrium (the “stretch”) §, we find

(16.111)

1.300

1.275

1.250

é 0 H—Cl data
— 1.225 —
d
s E,V21 = Eg - 2PE,
1.200 — (“springy rotator”)
n
---------- EV2i = E,
1175 |— (rigid rotator)
1.150 I I I I I
5 10 15 20 25 30

/

Figure 16.9. Photon energies for A/ = +1 transitions for a diatomic molecule (H — Cl). The data are
plotted to indicate the pattern of energy levels for a “springy rotator.”
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The energy now is given by

po L + k=
= =K(r —
ur? 2 0
L? 1,
=~ 4+ _KS$
2u(rg +8)2 2
L? L*
~ 2urd a 2u?rSK

+ OO + - (16.112)

Using the quantized values of L2, this gives the expression

h4

—_— 2 =
E =10+ DE —[I0+DI"Er  where E = 228K

(16.113)

for the spectrum of a “springy rotator”; systems with “stiffer springs,” that is,
ones with larger values of K will have their spectrum changed less. The corres-
ponding photon energies satisfying the |[Al| = 1 selection rule would then have
energies

O]

E
EP =2IE) — 4PE; or % = Ey — 2I’F, (16.114)

and the solid line in Fig. 16.9 indicates a fit to the data of this form; the fitted
values are

Ey~1927x10eV and F; ~5.6 x 107> eV (16.115)

16.3.2 Molecular Energy Levels

To understand the rich structure of quantized energy levels available to diat-
omic molecules, we consider how one might calculate the energy spectrum of
such a system from first principles, indicating what role the electronic and nuc-
lear motions play, and how vibrational and rotational states are connected to
electronic excitations.

For a diatomic molecule consisting of two atoms with nuclear charges Z;, Z,,
there will be Z; + Z; electrons, and the complete multibody Hamiltonian can be
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formally written as

. PPz AL
H=-—L 42 4
2M, ' 2M, | 4~ 2m,
Zgz KZ, ¢ Zgz KZye? | kaz e2
|R1 _rz |R2 _rl |R1 _R2|
VAR YY) 2
Ke
+ Y —— (16.116)
iAj=1 ri — j|
]_

where R;, and r; (M, and m,) are the nuclear and electronic coordin-
ates (masses), respectively; the mutual interactions are simply the Coulomb
attractions or repulsions between all combinations of nuclei and electrons.

Because the nuclei are so much heavier than the electrons, the electrons can
“respond” to changes in the nuclear positions rapidly, and it makes sense to
initially approximate the nuclei as being fixed with some arbitrary separation R =
|IR; — Ry|. The electronic configuration, for the ground state or any excited state,
can then (in principle, this is after all, an imagined calculation) be determined
by solving the multiparticle Schrodinger equation. The “effective” Hamiltonian
for the two nuclei can now be written in the form

52 b2

N P P
H, V(R 16.117
N = +— M, + V(R) ( )

where V(R) now includes not only the Coulomb repulsion of the nuclei, but
also the effective potential due to the electron configuration; the terms in
Eqn. (16.116) involving the electron coordinates are averaged over.

This procedure can be repeated for different values of R, and can be used
to “map out” the interatomic potential through which the nuclei interact. The
schematic potential is shown in Fig. 16.10, both for a ground state electronic
configuration, and for an electronic excited state; the two potentials are separated
by roughly 1—10 eV, that is, an atomic energy difference.

The vibrational energy levels considered in Section 9.3 are then due to the
nuclear motion in each attractive well, and have energy splittings typically in the
range 107! — 1072 eV range and are superimposed on each V' (R) curve as shown.
The “spring constants” inferred from such data are of the order K¢ ~ eV/ A%and
are consistent with this picture as A-size changes in the nuclear separation will
change the energy of the electronic configuration by eVs. Finally, the vibrational
states are much more closely spaced with splittings of the order 107> —10~* eV.

A useful mnenomic device for understanding this hierarchy of energy split-
tings is as follows: Typical electronic energies are determined by e, A, m, (as in
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Figure 16.10. Schematic plot of the effective interatomic potential in the electronic ground state and in
an excited electronic state. Levels indicating vibrational and rotational states are also indicated, along with
their typical energy splittings.

Section 1.4) via

2 4 2
e mee v
E,~— ~—% where gy ~ (16.118)
ay h? m,e?
The spring constants for molecular vibrational motion then scale as
E, m3ed
Ky ~ — ~ ¢ (16.119)
& ag h®

so that the quantized energies go as

Kege mee* m
Eq, ~ h ;4 ~ (#) /Me (16.120)

where M is a nuclear mass. Finally, rotational states vary roughly as

By ~ X (mee4>ﬁ (16.121)
ot ZMr(% Mag ) M '

so that the electronic, rotational, and vibrational energies are roughly in the ratio

Ee/Eyip/ Erot 1/\/% /% (16.122)

Transitions involving changes in the electronic configuration will have typical
energies in the 1—10 eV region corresponding to visible wavelengths; because of
the many rotational and vibrational states available in both the initial and final
states, each electronic transition will actually correspond to many possible lines
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and band spectra are seen instead of sharp lines as in atomic spectra. Changes
in the vibrational state within a given electronic configuration will still allow for
many different rotational state, so that fine structure can be resolved. The energy
levels of a “pure” rotator—vibrator system are given by

Epp=ho(n+1/2) + 11+ DE (16.123)
so that
E(™) = ho + 21E (16.124)

if we use the selection rule An = =1 for vibrational state transitions, which we
discuss next.

