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Abstract. In this paper we derive some results to ensure the global stability of a 
predator-prey system. The results cover most of the models which have been 
proposed in the ecological literature for predator-prey systems. The first result is 
very geometric and it is very easy to check from the graph of prey and predator 
isoclines. The second one is purely algebraic, however, it covers the defects of 
the first one especially in dealing with Holling's type-3 functional response in 
some sense. We also discuss the global stability of Kolmogorov's model. Some 
examples are presented in the discussion section. 
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1. Introduction 

Global stability is a very interesting mathematical problem. Usually the biologists 
believe that a unique, "positive", local asymptotically stable equilibrium in an 
ecological model is globally stable. In this paper we rigorously prove global stability 
for a general class of a predator-prey system. The results cover most of the models 
which have been proposed in the ecological literature for predator-prey systems. 

The global stability analysis for the classical Lotka-Volterra system has been 
given by Gob [4]. In [4], Goh constructs a Lyapunov function to prove global 
stability. Hsu et al. [8] employs the Dulac criterion (Bendixson's negative criterion) 
to prove global stability for a specific predator-prey model. In a subsequent paper, 
Hsu [7] presents two criteria for global stability of a general predator-prey system 
which was discussed by many authors ([2], [3], [9], [10], [13], for example). The 
first criterion was established by constructing a Lyapunov function while the 
second one was proved by using the Dulac criterion. Unfortunately, we found that 
the proof of the second criterion is not rigorously correct. We note that either 
constructing Lyapunov function, or using the Dulac criterion is not an easy job. 

In Section 2 we state the mathematical model of a predator-prey system and 
present our first main result Theorem 1. The criterion in Theorem 1 is graphic and 
geometric. In [2], Freedman developed a graphic technique to ensure the local 
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stability of the "positive" equilibrium. In Theorem 1 our graphic method 
establishes the global stability of the "positive" equilibrium. The technique used in 
Theorem 1 is a combination of various techniques, such as trajectory comparison 
between two similar systems, construction of Lyapunov-like functions and double 
integral evaluation by the "mirror image" method. Although the method looks 
complicated, it is intuitively straightforward. 

In Section 3 we present our second result. The criterion is purely algebraic, 
however, it covers the defects of Theorem 1 in dealing with Holling's type-3 
functional response [11], [15] in some sense. The method used in Theorem 2 is an 
application of Floquet theory and the Poincar6-Bendixson Theorem [5]. In Section 
4, we also establish a criterion for global stability for a Kolmogorov model and 
discuss a non-Kolmogorov, self-regulating, predator-prey system. 

In Section 5 we present two examples to show the applicability of our theorems. 

2. The  M o d e l  and Globa l  S tab i l i ty  

We consider the following basic model for the predator-prey system 

dx 
= xg(x) - yp(x), (2.1a) 

dy 
dt = y[cp(x) - D], (2.1 b) 

x(0) > 0, y(0) > 0, 

where x represents the prey population (or density), y represents the predator 
population (or density), g(x) is the specific growth rate which governs the growth of 
the prey in the absence of predators, p(x) is the predator response function which 
has been much discussed in the literature and D is the death rate of the predator. 

The general assumptions on g(x) and p(x) are: 
(1) ge  C([0, oo), R) c~ Ci((0, oo), R), g(0) > 0 and there exists K > 0 such that 

g(K) = 0 and (x - K)g(x) < 0 for x ~ K. 
(2) p ~ C([0, oo), R) c~ C1((0, oo), R), p(0) = 0 and p'(x) > 0 for all x >~ 0. 
Some of the specific forms of g(x) and p(x) frequently used are (see [2], [9], 

[10], [14]): 

g(x): F ( 1 - K ) r ( K - x )  [ (K)C 1 �9 ; r 1 -  , l > c > 0 ,  (2.2) 
' K +  ~x 

mx n 
p(x): a+x" '  n~>l ;  mx ~, l > ~ c > 0 ;  m(1-e-CX), m > 0 .  (2.3) 

In order to obtain a sufficient criterion for global stability, we also need the 
following more specific assumptions: 

