
llhsc: A DeviceTree Syntax and Semantic Checker
Vítor Rodrigues
VORTEX-CoLab

Vila Nova de Gaia, Portugal
vitor.rodrigues@vortex-colab.com

André Matos Pedro
VORTEX-CoLab

Vila Nova de Gaia, Portugal
andre.pedro@vortex-colab.com

Abstract—Feature models are a commonly used technique for
modeling software variability and representing possible configu-
rations of a system. This paper presents the llhsc tool, which is
designed to generate and check device trees for custom hardware
based on the constraints specified in a feature model. The form
of these constraints is a set of logical formulas, which enables
product line validation using off-the-shelf satisfiability solvers.
For checking purposes, a new set of constraints is defined, which
includes the specification of both syntax and semantic correctness
of a delta-oriented software product line for DeviceTree bindings.
This approach provides a more general and flexible solution for
configuring static-partitioning hypervisors, but can also be used
in systems without virtualization support, enabling the tool to
be used in various contexts without sacrificing its generality.
Through an empirical running example, we demonstrate the
effectiveness of our approach, providing evidence that supports
the construction of customized configurations for systems running
static-partitioning hypervisors.

Index Terms—Devicetree, hypervisors, embedded systems, soft-
ware product lines, satisfiability modulo theories.

I. INTRODUCTION

Embedded systems are used in a diverse range of appli-
cations, from small-scale consumer devices like IoT devices
to complex industrial automation and control systems. As
technology continues to evolve, the demand for more powerful
embedded systems that can handle increasingly complex tasks
is only going to grow. In addition to the technical challenges,
there are also important considerations around the safety
and security of embedded systems. These systems are often
deployed in critical applications where failures can have seri-
ous consequences, such as medical devices or transportation
systems. As a result, there will be an increasing focus on
developing robust, secure, and reliable embedded systems that
can withstand the demands of the future.

Traditionally, embedded systems have been built using a
variety of custom hardware and software components that can
be difficult to integrate and maintain. Nonetheless, the use
of commercial off-the-shelf components, such as single-board
computers (SBCs) with open instruction set architectures,
paired with the adoption of open-source software, has made
these systems easier to develop and deploy, while improving
also their reliability and security.

One key technology that has helped to enable this shift
is the DeviceTree (DT) [11], [13]. This device description
language provides a standardized way of describing the hard-
ware components of laptops, desktops, servers, and SBCs,
which can make it easier to develop software that runs across
different hardware platforms. By providing a uniform structure

for describing the hardware components, the DT can help to
simplify the development process and improve the flexibility
and maintainability of the resulting software system.

When using custom hardware, managing a DT can be
a difficult task because each device needs to be described
separately. This is done using a data structure commonly
referred to as DT binding. In practice, each platform-specific
DT is likely to be written from scratch, where changes made
to one binding may have an impact on other bindings, leading
to compatibility issues and potential system failures.

To address these challenges, it is important to use powerful
syntax and semantic checkers and other tools to effectively
manage the DT and ensure that all nodes are compatible and
functioning correctly. Proper management of the DT can help
to ensure the reliability and performance of SBCs, particularly
in safety-critical applications where failures can have serious
consequences. The syntax and semantic checkers available
today may not be able to detect all potential issues and ensure
the compatibility of all nodes in the tree. Therefore, it is
important to develop more powerful checkers to ensure the
reliability and safety of embedded systems.

Without loss of generality, the llhsc tool is designed to
generate and check configurations for open-source static-
partitioning hypervisors, including Bao [14], [18], which are
commonly used in the field of real-time and embedded sys-
tems. Others like Jailhouse [17] can also be supported. The
tool helps developers and system integrators who are working
with embedded systems and need to ensure that the DT is
well-structured, correctly defined, and compatible with the
hypervisor. By using a static-partitioning hypervisor like Bao,
developers can ensure that each virtual machine (VM) or
operating system (OS) has the necessary resources to perform
its tasks without interfering with other parts of the system.

A. Running Example

Consider a simple SBC with a memory, a processor cluster
and serial I/O ports. A DT describing this hardware is shown
in Listing. 1. This hierarchical data structure is then stored
in the DeviceTree source (DTS) file format. There are three
top-level nodes, memory, cpu and uart, suffixed by a unit
address (@). The description of the cluster is stored on the file
"cpus.dtsi", which is included in the main DTS.