16.3.3 Selection Rules

Because of their importance in determining the observed patterns of emission
and absorption in atomic and molecular spectroscopy (and beyond), we present
here a “bare-bones” discussion of the physical principles underlying the selection
rules’, which we have freely used in our discussions of electromagnetic transitions
between vibrational and rotational energy levels.

The description of the emission or absorption of a photon as a charged particle
(or distribution of charges) changes its quantum state requires knowledge of
the coupling of a charge to an external electromagnetic field as discussed in
Section 18.2.2. The interaction term which is relevant for our discussion can be
written in the form

1 1 .
—ISAI _f) € e—zk»r
m m

(16.125)
where A is the so-called vector potential. In this case, it is written in terms of the
polarization vector of the photon, €, and its plane wavefunction where the wave
number satisfies k = 2w /A = E, /hc.

The amplitude which, when squared, describes the probability for a radiative
transition between initial and final states, ¥; and vy, is given by

1 .
Amp(fi — iy +y) o — (wf ‘13 ce ik %) (16.126)

If the bound state wavefunctions are localized on some length scale R, the argu-
ment of the exponential function will be at most of order kR over the region of
integration where the overlap integral “gets its support,” that is, is nonvanishing.
For many atomic, molecular, and nuclear systems, this factor satisfies kR << 1

4 For a more complete discussion, see, for example, Gasiorowicz (1996).
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and the exponential can be approximated by unity; for example, in radiative
transitions between atomic energy levels one has

E, a9 (2eV) (14)
he 1973 eV A
We will see that this approximation corresponds to considering only electric

dipole radiation (and not higher multipoles).
In this limit, we can write the required matrix element in the form

kR ~ ~107% << 1 (16.127)

! plYi) = d j 16.128
e (ylpl) = €+ - (el (16.128)

which is seen to be essentially the time rate of change of the dipole matrix element
between initial and final states. This expression can be simplified by evaluating
the time-derivative using the relation

B i(Er — Ej)

d i N
%(me‘ﬁi) = }—_l(Wf”H,l'“‘/fi) = T(lﬂflrli/fi) (16.129)

This gives the important result that the amplitude governing electric dipole
radiation between two quantum states is proportional to the matrix element

Amp(Y; — Yy +y) o€ - (Yglr[yri) (16.130)

and this dependence is the basis of many selection rules.

For example, for vibrational states described by eigenfunctions of the simple
harmonic oscillator (considered here in one-dimensional, for simplicity), we
find that the matrix elements satisfy

(lﬁnf|x|wni) =0 wunless An=n;—n; ==+l (16.131)

using the results of Eqn. (9.50).

In the case of the rigid rotator, the components of the vector r = (x, y, z) can
be written in terms of the spherical harmonics Y;—; ,,,(6, ¢) with m = 0, £1, so
that we need to examine the structure of the matrix elements

<},lf-,mf|Yl,m|Yli,mi> (16.132)

The azimuthal integrations over ¢ will have the general form
2w .
/ dep e'mitm=my) (16.133)
0

which will vanish unless

Am=ms —m; =m=+1,0,—1. (16.134)
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The selection rules for [ are determined by the integration over the polar angle
0. Arguments similar to those leading to the addition of angular momentum
rules in Section 16.5 imply that the product wavefunction Yi,,Y}, ,, can be
written in terms of individual spherical harmonics given by the addition rule
li+1 — I;—1, I;, [;+1. Because of the orthogonality of the spherical harmonics,
the only overlap integrals which are then nonvanishing are those for which
lr — I = +1,0, —1. However, when /s = ; it is easy to see that Eqn. (16.132)
vanishes by parity arguments since

(Yo mlx, y, 2| Y ) =0 (16.135)
This implies the selection rule
Al=1lf -1 ==+1 (16.136)
and it is sometimes said that:
® “Quantum numbers change by one unit in dipole transitions.”
Several other comments complete our discussion:

® The spectra of molecules consisting of identical atoms form a special case
which can be examined on both physical and more formal grounds.

— Physical argument: For diatomic molecules consisting of unlike atoms,
such as C—O or H-Cl, there can be a permanent dipole moment which can
then radiate when “shaken” (in transitions between vibrational states) or
“spun” (in transitions between rotational states). For molecules of identical
atoms, such as C, or Oy, the symmetry between the two atoms implies that
no dipole moment can exist (after all, which way would it point?), and so
electric dipole radiation is forbidden.