(3) There exists (x*,y*) such that cp(x*) - D = 0 and 

x*g(x*) - y*p(x*) = 0 with 0 < x* < K, y* > 0, 

d (xg(x)'~ < 0 for all x* ~< x ~ K, 
(4) dx \ p(x) ] 
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(2x* - x)g(2x* - x)  xg(x)  
(5) ~< - -  for  all x, max(0, 2x* - K) ~< x ~< x*, 

p(2x* - x) p(x)  

D D 
(6) - -  - c > c for  all x, x* ~< x < min{2x*, K}. 

p(x)  p(2x* - x) 

Assumpt ion  (3) means  tha t  we have a unique "posi t ive"  equil ibrium point.  
Assumpt ion  (4) means  that  the prey isocline has negative slope in the region 
x* ~< x ~< K. As we shall see, this condit ion ensures that  (x* ,y*)  is locally stable. 
The geometr ic  meaning  of  assumpt ion  (5) is that,  if we take the "mi r ro r  image"  of  
the prey  isocline in the region x* ~< x ~< K with respect to x = x*, then the prey 
isocline in the region 0 ~< x ~< x* is above the mir ror  image of  the prey isocline in the 
region x* ~< x ~< K. This condit ion is very easy to check graphically. The last 
assumpt ion  (6) can be replaced by a more  restrictive condition,  that  is, l ip(x)  is a 
strictly convex function. 

We note  that  p"(x)  < 0 implies ( l ip(x))"  > 0 and type-2 functional  response 
[15] always satisfies the condi t ion (1/p(x))" > 0. The reader  can easily check that  
for  al lp(x)  in (2.5), the condit ion ( l ip(x))"  > 0 is satisfied. The reader can also check 
that  for  mos t  o f  the combina t ions  between (2.2) and (2.3), condit ion (5) is also 
satisfied for  wide range of  x*. 

N o w  we have Theo rem 1. 

Theorem 1. Under the assumptions (1) - (6), (x*, y*) is globally stable for  system (2.1) 
in the interior o f  the f i rs t  quadrant.  

To prove  Theo rem 1, we introduce an auxiliary system 

dx 
- -  = x~(x)  - yp(x),  (2.4a) 
dt 

dy 
- ~  = y[cp(x)  - D], (2.4b) 

x(0) > 0, y(0) > 0, 

where the constants  c and D and the function p(x)  are the same as in system (2.1) 
and 0(x) is related to g(x) as 

f g(x), if x* ~< x, 

O(x) ~-) t2x* - x)g(2x* - x) p(x)  if max(0,  2x* - K) ~< x ~< x*. (2.5) 

[ .  p(2x-g 7 7) x 

I t  is easy to see that  we define ~(x) in such a way that  the prey isocline (dx/dt  = 0) of  
system (2.4) is symmetr ic  with respect  to the line x = x*. 

N o w  we have the following l emma which follows directly f rom the p r o o f  in [-1 ]. 

Lemma 1. Solutions o f  systems (2.1) and (2.4) are positive and bounded. 

Lemma 2. For system (2.4) with (1) - (6), i f  a trajectory y starts at po = (x*, Yo) with 
Yo > Y* and T >  0 is the least time such that x ( T )  = x* and y ( T )  = Yr  > Y*, then 

Yo > Yr. 
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Corollary. There is no periodic solution in the first quadrant for the system (2.4). 

Proof. We shall prove the lemma by contradiction.  
Let 7 intersect x = x* a t p l  = (x*,yl)  with Yl < Y* for the first time at t = h .  

Divide a path  of  7 into four  parts 71, 72, 73, and 74 (see Fig. la  or lb). The  region O1 
is bounded  by x = x*, 71 and 72, and 02 is bounded  by X = x*, 73 and 74, and 
0 = 01 w 02. Let 7~ = {(x', y):  x'  = 2x* - x and (x, y) ~ 7i} be the mirror  image of  Ti 

! 
with respect to x = x*, i = 1, 2. In fact, 7'1 and 72 are the trajectories of  

dx 
- [(2x* - x)~(2x* - x) - zp(2x* - x)],  (2.6a) 

dt 

dz 
dt = z[cp(2x* - x) - D], 0 <~ t <~ h, (2.6b) 

x(O) = x*, z(O) = yo. 

