Domain Reference Ontologies

Torsten Hahmann

Spatial Knowledge and Artificial Intelligence (SKAI) Lab School of Computing and Information Sciences University of Maine, Orono, ME

Slides based on presentation by T. Hahmann and S. Stephen: "An Ontological Framework for Characterizing Hydrological Flow Processes" at COSIT 2017

What is a domain reference ontology?

- ☐ Three main criteria for classifying ontologies:
 - 1. Purpose

2. Scope

- Top-level (upper or foundational) ontologies (like BFO or DOLCE)
- Generic (mid-level) ontologies (like OWL-Time, Geosparql, SOSA, ...)
- Domain ontologies
 - Domain reference ontologies: unifying a domain and tying the various domain ontologies to top-level and generic ontologies
- Application ontologies

3. Representation Format

What does a domain reference ontology look like?

- Exhibits many characteristics of foundational ontologies: foundational for their domain
- 1. Foundationally grounded
- 2. Broad coverage on the highest level in the domain: focuses on the key concepts and relations in the domain; but does not aim to capture the domain comprehensively
 - concepts that allow to link concepts and relations across domain ontologies
- 3. Specified in a highly expressive and fully machine-interpretable ontology language

What does a domain reference ontology look like?

How is a domain reference ontology useful?

... not just another standard but represents deep knowledge of core domain concepts in a level of detail such that other domain ontologies/standards can be expressed using this terminology.

- ☐ Example: Hydro Foundational Ontology (HyFO) as a domain reference ontology for the hydrology domain
 - Role similar to an upper ontology but more specific about water concepts
 - Helps to clarify semantics of water data standards in a unified language
 - Supports formal ontological analysis of existing water data standards (e.g., GWML2)

Torsten Hahmann & Shirly Stephen (2018) Using a hydro-reference ontology to provide improved computer-interpretable semantics for the groundwater markup language (GWML2), International Journal of Geographical Information Science, 32:6, 1138-1171, DOI: 10.1080/13658816.2018.1443751

How is a *domain reference ontology* useful?

... not just another standard but represents deep knowledge of core domain concepts in a level of detail such that other domain ontologies/standards can be expressed using this terminology.

- ☐ HyFO as a domain reference ontology for the hydrology domains
 - Role similar to an upper ontology but more specific about water concepts
 - Helps to clarify semantics of water data standards in a unified language

Torsten Hahmann & Shirly Stephen (2018) Using a hydro-reference ontology to provide improved computer-interpretable semantics for the groundwater markup language (GWML2), International Journal of Geographical Information Science, 32:6, 1138-1171, DOI: 10.1080/13658816.2018.1443751

How is a domain reference ontology useful?

... not just another standard but represents deep knowledge of core domain concepts in a level of detail such that other domain ontologies/standards can be expressed using this terminology.

- ☐ Supports formal ontological analysis of existing water data standards (e.g., GWML2)
 - Axiomatic foundation for integrating existing water data standards via logical extension

Torsten Hahmann & Shirly Stephen (2018) Using a hydro-reference ontology to provide improved computer-interpretable semantics for the groundwater markup language (GWML2), International Journal of Geographical Information Science, 32:6, 1138-1171, DOI: 10.1080/13658816.2018.1443751

HyFO as Domain reference ontology

B. Brodaric and T. Hahmann: "Towards a Foundational Hydro Ontology for Water Data Interoperability." In: Proc. of the 11th Int. Conference on Hydroinformatics (HIC-2014). 2014.

B. Brodaric, T. Hahmann, M. Gruninger: "Water features and their parts" Applied Ontology 14(1), 1-42, 2019.

HyFO as Domain reference ontology

☐ When we talk about a "lake" or "river" in many domain ontologies, it may refer to different aspects:

- 1. the container: e.g. distinctions based on the river bed
- 2. the void: e.g. its shape or describing the maximum depth
- 3. the water object (e.g. water quality measurements)
- 4. or a combination of those:
 - "Water Features" = a (ever changing) water object and container and/or void that host it

B. Brodaric, T. Hahmann, M. Gruninger: "Water features and their parts" Applied Ontology 14(1), 1—42, 2019.

Ongoing work on domain reference ontologies

- ☐ FEO: Forest Ecology
 Ontology (applicable to
 other ecological domains)
- ☐ Identifies and distinguishes key concepts:
 - ☐ Tree vs. TreeSpecies
 - ☐ Forest (land use classification) vs.
 ForestedArea
 (environmental system)
- ☐ Connect them to another and to other ontologies (e.g. Envo)

Other related ongoing efforts

A domain reference ontology typically employs one or more patterns, but is intended to be reusable as an artifact (not just a template)
Other ongoing effort on developing patterns and domain reference ontologies:
☐ Utility Connection pattern (utility infrastructure and their service interdependencies, e.g. medical facilities depending on clean water and power)
☐ Spatial and Temporal Aggregated Data (STAD) pattern (aggregated data like climate normal)
Tools: macleod: https://github.com/thahmann/macleod
lacktriangle automated reasoning with Common Logic ontologies (via translation to TPTP)
☐ automated extraction of OWL ontologies from Common Logic Ontologies
using deeply axiomatized CL ontologies to produce more widely used versions
Hahmann, Powell: Automatically Extracting OWL Versions of FOL Ontologies. Proc. of ISWC 2021, 10.1007/978-3-030-88361-4_15

Thank you!

- ☐ If you can, please join us for FOIS 2023: https://fois2023.griis.ca/
 - ☐ Sherbrooke, Quebec: July 17-20th
 - ontology showcase and workshops still accept submissions
 - ☐ Online portion: September 18-20th
 - ☐ 2h block each day with 3 presentations
- ☐ Registration will open soon!
- ☐ Maybe room for a summary from the Summit