— Formal argument: Such systems of indistinguishable particles must have
wavefunctions which have the correct symmetry under exchange, that is

Y (r,r2) = Y (rp,11) (16.137)

which implies that the wavefunction for the relative coordinate,r = r; —r;
must satisfy

Y (r) = £Y(-r) (16.138)

that is, have a definite parity. The eigenfunctions of the harmonic oscil-
lator, for example, have parity given by P=(—1)", so that the allowed
wavefunctions for indistinguishable particles must have either n odd or
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even and allowed states are separated by two units of #; since the selection
rule Eqn. (16.131) implies that An = =1, electric dipole transitions are
forbidden.

e Under circumstances where electric dipole transitions are not allowed, the

next term in the expansion of e~ kT g required; one must then consider the
matrix elements of higher powers of r which can then connect states with
|An| or |Al] greater than one. Such transitions, corresponding to quadrupole,
octopole, and the like terms will have much smaller amplitudes due to the
extra powers of kR; they are not ‘forbidden’, but may well have unobservably

small intensities in a given experiment.

16.4 Spin and Angular Momentum

To derive a quantum description of rotational motion, we have so far followed
a path which is quite similar to that for quantizing classical oscillatory motion.
Certain classical variables were generalized to quantum operators which yiel-
ded eigenvalue problems; the spherical harmonic functions, Y;,,(0, ¢), were
obtained as the solutions corresponding to the quantized values of orbital angular
momentum and its z component.

If we wish to associate the spin degree of freedom (for electrons, protons,
quarks, etc.) with a half-integral value of angular momentum, a representation
in terms of spherical harmonics is clearly inappropriate. To see this, if we formally
attempt to use = 1/2 and m = +1/2, we find that

Yim = Yi/2,41/2(0, ) o< /sin(6) eX//2 (16.139)

This identification does not satisfy any of the functional relations for the spherical
harmonics since, for example,

I Y1/2,41/2 0C+/sin(6 eFiP/2 L(e)e_i‘p/z (16.140)
sin(@)
which is not, in turn, proportional to Y1/ 1/, or even well-behaved at 6 = 0.
It is perhaps not surprising that this formulation for quantized values of
angular momentum does not extend to intrinsic angular momentum or spin
as the derivation leading to the Y;,, was based on generalizing classical orbital
motion; clearly another representation of the angular momentum operators and
their eigenfunctions is required which is more abstract.
As an example, consider a 3 x 3 matrix representation of the eigenfunctions
corresponding to / = 1; this formulation can be easily generalized to any value
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of  using (21 + 1) x (2] 4 1) matrices. We can explicitly write

0 /2 0

h
LXZE V20 V2 (16.141)
0 V2 0
. V20
L==|-+v2 0 V2 (16.142)
21
0 -2 0
1 0 0
L,=xal0 0 0 (16.143)
0 0 —1

The 2141 values of L, are located along the diagonal while the v/2 = /I(T + 1) is
appropriate for / = 1. One can easily check (P16.11) that the usual commutation
relations are obeyed as

[Le, L] = iAL, (16.144)

and that
200
=L+ +L=nr[0 2 0] =2n" (16.145)
0 0 2

The simultaneous eigenfunctions of L? and L, with eigenvalues I(I+ 1)h? = 2h?
and L, = 41,0, —1, respectively, are given by

1 0 0
v —lol, vO=|1], and vV =0 (16.146)
0 0 1
A general [ = 1 “wavefunction” is then written in the form
o
8| = av™D 4 gy © Ly D (16.147)
14

where ||+ |B|*+]y |* = 1is the normalization condition. Raising and lowering
operators are easily generalized as well and one has, for example,

01 0
Ly =Le+il,=+20|0 0 1 (16.148)
0 0 0
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One can then check explicit relations such as
0
LvD =v2h | 1] = vV2m© (16.149)
0

so that the normalizations of Eqn. (16.62) and (16.63) are maintained.

Example 16.2.

It is an instructive exercise to find the eigenvalues and eigenfunctions of the operator

B 0 e 0
Ly = cos(@)Lx + sin(@)L, = 7 etie 0 e (16.150)
0 etio 0

Writing the eigenvalue problem as

o o
Ly | 8| =Ls|8 (16.151)
v v

we find the determinant condition on the eigenvalues Ly,

Ly —he /2 0
det | —net’®//2 Ly —he™'?/2| =0 (16.152)
0 —het'? /2 Ly

This implies that Lfb—thq;:O or Lg= + h,0,—h as expected; the eigenfunction
corresponding to Ly = +F is easily found to be

e /2
vl = 1 (16.153)
et’? /2

with similar results for vg)), v,

A relabeling ¢ — ¢ + 27 should not have any effect on the results as the two
labels for the same angle are physically equivalent. It is easy to check that Vg2, |? =
IVp|? so that the probability densities are invariant as they should; we note that the
stronger condition, V42, = Vg, also holds so that the wavefunction returns to the same
phase upon one rotation. While such expectations might seem obvious for any classical
system, the corresponding results for the nonclassical spin degree of freedom will be
different.
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This matrix representation of quantized angular momenta can now be
generalized to treat spin-1/2 particles. Specifically, we define

h{o 1

Se =3 (1 0) (16.154)
hio 1

S, = oF (_1 o) (16.155)
h{1 0

5. =3 <0 _1> (16.156)

which satisfy the standard commutation relations
[Sx,Sy] = iRS, (16.157)

and cyclic permutations, and give

2_42(3/4 0\ _[1[1 2
s_h(o 31) = |3 1) R (16.158)
which is appropriate for S = 1/2. The eigenvectors of $? and S, are just the
spinors introduced in Section 16.4,