Lets us choose reg as the property of interest. In the case
of the memory node, reg specifies a memory consisting of
two 64-bit memory banks, each one defined by four 32-bit
addresses. The reg property specifies the address of the device

Listing 1: Example of a DT (.DTS file)
1/dts-v1/;
2/ {
3model = "Custom SBC";
4compatible = "sbc";
5#address-cells = <2>;
6#size-cells = <2>;
7

8/include/ "cpus.dtsi"
9/include/ "uarts.dtsi"
10

11memory@40000000 {
12reg = <0x0 0x40000000 0x0 0x20000000
130x0 0x60000000 0x0 0x20000000>;
14device_type = "memory";
15};
16};

within the address space defined by its parent bus. In this
example, both #address-cells and #size-cells have
the same value of 2, which means that each address range is
described by a sequence of four (2+2) addresses.

Now consider that, by mistake, the user enters an address
for the serial port that clashes with the address of one of
the memory banks. Assume that this mistake happened when
the base memory address of the second memory bank was
added. In this situation, we say that the value of reg is
semantically invalid although it is perfectly valid syntactically.
The reason is that the second memory bank and the serial port
both have the same base address, which leads to a runtime
failure. Without careful examination, this kind of error can be
detected at runtime only, and it is very difficult to trace it back
to a consistent state. A purely syntactic tool, such as the DT
Compiler (dtc) itself, is unable to detect this kind of error.

Currently, to the best of our knowledge, the only tool
capable to extend the functionality of the compiler is the
dt-schema [12] validation tool. This tool defines schema files
that impose constraints on what data can be put into a DT.
Essentially, for each node inside the tree, the tool determines
which schema(s) are applicable and checks if the properties of
the device node match the schema constraints. These checks
are performed statically before compilation with the help of a
parser internal to dt-schema.

An example of a semantic check performed by dt-schema
is concerned with the size of the reg array. Depending on the
values of #address-cells and #size-cells, accepted
values for the array size are expressed in the form of an
assertion. For instance, the device node memory in Listing. 1
is semantically correct for this rule, because there are 2 sub-
arrays of size 4 inside reg (corresponding to two memory
banks), and the semantic rule specifies that each sub-array
must have size 4.

However, regardless of this structural check, the tool
dt-schema is unable to detect the address clash between the
memory and the uart device nodes, because the schema
constraints cannot express relations between addresses. In
concrete, it cannot define some rule that would verify
that 0x60000000 (base address of uart) is lower than
0x80000000 (the ending address of memory), that is, it

cannot detect the overlap between these two addresses. In this
paper, we propose a constraint-based checking solution that
extends the rules of dt-schema using the Z3 Theorem Prover,
a satisfiability modulo theories (SMT) solver.

Another kind of error that cannot be detected by the
dtc compiler or the dt-schema validation tool is that of
dependency between nodes. For the hardware considered in
our running example, it is natural to assume that some pro-
cessing unit is a mandatory definition inside the DT. However,
dt-schema does not enforce this rule for required device
nodes, only for required properties. Furthermore, we may
want to specify that if a processor is to be used, then the
memory device must be defined. This kind of requirement
can be expressed in terms of features and a set of valid
combinations of features [10]. If every DT device node is a
feature, then feature combinations encode the variability of the
DT. Throughout this paper, the common variability of a DT
is described by a feature model [2], [3].

Dependencies between device nodes assume greater impor-
tance in the context of virtualization. Let us consider that,
on top of the hardware layout described in Listing. 1, where
there exists a 2-CPU cluster that requires two DRAM memory
banks to provide 64 bits of information at a time, runs the Bao
hypervisor. As a safety requirement, we may impose that this
hardware is partitioned such that one processor is exclusively
assigned to a single VM, while the main memory is partitioned
between the two VMs. This kind of specification is of much
importance because the generation of Bao’s configuration
files is automatically obtained from a DT. Similarly to node
dependency checks, the check against this kind of resource
specification is done incrementally by solving constraints
extracted from a feature model.

B. Contributions

While llhsc contributes as a practical tool to the
state-of-the-art in the generation and the semantic checking
of DTS files, this paper presents an approach towards both
syntactic and semantic checking. The feasibility analysis of
the approach is studied throughout this paper using the Bao
static-partitioning hypervisor as the target platform.

The contributions of the paper are enumerated as follows:
1) The automatic generation of constraints that extend the

syntax checks of dt-schema with a set of predefined
semantic checks of memory addresses.

2) These constraints are defined as axioms in first-order
predicate logic. Syntax and semantic correctness is de-
fined as an SMT problem.

3) Configuration files for the hypervisor are automatically
generated from a feature-oriented product-line of DTS
files, which are syntactically and semantically correct.