Suppose y r  ~> yo, we shall prove that  the region 0 '  1 bounded  by x = x*, 7] and 7~ is 
properly contained in the region 02. In fact, 7a and 7'1 are given by 

dy y[cp(x) - D ]  

dx - p(x) [y xO(x)]  ' p _ ~  J y(x*) = Yr, (2.7) 

and 

dz z[D - ep(2x* - x)] 
- -  = , z ( x * )  = Y o ,  (2.8) 

I ( 2 x * - x ) O ( 2 x * - x ) _ ]  
dx p(2x* - x) z - p(2x* 7 x) 

respectively in the region x* ~< x and xO(x)/p(x) <~ y. 

x tt 

P T  

r3 

k 
- -  X 

Y PT 

,.5/r~ 
P1 

X ~ 

r3 

~ X 

k 

Fi g. lc t  

Fig. 1. Phase plane in the proof of Lemma 2 

F i g . l b  
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Since 

xO(x) (2x* - x)O(2x* - x) 
- for all 0 ~< x ~< 2x*, 

p(x) p(Zx* - x) 

condition (6) implies that y(x) satisfies the differential inequality 

dy y[D - cp(Zx* - x)] 

dx p(2x* - x ) I y  - (2x* - x)O(2x* - 
p~-2~ ~ x ) x) 1 

k_ 

for x > x* and y > xO(x)/p(x). And so y(x*) = Yr >>- Yo implies y(x) > z(x) as long 
as y(x), z(x) > xj(x)/p(x) (see for example [51). Similarly, 74 and 72 are given by 
(2.7) with y ( x * ) = y l  and (2.8) with z ( x * ) = y l  in the region x ~> x* and 
y < xO(x)/p(x), respectively. Then by a similar argument, condition (6) implies 
z(x) > y(x) as long as z(x), y(x) < xO(x)/p(x). This proves that ~2'1 is properly 
contained in ~?z. 

To obtain a contradiction by assuming Yr >i Yo, we consider the following 
function V(x, y) 

fX cP( ) -D f" .-Y* V(x,y) = ~ d~ + - -  d~ I. (2.9) 
X* y* /~ 

Then 

We have 

D) (xO(~) ) V(x(t), y(t)) = (cp(x) - \ p(x) y* . (2.10) 

f l  r dt y(t) ) [o  ~ V(x*,y~) - V(x*,yo) y(t)) V(x(t), 

( yr y _ y* 

On the other hand, by (2.4b) and (2.10) 

f 2 f / ( x ( t ) ' y ( t ) ) d t : f , ~  ~xO(x)[p(x) y*Jdy 

1 C,o , , j+ 

_ f f  1 d ( ~ ' ] d x d y = f f  1 d ( ~ ' ] d x d y  
- ~ y dxx \ ptx) / 1 ; dx k k p~x) /] 

1 d - 

~_~,, y ,Ix \p(x) / 
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p =q.=(x~,yo ) 

X 
x ~ k Fig. 2. Phase plane in the proof  of  Lemma 3 

since ~2' 1 is properly contained in ~22. This leads to a contradiction, and we have 
Yr < Yo. 

Lemma 3. I f  we represent the systems (2.1) and (2.4) in the same phase plane (Fig. 2), 
let 

C l = { ( x , y  ) y _ X g ( x )  0 < x < x * }  
p ( x )  ' 

C2 = {(x ,y  ) y_XO(X)p(x) ' 0 < x < x * }  

and consider trajectories F1 and F2 for system (2.1) and (2.4), respectively, 

F1 = PtPzP3P4P~P6, F 2  = qlq2qaq4qsq6, 

where Pl, ql, Ps, and q5 belong to C1, P2, q2, P6, and q6 belong to C2, and 
P3 = q3 = ( X * , y l )  with Yl < Y* and p4 = q4 = (x*,yo) with Yo > Y*, then we have 
Xpl ~ x~l < xq5 ~ xp5 where xpi and xqi are the x-coordinates of  points Pi and qi 
respectively. 