X+ = (é) and x_ = (?) (16.159)

with eigenvalues S, = +1/2 and —1/2, respectively; a general spinor is written as

-
_ o
x=aMx +a Dy = (a()> (16.160)

We can repeat the exercise in Example 16.2 to examine the eigenvalues and
eigenfunctions of the “rotated” spin matrix operator

—i¢
Sp = cos(¢)Sy + sin()S, = 722 <e+0i¢ eo ) (16.161)

The eigenvalues of Sy are found to be +5/2, —h/2 as expected with correspond-
ing eigenvectors

1 e~ i#/2 1 e i9/2
1/2 —-1/2
y(t1/2) — ﬁ (e i0)2 and V2 = ﬁ Hid)2 (16.162)

Both spinors satisfy the relation

2 2
‘Vﬁlz/ﬁ) _ }Vé’ilm (16.163)
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so the probability density is unchanged by the relabeling of angle as it should.
The spinor wavefunctions or amplitudes, however, do change sign since

1/;;_:12/”2) — _V(;il/2> (16.164)

and a rotation by 47 is required to return them to their original phase. This
phase change under rotations is typical of fermionic spin-1/2 wavefunctions and
has no classical analog; as with any phase behavior, it is best tested in interference
experiments, and this possibility will be discussed in Section 18.7.1.

Before proceeding, we note that it is often useful to write the spin matrices in
dimensionless form by defining

h
S=-0 (16.165)
2
where
0 1 0 —i 1 0
Oy = (1 0), oy = <i 0 ), and o, = (0 —l) (16.166)
which satisfy
loi, 0] = ZiEijkO'k (16.167)

where i, j, k = x, y, z in any permutation and ¢;  x is the totally antisymmetric
symbol (Appendix F.1). The o are called the Pauli matrices and they are Her-
mitian (that is MT = (M*)T = M.) If the behavior of the spinor wavefunction
under rotations is decidedly “unclassical,” the dynamics of a charged particle with
spin-1/2 does have some classical analogs, namely, their interactions with an
external magnetic field.

We will see in Section 18.5 that the Hamiltonian for a charged particle in a
uniform magnetic field will have a term of the form

ﬁ:_<i>£-B:—M-B (16.168)
2m
where we have defined a magnetic moment operator via
M=-LF (16.169)
2m

Equation (16.168) is just the analog of the classical energy of a magnetic dipole
in an external B field. The relation Eqn. (16.169) between the magnetic moment
and angular momentum is consistent with that of a classically rotating point
particle.

Particles with intrinsic spin often have microscopic magnetic moments given
by the similar relation

M= g%s (16.170)
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where g, m are the charge and mass, respectively,and g is a dimensionless number
called the gyromagnetic ratio. As the name implies, ¢ measures the ratio of the
magnetic moment to the (intrinsic) angular momentum vector. For a classical
rotating particle or a classical spinning object for which the mass and charge
densities are proportional, one can show that g=1 (P16.12). In contrast, the
g value for a point-like, charged spin-1/2 particle can be derived using the
machinery of relativistic quantum mechanics’ (via the so-called Dirac equa-
tion) and one finds g = 2. Small, calculable corrections to this value arise due to
effects from quantum field theory; for the electron these have the form

o o2
=2+ 06569 (—) oo A 20023193048 (16.171)
T T

where « is the electromagnetic fine-structure constant; we will take g, = 2 for
simplicity. The magnetic moment vector for such a point-like spin-1/2 particle
can then be written in the form

h
M= § (q_) 0 = o (16.172)
2 \2m
where the magneton is defined via u = gh/2m.
Based on the prediction of the Dirac theory, for the neutron and proton we
would expect to have
eh

Up=——=UN MHn=0 (16.173)
2my

since the charge of the neutron vanishes. Instead, one finds

[y X 279N pn A —1.91uN (16.174)
or more precisely
8p 8n
5= 2.79284739(6) and 5= —1.9130427(5) (16.175)

These large deviations from point-like structure can be understood if the neutron
and proton are bound states of more fundamental constituents, and are best
explained in terms of the quark model (P16.18).