C. Structure of the paper

The paper is organized as follows: Section II introduces
the preliminary definitions and tools to support the remaining
sections. Section III describes the approach to the DT resource

allocation problem in the context of virtualization and the gen-
eration of customized DTSs through the definition of a product
line. Section IV and Section V show how the checking process
is implemented, and its artifact evaluation, respectively, while
Section VI presents the related work. Finally, Section VII
draws the conclusions.

II. PRELIMINARIES

A. Devicetree Specification

When compared to an everyday embedded system, an SBC
has significantly more computational power, but typically it
requires an OS for a complete function. As a result, the
OS must have programmatic access to configurable hardware
information, such as the bus clock-speed, during the boot pro-
cess. In the early versions of Linux, the kernel included all of
the hardware features, which resulted in increased complexity
and reduced portability. By utilizing a DT, embedded software
development can benefit from greater flexibility. Instead of
compiling the Linux kernel for every custom hardware, the
kernel can be compiled once and retrieve hardware information
at runtime from a DT binary blob using the kernel’s application
binary interface (ABI). This approach enables the same kernel
to run on different hardware without requiring recompilation,
simplifying the development process.

The DT is essentially a hardware description language,
specifically an OS-agnostic data structure (a tree), made up
of device nodes. It defines the configuration of hardware
components, such as processors, power units, memory, storage
units, clock signals, etc., as well as how these components
should operate. It also acts as a compatibility layer, guiding the
OS on which device drivers to load. The use of DT bindings to
describe hardware devices is not always necessary. However,
in the case of an SBC with numerous hardware components,
promoting driver integration becomes crucial.

One argument against using DT bindings is related to
compatibility issues and the potential for additional errors
resulting from adopting the DT language. These issues can
include not only syntactic errors that are not detected by the
DT compiler but also semantically incorrect information that is
challenging to trace. For example, in the presence of an error,
it is difficult to find which DT binding is actually causing the
error. This aspect is precisely the focus of this paper, where
we present an extensible verification mechanism based on a
system of constraints.

The challenge of employing a DT structure is that certain
properties, such as #address-cells and #size-cells,
lack static semantics, meaning that their values have various
interpretations based on their context within the tree. To illus-
trate this issue, let us examine the DT binding for the processor
feature in Listing 2. In this example, the node is named
cpus and has a #address-cells property of 0x1 and a
#size-cells property of 0x0. This means that the value
of the reg property is interpreted as the processor’s volume
name – its physical number in decimal notation. Consequently,
the two ARM Cortex-A53 processor cores are represented by
two sub-nodes named cpu@0 and cpu@1, respectively. Note

Listing 2: Example of a processor cluster DT binding
1cpus {
2#address-cells = <0x1>;
3#size-cells = <0x0>;
4

5cpu@0 {
6compatible = "arm,cortex-a53";
7device_type = "cpu";
8enable-method = "psci";
9reg = <0x0>;
10};
11

12cpu@1 {
13compatible = "arm,cortex-a53";
14device_type = "cpu";
15enable-method = "psci";
16reg = <0x1>;
17};
18};

that this differs from the interpretation of reg discussed in
Section I-A, where #address-cells and #size-cells
are used to parse an array of memory addresses. The dynamic
semantics of a property like reg shows the need for semantic
checks to ensure sound configurations.

An additional limitation of DT is its syntax, which is not
expressive enough to represent relationships between device
nodes. Therefore, the process of combining multiple DT
bindings into a single DT is challenging and time-consuming,
particularly as it needs to be repeated for every distinct SBC
architecture. The lack of means to specify the correctness of
a DT is crucial at two levels: first, at the top level, where
it is essential to define the minimum set of device nodes
required for a complete description of a particular hardware;
and second, at the binding level, where certain properties, such
as clock frequency, interrupt ports, and register area, must be
configured based on the values provided by the manufacturer.

We propose using a software product line (SPL) [4], [16]
to address these limitations. By separating the hierarchical
organization of device nodes and their internal attributes,
we can create generalized specifications of custom hardware
where each hardware feature serves as a variability point
(device node) that can be refined through a set of available
feature realizations (bindings). In this way, each DT binding
is a correct implementation of its respective variability point.
We introduce the concept of a feature model as a compact
representation of all products in an SPL for DTs.