Proof. By Lemma 2, x~a < xq5 and so we only need to prove Xpl <~ xql and 
Xq5 <<. xps. Since P~'Ps and q4"-q5 a r e  given by 

dy y[D - cp(x)] 
dx k ,  xg(x) ] '  y(x*) = Yo 

p(x) 
V 

! 

p(x) d 

and 

dz z[D - cp(x)] 
 -p(x)Iz xO(x)  z(x*)= yo 

p(x) J 
in the region x < x* and z ,y  > xg(x)/p(x), respectively. Then xg(x)/p(x)>~ 
xg(x)/p(x) implies that y(x) satisfies a differential inequality 
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@ y(x)[D - cp(x)] 
Uxx Iy 

p(x) (x) p(x) J 

when x < x* and y > xg(x)/p(x). Hence, y(x*) = Yo = z(x*) implies that 
y(x) <<. z(x) when x < x* and z(x),y(x) > xg(x)/p(x). Therefore, z(xps) >1 y(x,5) 
and hence xq5 ~< xps. Similarly, we can prove xpx <~ xql. 

Proof of  Theorem 1. From Lemma 1, solutions of (2.1) are positive and bounded. 
From Lemma 3, Xpl < x,5 for all trajectories F1, and hence there is no periodic 
solution. Furthermore (x*,y*) of (2.1) is locally stable. Thus (x*,y*) of (2.1) is 
globally stable. This completes the proof of Theorem 1. 

3. Another Technique 

In Theorem 1 the assumption (5) is no longer true when we deal with Holling's 
type-3 functional response p(x) = kxn/(a + x"), n ~> 2 [11]. 

In the next theorem we present an algebraic criterion to establish global stability 
of (x*,y*) for (2.1). An example concerning type-3 functional response will be 
discussed in the next section. 

Theorem 2. Let the assumptions (1), (2), (3) in Theorem 1 hold. Assume 
(i) (x*, y*) is locally asymptotically stable, i.e., f(x*) < 0 where 

d p'(x) xg(x) 
f (x)  = dx  (xg(x)) p(x) ' 

(ii) f ( x ) - f ( x * )  is C 1 and d ( f ( x ) - f ( x * ) ~  
p(x) - p(x*) dx \ p ( ~  - p(x*) J <~ 0 for 0 <~ x <~ K, 

then (x*,y*) is 9lobally stable in the interior of thefirst quadrant. 

Proof. From the Poincar6-Bendixson Theorem and Lemma 1, it suffices to show 
that there is no limit cycle in the interior of the first quadrant. Suppose there is a 
periodic orbit 7 = (x(t), y(t)), 0 <~ t <~ Twith the enclosed region ~ and consider the 
variational matrix about the periodic orbit, 

d ( x g ( x ) ) - y p ' ( x  - p ( x ) ~  . 

p'(x)cy cp(x) - D Jx=x~t) 
y = y(t) 

Compute 

d 
A = f ~  I~x(Xg(X)) x=x~o - Y(t)p'(x(t)) + (cp(x(t)) - Dldt .  

From the equations in (2.1), it follows that 

f ~ ( c p ( x ( t ) ) - D ) d t = O  
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and 

Hence we have 

f l  y(t)p'(x(t))dt f l  p'(x(t)) = x( t )O(x( t ) )~x~dt .  

f l  d p'(x(t)) 
A = dxx (xg(x)) x:x(t) - x(t)9(x(t)) p(x(t)) dt 

= f(x*) dt + f(x(t)) - f(x*) dt. 
0 0 

Furthermore 

of(x(t)) - f (x*)  dt = f(x(t)) - * p(x(t)) ~ p(x(t)) - p(x*) dt 

l f 2 f ( x ( t ) ) - f ( x * ) y ' ( t ) d t  
= c p(x(t)) ~ p ~  y(t) 

_ 1 ; f ( x ) - f ( x * )  l dy 
c J ~ x ]  p(x*)y  

if l d ( f ( x ) - f ( x * ) ~ d x d y < O "  
= c ~ y c/x \p (x )  - p(x*)/ 

Hence we have A < 0 and the periodic orbit ~ is orbitally asymptotically stable [-5]. 
Since every periodic orbit is orbitally stable and then there is a unique limit cycle. 
From the Poincar6-Bendixson Theorem, it is impossible to have a unique stable 
limit cycle enclose a stable equilibrium. This is the desired contradiction. Hence 
there is no limit cycle and (x*,y*) is globally stable. 

Remark. Theorem 2 is also true i f f (x*)  = 0 and 

dx \p(x) - ~ p - ~ J  <~ 0 

but not identically zero. 