The magnetic moments of such particles provide a “handle” with which to
manipulate their spin orientation via their interactions with externally applied
magnetic fields. The interaction Hamiltonian is given by

H:—M-B:—%“a-la (16.176)

> See, for example, Griffiths (1987).
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For a uniform field along the z direction, the dynamical equation of motion for
the spinor wavefunction is simply the Schrodinger equation, which in this case
has the form

0 ~
iho-x () = Hx (1) = —%Bazx(t) (16.177)

« @)\ _ . (guBY [« (1)
B I CCATEEN (16.178)

which has the solutions

or

a® () = o« (0) et (16.179)
where w = guB/2h. These solutions correspond to energies

B
Ey = hos = i% (16.180)

where the spin is parallel (—) or antiparallel (+) to the field direction.

Example 16.3. Spin precession in a uniform field

Suppose that initially one has a spinor wavefunction which is an eigenvector of Sy with
eigenvalue +%,/2, that is, one knows that the spin is “pointing” along the +x direction; this

If a uniform magnetic field in the z direction is applied, the time-development of this spinor
is given by Eqn. (16.179) so that

1 e-Hwt
X0 =— (e—fwf> (16.182)

At later times, the expectation value of the spin along the x axis is given by

<Sx>t =

—~

x (O1Sx1x (D)

(et e+iwt)i| BL (? ;)} [% (zfz:)} (16.183)

0s(2wt)

N

NS
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(Continued)
while (Sy)¢ = —hsin(2wt)/2. We see that:

® The magnetic moment precesses around the z axis at an angular velocity (2w) which is
twice the rate at which the phase of the spinor wavefunction changes (w).

This precession can also be derived (P16.13) in a more formal way which makes its classical
analog more obvious. This phenomenon is the basis for one-experimental test of the spinor
nature of the spin-1/2 fermion wavefunction (Section 18.7.1).

16.5 Addition of Angular Momentum

For classical particles which do not interact with each other, the total value of

some observable quantities, such as energy, momentum, and the like, is often

obtained by simply summing the values for each particle. This can occur in

quantum mechanical systems as well where “noninteracting” often implies that

the multiparticle wavefunction can be written in a factorized, product form.
For example, for two noninteracting energy eigenstates, one might have

W (x1, %03 1) = [x/rEl (xl)e_iElt/h] [wgz(xz)e_iEzt/h] (16.184)

which is also an energy eigenstate since

. )
EY(x1,x25t) = 1ﬁ51p(x1,x2; t) = (E1 + E) ¥ (x1, x25 1) (16.185)

Free particle momentum eigenstates also behave in this manner since
Piot [eipl’“/h eipz'”“] = (p1 +p2) [eipl'rl/h eipz'”/h] (16.186)

where Pyt = (5/1)(V + V>).

For two particles which are described by eigenstates of L2, f% and fl,z, iz,z,
respectively, the situation is more complex. The operators corresponding to the
total angular momentum squared and its corresponding z component are given

by

~ ~ ~ \2 ~ ~ ~ ~
2 = <L1 + Lz) =12 420, -1, +12 (16.187)
Jo =L, + Loy, (16.188)

and we wish to find the corresponding eigenstates, ¥(;,;,), which satisfy
PV =10+ DR gy and gy = Eh v (16.189)
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We especially wish to know if simple products of the respective spherical
harmonics will also be eigenstates of these operators. We will thus consider
fixed values of I; and b, with all of their respective values of 1, m1,.

A product wavefunction of the form Yy, ) (01, 1) Y(1,,m,) (02, ¢2) is clearly
an eigenstate of J, since

jZ Yll,ml lez,mz = (il,z + iz,z) le],ml le,mz
= (m + TYQ)FLY]I,ml le,mz (16.190)

or J, = (my 4+ my)h. The same is not true for J2 because of the “offending cross
term”in J? = (L; + Ly)?, namely

L L= Liyloy+ il,in,y + Li.0a, (16.191)

since individual spherical harmonics cannot be simultaneous elgenfunctlons of
all three components of L. More concretely, the operator L; - L, acting on a
specific Yy, m, Y1,,m, will introduce new values of m;, m,. This can be seen most
easily by noting that

2 =12 420, - [, + 12
= if + fé + Zil’ziz)z + il,_f_f,z,_ + il)_iz)_,_ (16.192)

and we recall that the action of the raising and lowering operators for each label
can be obtained via

LYy = VIA+ 1) — m(m + DAY
= VI +m+ 1)1 — mhY (16.193)

and

LY =+1—m+ 1)1+ mhY),_, (16.194)

We can, however, hope to find linear combinations of spherical harmonics
which do satisfy Eqn. (16.189), namely

m=+h m=+h
’(//(],]z) = Z Z C(]:]z; ll) m, lZ) mZ)Yll,ml YlZst (16.195)

m=—h m=—h

Such an expansion is called a Clebsch—Gordan series and the C(J, ], Iy, my, b, m;)
are referred to as the Clebsch—Gordan coefficients. The allowed values of ] and J,
can then be determined by looking for eigenstates of this form.

