Copan Self Vaginal FLOQSwabs[®]: Agreement between clinician and selfcollected samples for HPV detection. Evidence from the scientific literature

Stefania Di Costanzo, Ph.D, Scientific Affairs Specialist Cristiano Sabelli, Ph.D. Scientific Affairs Director Copan Italia, Via Francesco Perotti, 10, 25125

ABSTRACT

In the last years cervical cancer prevention is progressively shifting from cytology-based diagnostics (PAP test) to more efficient, cost-effective, and unbiased molecular based diagnostics (HPV DNA testing). In this context, vaginal self-sampling has risen as a promising approach to increase cervical cancer screening participation, especially for under screened women. Cervical cancer screening programs have been keen to implement self-sampling, but a necessary steppingstone to reach this goal is to establish that vaginal self-sampling is as accurate as clinician-collected samples for HPV detection, without affecting clinical sensitivity and specificity. Here we present evidence from independent published scientific literature on how vaginal self-collected samples with Copan Self Vaginal FLOQSwabs® provide accurate results compared to clinician-collected cervical samples, including performance comparison to other self-sampling devices.

ACCURACY OF SELF VS CLINICIAN-COLLECTED SAMPLES FOR HPV DETECTION

In a meta-analysis published in 2014, Arbyn and colleagues¹ assessed the clinical accuracy of HPV testing on self-samples to detect underlying high-grade CIN or cancer. In their analysis, researchers compared the accuracy of HPV testing in self-samples with HPV DNA and cytology testing on clinician-collected cervical samples (Fig. 1).

The metanalysis (data from 36 studies and more than 150 thousand women enrolled) demonstrated that PCR-based HPV tests generally showed similar sensitivity on both self-samples and clinician-based samples, suggesting HPV testing on vaginal self-sample as an additional strategy to reach women not participating in regular screening programs¹. An updated meta-analysis including more recent studies, as well as studies performed with Copan Self Vaginal FLOQSwabs, confirmed these findings².