4. Kolmogorov Model and Others 

In the next theorem, we present a criterion to establish the global stability for the 
Kolmogorov model. The notations and assumptions of the Kolmogorov model 
basically follow from [1]. We first state the hypotheses of the model. Consider 

x' = xf(x, y), (4.1 ) 
y' yg(x,y), x(0) > 0, y(0) > 0 ,  

where x and y denote the population of prey, and predator, respectively. Assume: 

(p l )  (a) There exists a K > 0 such that (x - K)f(x,  0) < 0 for all x 7> 0, x :~ 0. 
(b) There exists a )3 > 0 such that (y - ~)f(0,  y) < 0 for all y >~ 0, y r )3. 
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(c) Of/Oy < 0 in QO, where QO = {(x,y): x > 0, y > 0). 
(d) For every (~, t ) e  QO, (Sf/Sx)(e, fl)a + (Sf/Oy)(c~, fl)fl < O. 

(p2) (a) There exists an 2 > 0 such that (x - 2)9(x, 0) > 0 for all x ~> 0, x r 2. 
(b) 8g/~y <~ 0 in QO. 
(c) For every (~, fi) E QO, (Sg/Ox)(a, fi)a + (Sg/Oy)(a, fi)fl > O. 

(p3) 2 < K. 

Under assumptions (pl), (p2), (p3), Albrecht et al. [1] show that the solution 
(x(t), y(t)) of (3.1) is positive and bounded and there exists a unique equilibrium 
(x*,y*) in QO. 

Theorem 3. Let ( p l ) - ( p 3 )  hoM. Assume (x*, y*) is locally stable and 

X ~ x ( X , y ) + y ~ y y ( X , y ) < O  for O<~x<~K,y>O.  (4.2) 

Then (x*,y*) is a global attractor. 

Proof. It suffices to show that there is no periodic orbit. Using the same arguments 
as in the proof of Theorem 2, it suffices to show that if (x(t), y(t)), 0 ~< t ~< T is a 
periodic orbit, 

A = (xf(x ,y)  + ~y (yg(x,y)) , dt < O. 

y = y ( t )  

Since 

f (x(t) ,  y(t)) dt = g(x(t), y(t)) dt = 0, 
0 

it follows that 

8y /x = x(t) y = y(0 

Hence we completed the proof. 

We note that the assumption (4.2) is consistent with the local stability of (x*, y*) 
in the predator-prey system. Theorem 3 at least says that in self-regulating 
predator-prey system, i.e., 8g/Sy < O, 8f/Sx < 0 in QO (x*,y*) is a global attractor. 
This conclusion is similar to that in [6]. In [6] A. Hastings deals with a self- 
regulating, predator-prey system by the Bendixson criterion. However, we can drop 
the additional assumptions needed in Theorem 2 of [6] by directly introducing a 
Lyapunov function. 

Theorem 4. Let 8f/Sx < O, 8g/Sy < O, 8f/Sy < O, 8g/Sx > O, in QO and (x*, y*) is the 
unique "positive" equilibrium in QO. Then (x*, y*) is a global attractor of  (4.1). 

Proof. Let F(x) = g(x, y*), G(y) = - f (x*,  y) then F(x), G(y) are strictly increasing 
functions of x and y respectively. Let 
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Hence 

f f" v = au + ~(~) a~. 
x* U y, I) 

d V  

dt  
- -  = f ( x ,  y)F(x) + 0(x, y ) a ( y )  

= r ( x ) ( f ( x ,  y)  - f ( x * , y ) )  + 6 ( y ) [ o ( x , y )  - O(x,y*)] 

+ r ( x ) f ( x * , y )  + 6 ( y ) o ( x , y * )  

= F(x)(x - x * ) ~ ( ~ , y )  + a(y~(y - y * ) ~ ( x , ~ )  <. O, 

where 2 is between x and x* and y is between y and y*. By LaSalle's Theorem [5], 
(x*, y*) is a global attractor. 

5. Discussion and Examples 

The biological assumption for predator-prey system (2.1) is that the predators do 
not actually interfere with each other directly. Theorem 1 can be interpreted 
graphically: (i) the prey-isocline is decreasing for x*~< x ~< K, (ii) the curve 
obtained by reflecting the curve in (i) symmetrically with respect to x = x* is always 
below the prey-isocline. 