We will proceed by simply stating the result for the possible values of ], which
are allowed in such an expansion, providing some prima facie evidence to justify
the answer, and then discuss the general procedure for its proof.
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One finds that for a fixed value of [; and :

¢ The allowed values for the total angular momentum quantum number, J, are
in the range

]=|ll_l2|> |ll+12_1|> e ll+12_1) ll+12 (16196)
or equivalently, that J occurs in integral steps in the range
Jmin = |Zl - lZ| <] = (ll + 12) = Jmax- (16-197)

These limiting values are consistent with a classical picture of vector addition
as when L; and L, are aligned or parallel (anti-aligned or antiparallel) their
magnitude would be L; + L, (|L; — L,|). In addition, the enumeration of distinct
quantum states is consistent in the two pictures. For fixed values of [} and J, there
areatotal of (21; +-1)(2L,+1) product wavefunctions of the form Yj, ,,, Y1, n,; for
the eigenfunctions of total angular momentum, v(; 7,), the equivalent counting
is given by (P16.15)

J=h+h
Z QI+ =QChL+1D2hL+1) (16.198)
J=Ih—b|

as well. The values of my, my, and ], are then obviously determined via J, =
my + my which implies that

C(])]Z) ll) mly12> m2) =0 lf mi +m2 #]Z (16199)

This observation also suggests that we analyze the Clebsch—Gordan series by
looking systematically at v(; ;) for specific values of J,.

Consider, for example, the unique product wavefunction with the maximal
value of J,, namely, Jmax = | + b; it is given by

W(],]Z) = Yll,ll (91) ¢1)Y12,12(02> ¢2) (16200)

which is obviously an eigenfunction of I, = il,z + Iiz,z with J, = (h + b)h. Itis
also an eigenfunction of J? since, using Eqn. (16.192) and the fact that the L;
and i2,+ operators annihilate both spherical harmonics, we find

izw(],lz) = [h(h + 1)+ h(h + 1)+ 2L L] W ¥
=[(h +L)(h + L+ DI ¥
=J(J + DR ¥y (16.201)

or ] = I} + h. This is, of course, the only possible value for J, = I, +1.
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For the next lowest value of J,, there are two possible terms which can
contribute to an eigenfunction of J, with J,=Jnx — 1= + L — 1), so we
write

Vg = o [Yi-101,01) Vi1, 02, 2) | + B[ Vi, (01, 91) Y 1—1(62,¢2)
(16.202)

In this case we have
Pro = [+ 1+ bb+ D + 201 = Db + B4 )| 7Yy 11V

+ [« /AR + B+ D + b + 1)
+2(h = D] A2 Yy, 1 Y1
=J(J + DR [aYy -1 Y5, + BYy, Yob-1]
=JJ + DR*Y( - (16.203)

Equating coefficients, we find a set of coupled equations for « and B which can
be written in the form

M O‘) - 1 (“) 16.204
(ﬁ o (8 (16.204)
where
hih+L+1) +bL(L+L-1) 20 b
— (16.205)
2/ b hih+L-1D)+L(L+5L+1)

This matrix eigenvalue problem Eqn. (16.204) will have a solution provided that
detM—-J(J+ D1 =0 (16.206)
or equivalently
[h(h+L+Dh(h+L—1)—=JJ+D]-[h(h+hL=1) + h(h+hL+1)—J(J+1)]
— 41,1, (16.207)
= (21)(2L) Choicel
= (—2h)(—2L) Choice?2

where we have written the right-hand side in two (hopefully) suggestive ways, as
the two solutions to Eqn. (16.207) correspond to the two choices. The second of
these yields

hih+Lb+D)+hL(h+L—-1)4+2L=JJ+1)
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and

hh+L-D+bh+L+D)+2h=]JJ+1) (16.208)
which both give

(h+b)h+bLb+D=]J0J+1) = J=h+h (16.209)

The first choice in Eqn. (16.207) corresponds to
hh+h+D)+b(h+hb—-1)-2h=]JJ+1)
hih+bL—-—1D)+L(h+L+1)—-2L=JJ+1) (16.210)

which implies

h+bh+L-1)=JJ+1) = J=h+hL—-1 (16.211)

These two possibilities for | are the only ones consistent with J;, = Jjax — 1 =
L + L — 1. The values of @ and B8 can be obtained in either case, and the
normalized wavefunctions can be written as

h h
W(ll+lz,ll+zz—1>=,/11+le11,11_11/12,12+ ll+12Y’1”1Y12”2‘1 (16.212)

h v v h
Lt 5 wh=1hh I+

w(ll-i-lz—l,ll-f—lz—l) = }/ll,ll }/lz,lz—l (16213)

S

which are obviously mutually orthogonal.

One can proceed in a similar fashion and construct all of the (JJ;) eigen-
states in this manner, but it is also possible to derive the same states more
“mechanically” by repeated use of the “total” lowering operator J_ = L _ +1, .