Copan white paper

Α	Device	Test*	Relative sensitivity (95% CI)	В	Device	Test		Relative specificity (95% CI)
Screening				Screening			1	(1.1.1)
Girianelli et al, 200639	Brush	HC2	0.84 (0.69-1.04)	Girianelli et al, 2006 ³⁹	Brush	HC2	1	0.97 (0.95-0.99)
Holanda et al, 200640	Brush	HC2	- 1.00 (0.72-1.39)	Holanda et al, 200640	Brush	HC2	1	0.92 (0.87-0.98)
Oiao et al, 200843	Brush	cHPV[.5]	0.90 (0.79-1.04)	Oiao et al, 200843	Brush	cHPV[.5]	1	0.98 (0.95-1.00)
Belinson et al. 2012 ⁵¹	Brush	M-TOF	- () - ()	Belinson et al, 2012 ⁵¹	Brush	M-TOF	I	0.98 (0.95-1.00)
	Brush	HC2	1.00 (0.95-1.05)	Zhao et al, 2012a ⁵⁵	Brush	HC2	I	0.98 (0.97-0.99)
Zhao et al, 2012a ⁵⁵			0.87 (0.72-1.04)				I	
Zhao et al, 2012b ⁵⁵	Brush	HC2	0.62 (0.37-1.03)	Zhao et al, 2012b ⁵⁵	Brush	HC2	1	0.99 (0.95–1.02)
Zhao et al, 2012c55	Brush	HC2	0.94 (0.76–1.16)	Zhao et al, 2012c55	Brush	HC2	7	0.98 (0.96-1.01)
Guan et al, 201358	Brush		0.79 (0.54–1.16)	Guan et al, 2013 ⁵⁸	Brush	LA	Ť	1.00 (0.89–1.12)
Nieves et al, 2013 ⁶¹	Brush	HC2	0.73 (0.54-0.98)	Nieves et al, 2013 ⁶¹	Brush	HC2		0.98 (0.96-1.00)
Wright et al, 200033	Swab	HC2	0.79 (0.63-0.98)	Wright et al, 200033	Swab	HC2		0.99 (0.95-1.02)
Belinson et al, 2001 ³⁴	Swab	HC2 📫	0.87 (0.78-0.96)	Belinson et al, 2001 ³⁴	Swab	HC2	•	1.01 (0.98-1.03)
Salmeron et al, 2003 ³⁶	Swab	HC2 -	0.77 (0.67-0.88)	Salmeron et al, 2003 ³⁶	Swab	HC2	•	0.98 (0.97-0.99)
Szarewski et al, 200742	Swab	HC2	0.81 (0.65–1.02)	Szarewski et al, 200742	Swab	HC2		0.97 (0.93-1.01)
Longatto-F et al, 2012 ⁵³	Tampon	HC2	0.71 (0.62–0.83)	Longatto-F et al, 2012 ⁵³	Tampon	HC2		1.01 (1.00–1.02)
Subtotal (I ² =74·7%; p<0·00	1)	•	0.84 (0.77–0.92)	Subtotal (I ² =68·4%; p<0·001	L)			0.98 (0.97–0.99)
High-risk group				High-risk group				
Bhatla et al, 200944	Brush	PCR other	0.94 (0.78-1.13)	Bhatla et al, 200944	Brush	PCR other		1.00 (0.97-1.04)
Lorenzato et al, 2003	Swab	PCR other	0.62 (0.46-0.83)	Lorenzato et al, 2002 ³⁵	Swab	PCR other	I	0.98 (0.90-1.06)
Balasubramanian et al, 2010 ⁴		HC2	0.90 (0.82–1.00)	Balasubramanian et al, 2010 ⁴⁵		HC2	1	0.94 (0.90-0.98)
Subtotal (1 ² = 76.6%; p=0.0		HC2	0.84 (0.67-1.04)	Subtotal (I ² =78.6%; p=0.01)		HC2	1	0.97 (0.92-0.98)
5656666 (i = 76.6%, p=0.6	-)		0.04 (0.07-1.04)	505total (1 = 70.0%, p=0.01)				0.97 (0.92-0.99)
Follow-up				Follow-up				
Hillemans et al, 1999 ³¹	Brush	HC2	1.00 (0.88–1.13)	Hillemans et al, 1999 ³¹	Brush	HC2	-	0.85 (0.74-0.98)
Garcia et al, 2003 ¹⁵	Brush	PCR other —	0.59 (0.47-0.74)	Garcia et al, 2003 ¹⁵	Brush	PCR other	-	1.10 (0.98-1.25)
Daponte et al, 2006 ³⁸	Brush	PCR other	0.99 (0.79–1.23)	Daponte et al, 2006 ³⁸	Brush	PCR other		1.26 (0.98–1.62)
Gustavsson et al, 2011 ⁴⁶	Brush	PCR other	- 1.00 (0.77–1.30)	Gustavsson et al, 2011 ⁴⁶	Brush	PCR other		0.71 (0.44-1.17)
Twu et al, 2011 ⁴⁹	Brush	PCR other	0.86 (0.61–1.20)	Twu et al, 201149	Brush	PCR other	+	1.03 (0.93–1.14)
Dijkstra et al, 201252	Brush	PCR GP5+/6+	1.03 (0.90–1.16)	Dijkstra et al, 2012 ⁵²	Brush	PCR GP5+/6+	+	1.00 (0.75-1.33)
van Baars et al, 2012 ⁵⁴	Brush	SPF10	0.92 (0.73-1.15)	van Baars et al, 201254	Brush	SPF10	+	0.98 (0.77-1.25)
Geraets et al, 201357	Brush	SPF10	0.96 (0.90-1.03)	Geraets et al, 201357	Brush	SPF10	+	1.27 (0.93-1.72)
Nobbenhuis et al, 2002 ¹⁶	Lavage	PCR GP5+/6+	0.89 (0.72-1.10)	Morrison et al, 1992 ³⁰	Lavage	PCR other		
Brink et al, 2006 ³⁷	Lavage	PCR GP5+/6+	0.97 (0.86-1.10)	Nobbenhuis et al, 2002 ¹⁶	Lavage	PCR GP5+/6+	<u> </u>	1.61 (1.03-2.53)
Jentschke et al, 2013a ⁶⁰	Lavage	HC2	0.77 (0.57-1.04)	Brink et al, 200637	Lavage	PCR GP5+/6+	-	0.96 (0.63-1.45)
Jentschke et al, 2013b59	Lavage	AB	- 1.00 (0.75-1.34)	Jentschke et al, 2013a60	Lavage	HC2 —		0.48 (0.29-0.79)
Sellors et al. 200032	Swab	нса 🛉	0.88 (0.79-0.98)	Jentschke et al, 2013b59	Lavage	AB	<u> </u>	1.07 (0.65-1.78)
Seo et al. 2006 ⁴¹	Swab	DNAch	1.03 (0.89-1.19)	Sellors et al. 2000 ³²	Swab	HC2	1	1.03 (0.82-1.28)
Taylor et al, 201148	Swab	HC2	0.86 (0.75-0.97)	Seo et al, 200641	Swab	DNAch		0.88 (0.55-1.42)
Darlin et al, 2013 ⁵⁶	Swab	PCR GP5+/6+-Lum	0.96 (0.75-1.24)	Taylor et al, 201148	Swab	HC2		0.80 (0.77-0.82)
Morrison et al, 1992 ³⁰	Lavage	PCR other	(Excluded)	Darlin et al, 2013 ⁵⁶	Swab	PCR GP5+/6+-Lum		0.94 (0.67–1.33)
Subtotal (l ² =59·0%; p<0·00		•	0.92 (0.86-0.98)	Subtotal (/2=83·4%; p <0·00		r cit di 37707-2011	+	0.98 (0.87-1.10)
Overall (l²=68·2%, p<0·001)		+	0.88 (0.85-0.91)	Overall (I ² =88.6%, p<0.001)				0.97 (0.95-0.97)
		0.3 0.5 1.0			0.3 0.4	5 1.0 2.0	3.0	
		↓ 1	2.0 3.0			▲	_	→
		Favours clinician-sample F	avours self-sample			Favours clinician-sa	mple Favours	self-sample