Our first example is a typical example from the ecological literature. The 
functional response isp(x) = rnx  p, 0 </3 <~ 1, for a reference see Rosenzweig [14]. 

Example 1. 

The prey isocline is 

dt  7 x  1 - rnxPy, 

dy  _ y [ c m x  p _ D].  
d t  

y  xl (lm ;) 
If/3 ~> 1, then from Theorem 1 ( x * , y * )  is globally stable for any 0 < x* < K. 

If 0 < fl < 1, we prove that (x*, y*) is globally stable by applying Theorem 2 as 
follows: 

p ( x )  - p ( x * )  = m i x  p - (x*)~], 

f ( x )  = 7 1 -  - Tx  1 -  rnx~ , 

= 7 [ ( 1 - ~ ) - / 3 ( 1 - K ) I ,  
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7 
f (x )  - f ( x * )  = ~ ( p  - 2 ) ( x  - x * ) ,  

f ( x )  - f ( x * )  2 K  x - x*  
p ( x )  - p ( x * )  - (8  - 2) xp _ (x*) ~ . 

For  0 < fl ~< 1, it suffices to show that  

d x -  x* 

d x  x e - ( x* )  ~ 

claim: 

>10. 

d x -  x *  1 

dx xe _ ( x * ) ~  (xP - (x*)e)~ 
[ ( 1  - Dxe + ~x*x ~-I - (x*)q 

h ( x )  = (1 - f i )x  ~ + c x * x  ~ -  1 _ ( x , ) ~  >1 0 for 0 ~< x ~< K. 

We have h ( x * )  = O, h ' (x)  = x I~ 2 f i ( l  - -  f l ) [ -X  - -  X * ] ,  thus h'(x)  >~ 0 as x ~> x* and 
h ' (x )  < 0 as 0 < x < x*. Q.E.D. 

As we pointed out  in Section 3, Theorem 1 no longer holds for Holling's type-3 
functional  response. The following example is suggested by [ 11]. It  also generalizes 
the model  in [8]. 

Example  2. 

d x  x m x " y  

*[ ] 2 7 =  c m + x  ~ D y 

n is a positive integer. 

By scaling the populat ion y, we m a y  assume c = 1. F r o m  Theorem 2 

p(x) - p(x*) = 
m a  x" - (x*)"  

a + ( x * ) "  a + x "  

d , ,p ' (x)  = na  

With some calculations one can show 

[ {x 1-~- 1 -  
2 

f ( x )  - - f ( x * )  = 7 -- ~ ( x  - x* )  - na  a + x" a-+-(-~-)")__l 

7 1 
k (a + x") (a  + (x*)") [(2x" + a(2 - n)) 

x (a + (x* )" ) (x  - x * )  + n a ( x *  - k ) ( x "  - (x*)")]. 

Thus 
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d ( f ( x ) - f ( x * ) ~ =  7 1 ( a + ( x , ) . ) ~ I ( 2 x " + a ( 2 - n ) ) ( x - x * )  1 
dxx \p(x) - p(x*) J - k m~ ~ ~- -(~-~ " 

I t  suffices to  show 

d [(2x"+a(2-n))(x-x*)l>~O" 
A : " x ( x * )  

F o r  n = 1 it is t r ivial .  F o r  n >~ 2, 

x" - ( x * ) "  = Z x J ( x * ) k ( x  - x * ) .  
j + k = n - 1  

O<~j,k<~n-1 

T h e n  

1 E A - (~Xi(x,)k) 2 2nx"-l((x*) "-1 + ~ xJ+a(X*) k 
j + k = n - 2  

O <~j,k <.n- 2 

- (2x" + a(2  - n)) ~ (j + 1)XJ(x*)k 1 
j + k = n -  2 

O<~j,k<~n-2 

1 I > (~X~(x,)k) 2 -- a (2  -- n)~( j  + 1)xJ(x*) k 

+ ~ (2n - 2 ( j  + 1))x"+J(x*) k] > O. 
j + k = n - 2  

O <~j,k <~n- 2 

H e n c e  b y  T h e o r e m  2, (x*,  y*)  is a g loba l  a t t r a c to r .  
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