To accomplish this, we note first that one must formally have

TV +hh+y = V20 + DAY +h-1) (16.214)

since ] satisfies all of the usual properties of an angular momentum operator.
We then also have, more explicitly,

j—w(ll-i-lz,ll-i-lz) = (i’l,— + iz)_> Yll’ll YVIZJZ

=20 Yy -1 Yo, +V2b Yy Y1 (16.215)

which together with (16.214) give the form in Eqn. (16.212). The remaining
combination Eqn. (16.213) can be constructed by finding the orthogonal linear
combination of states.
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This procedure is the basis for a systematic method of constructing the entire
set of eigenfunctions of both J? and J, namely:
e Start with the (unique) state of largest J, as in Eqn. (16.200), which gives
w(}max :]max) *

e Use J_ on this wavefunction as in Eqns (16.214) and (16.215) to obtain
Ve Jmax—15 the state orthogonal to this is necessarily ¥y . —1.7,..—1)-

e Operate on  both these states with J_ to obtain ¥, ; 5 and
Y ma—1Jmax—2)> TeSpectively; the state orthogonal to both of these must, in

turn, be w(]max —2,Jmax—2)+

* Repeat until all the ¥ ;) states are constructed; along the way, J_ will even-
tually begin to annihilate states it acts on until only the state ¥ 7. . is
left.

This procedure is illustrated below.

l//(]max:]max)
| via J_
orthogonality
Y UimaxsJmax—1) — Y Uimax— 1 Jmax—1)
J via ]'_ J via ]'_
orthogonality
Y UmaxsJmax—2) Y Umax — 1 Jmax —2) — Y max —2,Jmax—2)

and so forth.

Example 16.4. Two-electron spin wavefunctions

We illustrate the utility of this procedure by deriving the spin wavefunctions of a two electron
system. If we label the spinors of the two spin-1/2 particles as ch” and Xf), respectively,
we are interested in eigenfunctions of the total spin angular momentum operator squared,
S2 = (S; 4+ S7)2. Using the spin addition rules, we know that the total spin quantum
number, S, will be given by

S1+5=12+12 — 5=0,1 (16.216)

with a total of four states; these will be labeled by (S, Sz) as (1, +1), (1,0), (1, —1), and
(0,0).
We obviously have

Xoan = x Py (16.217)
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(Continued)
as the state of highest S;. Acting on this with the “total” lowering operator S_ = Sy _+5; —
requires the effect of the individual raising and lowering operators on single-particle spinors

S_x+=hx_ and Six_ =hxs (16.218)

which are consistent with Eqns (16.193) and (16.194). We then have

V2h x0 = S-xa+
= (51,— + §2,—) Xf)xf)
= x4 5Dy (16.219)
or
X(0) = % (xi”xﬁz + xi”xf) (16.220)
The orthogonal combination is
X(0,00 = % (xf)xiz - xg)xf) (16.221)
Acting on v(g,0) With S_ once gives
S-v00 = (S1-+5.-) % ("% @ = xOxf) =0 (16.222)

as expected, since S_ (0,0 ¢ x(0, 1), Which does not exist. The last state is obtained using

ﬁﬁxm,—n = 3—)((1,0)

= (31,, +§2,,) % ( f)xﬁz + x@xf)

1 e
= 2,0, (16.223)
N
M _Q

or x1,—1) = x_’ x_, also as expected.

We note that the Clebsch—Gordan coefficients in these spinor wavefunctions
have exactly the same form as given in Eqns (16.212) and (16.213) with [} =
L = 1/2. This formulation in terms of raising and lowering operators treats
integral and half-integral angular momenta in the same manner. Similar results
can be obtained for the addition of orbital and intrinsic angular momenta, L+S,
(P16.16), which are useful in the study of single-electron atoms. The addition of
more than two spins or orbital angular momenta requires only repeated use of
the Clebsch—Gordan series for two angular momenta. The allowed values of |



16.5 ADDITION OF ANGULAR MOMENTUM 489

and the corresponding wavefunctions corresponding to a sum such as L; + L, +
L3 + - - - + Ly can be obtained by “adding” the first two, then “adding” the third
to all possible results of the first step, and so on. This is illustrated in P16.17, and
in the next example.

Example 16.5. Deuteron wavefunction

The deuteron is a bound state of two spin-1/2 particles, the neutron and proton. The
ground state is known to have total angular momentum J=1 and even parity, and
we wish to construct the most general wavefunction which satisfies these requirements;
for definiteness, we will consider v,y =¥ (1,4+1). This problem requires the angular
momentum or spinor wavefunctions corresponding to the angular momentum addition
problem

1

1
S1+52+L:§+§+/ (16.224)

The spin degrees of freedom can first be combined, as in Example 16.4, to give Syt = 0, 1
with corresponding wavefunctions x 0,0y and x(1,+1y, Xx1,0)-

For | = 0 (s-state), the total angular momentum J comes from the spin degrees of freedom
alone and we have

V1) = Rs(D Y00/ @, d)xa1+1) = Rs() Y 10,00, ) x P x (16.225)

where Rs(r) is a normalized / = 0 radial wavefunction.
When / = 1 (p-states), there are two possible combinations which give J = 1. If Siot = 0,
then we have

A 1
Vi =RV @9 (XX = xPx”) (16.226)

For the case of St +/ = 1+ 1 we can use the Clebsch—Gordan coefficients derived in
Eqgn. (16.213) to show that

B 1 1
Vi = Ro(D) [%YLH(@,@X(LO) - EY1,0(9,¢)X(1,+1)} (16.227)
1 1
= Ry(r) [5 Y1410, )P %™ + x Py - -5 V10, ¢>xf)xi’”]

We recall, however, that the parity of the spherical harmonics is given by (— 1), so that these
states have odd parity and thus cannot contribute to the even parity deuteron ground state
wavefunction.