Figure 1: Relative sensitivity (A) and specificity (B) of human papillomavirus on self-samples versus clinician-taken samples, by clinical setting, for outcome CIN2 or worse

COPAN SELF VAGINAL FLOQSWABS® PERFORMANCE COMPARED TO CLINICIAN-COLLECTED SAMPLES

Saville and colleagues³ evaluated the relative sensitivity for HPV detection of self-collected samples compared with practitioner-collected cervical specimens during the National Cervical Screening Program in Australia. 303 enrolled women (age \geq 18 years) took a self-collected a vaginal sample using a Copan FLOQSwabs[®], while the clinician-collected sample was taken during colposcopy visit. Both samples were tested in the laboratory on six PCR-based HPV assays:

- Roche cobas 4800 HPV test
- Roche cobas HPV test, on Roche cobas 6800 system
- Abbott HPV test
- BD Onclarity HPV test
- Cepheid Xpert HPV test
- Seegene Anyplex II HPV HR detection

Copan white paper

Results from the study showed a high observed agreement for HPV16/18 between self- and practitioner-collected samples on all assays (range: 0.94-0.99), with good agreement for non-HPV16/18 oncogenic HPV types (range: 0.64-0.73).

In a study published in 2022 by llardo and collegues⁴, authors analyzed the performance of self-collected samples versus clinician cervical samples for the detection of HPV genotypes on the Roche Cobas 8800 System. For the study, self-sampling was performed using the self-FLOQSwabs[®] (product code 5E089N), while the clinician-collected sample was taken by a cervical brush. One hundred and fifty-seven women (median age was 40 years, range 20-73 and IQR 31-49 years) were enrolled in the study. Polymerase chain reaction was used to detect the presence of HPV16, HPV18 and a pool of 12 other HPV types on the Roche Cobas 8800 System. The overall HPV prevalence on the population studied was 27%. The agreement between clinician cervical samples and self-collected vaginal presented good agreement (Kappa =0.90) and high sensitivity (0.91) and specificity (0.98). For swabs stored for 7 days at room temperature, the HPV results presented substantial agreement (Kappa =0.89) and high sensitivity (0.97) and specificity (0.96). The outcome of the study, as defined by researchers, is that the HPV assay performed in the self-collected vaginal samples have high consistency of results with the clinician cervical samples.

COPAN SELF VAGINAL FLOQSWABS® PERFORMANCE COMPARISON TO OTHER VAGINAL SELF-SAMPLING DEVICES

In 2021, Ertik and collegues⁵ compared results obtained with a PCR-based high-risk HPV test from a dry vaginal selfcollected samples collected with 3 different devices, including FLOQSwabs[®], with those obtained from a cervical smear taken by a clinician during colposcopy. They showed that all invasive cancer cases and over 90% of the CIN 3 lesions were found to be hr-HPV positive with the self-collection devices, demonstrating comparable performance. Hr-HPV testing of dry vaginal self-samples showed a high sensitivity for CIN 3+ comparable to that of a clinician-taken smear.

The Predictor 5.1 study, published by Cadman and colleagues in 20216, compared high-risk HPV positivity rates and sensitivity of self-collected vaginal samples using four different collection devices and a urine sample. Samples were collected from 600 women prior colposcopic examination and analyzed on BD Onclarity assay. 71.7% of samples collected with Copan Self Vaginal FLOQSwabs[®] resulted HPV+. Sensitivity for CIN 2+ after adjusting for a Ct cut off of 38.3 was 92.9, while specificity for CIN 3+ was 94.1. This study showed that Copan Self Vaginal FLOQSwabs[®] gave the highest rate of HPV+ samples among dry collection devices⁶.

CONCLUSIONS

Given the importance of ensuring the best testing accuracy in cervical cancer screening prevention programs, several studies have been performed to evaluate the agreement between both clinician and self-taken samples in detecting HPV DNA.

As described in this scientific literature overview, a high level of HPV detection agreement is achieved in self-collected and clinician collected specimens in women enrolled in the included studies. Vaginal samples collected with Copan Self Vaginal FLOQSwabs[®] demonstrated high degree of accuracy, comparable or superior to other vaginal self-sampling devices.

In conclusion, introducing vaginal self-collection in cervical cancer screening programs would facilitate participation for women with difficult access to healthcare because of geographical, financial, religious or cultural obstacles without compromising the accuracy of HPV infection detection. In addition, adopting Copan Self Vaginal FLOQSwabs[®] would ensure a high-quality performance, while being a convenient tool for both women and laboratory workflows.

Copan white paper

REFERENCES

- 1. Arbyn M et al (2018) Detecting cervical precancer and reaching underscreened women by using HPV testing on self samples: updated metaanalyses BMJ 2018;363:k4823
- 2. Arbyn M et al (2014) Accuracy of human papillomavirus testing on self-collected versus clinician-collected samples: a meta-analysis. Lancet Oncol. 15(2): 172-83.
- 3. Saville M et al (2020) Analytical performance of HPV assays on vaginal self-collected vs practitioner-collected cervical samples: the SCoPE study. J Clin Virol.127:104375.
- 4. Ilardo C et al (2022) Performance and pre-analytical stability of self-collected samples versus clinician cervical samples for the detection of HPV16, HPV18 and a pool of 12 other HPV types on the Roche Cobas 8800 System. New Microbiol. 45(2): 111-114.
- 5. Ertik F C et al (2021) CoCoss-Trial: Concurrent Comparison of Self-Sampling Devices for HPV-Detection. Int J Environ Res Public Health. 18(19): 10388.
- 6. Cadman L et al (2021) A randomized comparison of different vaginal self-sampling devices and urine for human papillomavirus testing Predictors 5.1. Cancer Epidemiol Biomarkers Prev 2021;30:661–8.

NEED MORE INFO?

Visit our web-site https://www.copangroup.com/ or contact us at info@copangroup.com.

Copan Italia s.p.a. Via Francesco Perotti 10, 25125 Brescia, Italy t | f +030 2687211 @ | info@copangroup.com www.copangroup.com