The final possibility occurs when / = 2 (d-state); in this case Siot = 0 cannot combine with
I = 2togiveJ = 1, so we require the Clebsch—Gordan series for the (1, +1) state occurring
in the angular momentum sum 1+ 2. The necessary expressions are given in P16.19, and we
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(Continued)
find that

3 . 3
¥l o1y = Ra(r) [\/;Yz+z(9 #)x P x " \/T—OYz,H(e,@

x %(xip)xﬁ”) +xPx?) + \/%Yz,o(e, ¢>)X<f)xf’] (16.228)
For / > 3itis not possible to construct a J = 1 wavefunction.

The observed magnetic moment of the deuteron system provides information on the struc-
ture of the ground state wavefunction. The total magnetic moment of this composite system is
due to the intrinsic magnetic moments of the neutron and proton as well as the orbital angu-
lar momentum of the (charged) proton, but not the (neutral) neutron. The magnetic moment
operator (along the z axis) can then be written as

gp (,o) On (n)
M, = = U + = + —o0 16.229
‘ N (2 h 2 oz 2 ‘ ) ( )

In the center-of-mass system, the angular momentum of the proton is half that of the total
system; this accounts for the factor of 1/2 multiplying L.
In a pure S-wave state, the magnetic moment is given by

90 +9n

(P, +0IMz|Y1,41) = [ 5

] un = (0.8798047(7)) w (16.230)

which is only slightly different that the observed value of
M = 0.8574376(4) (16.231)

The small discrepancy is still much larger than the measured errors and can be partly explained
by assuming that the ground state wavefunction has a small admixture of the d-state in
Eqgn. (16.228), that is,

i d
Yy = asvii ) +adVi 4 (16.232)
where a2 + a% = 1. Using the explicit form of Eqn. (16.228), one can show (P16.20) that

9p+09n 3—(9p+9n)
5 ]+a§, [—4

WO M) =a§[ } (16.233)
The experimental value can then be explained by assuming afj ~ 0.04 or a roughly 4% mixture
of d-wave in the ground state. This calculation ignores possibly important spin—orbit interac-
tions, relativistic effects, and meson exchanges which can also affect the magnetic moment.
Information from other deuteron observables, however, including its quadrupole moment
(P16.21), and from scattering experiments confirm the approximately 4% d-state admixture®.

6 The understanding of magnetic moments of nuclei in terms of nuclear models is discussed in many
texts on nuclear physics, for example, Krane (1988).
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16.6 Free Particle in Spherical Coordinates

We close this chapter with a brief discussion of the solutions of the free-particle
Schrodinger equation in three dimensions in the language of spherical coordin-
ates. They will be used extensively in our discussion of quantum scattering in
Chapter 20.

The radial equation for a free particle simply reads

I? (dzR(r) ng(r)) I(I + 1)R?

S 2u \ dr? rodr 2ur?

R(r) = ER(r) (16.234)

and the obvious change of coordinates z = kr, where hk = +/2mE, gives the
dimensionless equation

2
@’R(z) | 2dR@) (1 I+ 1)) R(2)

) P ) (16.235)
There is an obvious similarity to the corresponding radial equation in two
dimensions in Eqn. (15.72), and we use our experience there to simplify
Eqn. (16.235). In the two-dimensional case, the solutions for large z were of the
form sin(z)/+/z, cos(z)/+/z; the factors of /z (when squared) were understood
to exactly compensate the ‘measure’ factor (r dr) to give a constant amplitude
wavefunction, consistent with a free particle. In the three-dimensional case, we
would then expect a 1/z dependence at large z since dr o r? dr. Motivated by
this connection, we look for solutions of the form R(z) = F(z)/+/z and find
that the radial equation has the form

2 2
PF@) | 1dF@) | (1 o +212/z) )F(Z)

dz? z dz

(16.236)

This is exactly of the form of the standard (or cylindrical) Bessel differential
equation (Appendix E.4), but for half-integral values of m = [ + 1/2. The
corresponding solutions are called spherical Bessel functions, and conventionally
written as

] —\/? d —\/?N 16.237
Ji(z) = Z]l+1/2(2) and  n(z) = 2 1+1/2(2) (16.237)

where the ji(z) (n;(z)) are called the regular (irregular) solutions since th