B. Feature Model

A feature model [10], [19], [21] consists of a tree structure
where each node represents a feature or a group of features,
and the edges between the nodes represent the dependencies
and relationships between them. Features are abstract aspects
of a software system, described with domain vocabulary.
Edge decorations define a partitioning of the child features
of a given feature through a consists of relation that is
designed to represent decomposition: one parent feature can
have several sub-features grouped either by an AND, OR or
XOR decomposition semantics. Cross–hierarchy constraints
are composition rules that describe how features relate to one

another: one feature can require another one, or two features
can be mutually exclusive. Features can also be identified as
abstract, mandatory or optional.

The main advantage of feature models is the possibility
to perform automated analysis over the set of features. The
input to this process is a feature model translated into a par-
ticular representation, such as propositional logic, constraint
programming, description logic or ad–hoc data structures,
and the output is produced by using Boolean satisfiability
problem (SAT) solvers or other specific algorithms. Examples
of analysis are: detection if a feature model is void or not;
checking if a given product is valid or not; generation of all
valid products; detection of dead features, etc.

Feature models are commonly used in product line engi-
neering, where they are used to manage the variability of a
family of related software products. While individual products
are specified using features, software product lines (SPLs) are
specified using feature models. In this way, it is possible to
identify the commonalities and variabilities across the different
products, and to develop a systematic approach to product
development reuse and customization. By design, an SPL starts
from a base feature realization artifact, called a feature module,
which contains common parts of all products. To build a
product variant, feature modules are composed incrementally.
In this paper, we implement a delta-oriented programming
(DOP) [6] solution for DTS files.

The motivation behind the use of DOP to a product line
of DTSs is because of the nature of DT itself: once the DT
binding is defined and used by the Linux Kernel, it should
no longer be changed anymore. It can only be extended
if different types of peripheral integrated circuits and their
definitions are not supported in the DT standard. The concept
of delta-module is appropriate because each single DTS can
be generated by applying a series of changes to the core-
module of the product line. Each delta-module is then used
to implement further products by adding, modifying and
removing fragments of a DTS.

C. Hypervisor Configuration

Bao [14] is a static partitioning hypervisor designed for real-
time and embedded systems. The hypervisor or VM monitor
allows for the partitioning of resources, such as CPU, memory,
and I/O devices, among multiple VMs or OSes. This can help
to ensure that each VM is isolated and has access to the
necessary resources to perform its designated tasks. The use
of the Bao hypervisor improves the reliability and security
of embedded systems allowing, at the same time, greater
flexibility and control over the system’s resources. Combined
with a powerful syntax and semantic checker like llhsc, it
may be possible to effectively manage the DT and ensure the
compatibility of all nodes in the tree for a diversity of VMs.

An example of a platform configuration file for Bao is
shown in Listing 3. In conformity with the running example
given in Listing 1, two memory banks are defined at line 6, and
one CPU cluster with two processor cores is defined at line 15.
To achieve a complete hypervisor configuration, it is crucial to

Listing 3: Example of a Bao platform configuration C file
1#include <platform.h>
2

3struct platform_desc platform = {
4.cpu_num = 2,
5.region_num = 1,
6.regions = (struct mem_region[]) {
7{ .base = 0x40000000, .size = 0x20000000 },
8{ .base = 0x60000000, .size = 0x20000000 },
9},
10

11.console = { .base = 0x20000000 },
12

13.arch = {
14.clusters = {
15.num = 1, .core_num = (uint8_t[]) {2}
16},
17}
18};

generate C files for every VM that is being controlled by the
hypervisor. Later, in Section III-B, the automatic generation
of the referred C files from DT source files is described.

III. DTS GENERATION PROCESS

A. Infer a feature model

The first step to define the DTS product line is the con-
struction of the feature model. We can automatically extract
the set of features from the DTS presented in Section I-A
to define the product line, as shown in Fig. 1a. This feature
model serves to limit the set of valid hardware configurations,
where relationships between features come into play. In this
feature model there are 12 valid products, and the root feature
(CustomSBC) is present in all products within the SPL. The
cpus feature is mandatory and, due to its exclusive-or (XOR)
semantics, only one of its children can be selected.

We added a new type of device represented by the
vEthernet feature, which is essential for VM communi-
cation. This feature is not present in the DTS described in
Section I-A, because it represents virtual devices. The uarts
and vEthernet features are both abstract and optional. The
UART device node features can coexist in a product (OR),
while the Ethernet device node features are mutually exclusive.
We have also specified that if veth0 is selected, then cpu@0
must be selected (the same applies to veth1 and cpu@1).

Fig.1 shows two examples of valid products from the feature
model. In Fig.1b, the processor cpu@0 is selected, which
means that cpu@1 cannot be selected in the same product.
In Fig. 1c, the processor cpu@1 is selected, which means that
cpu@0 cannot be selected in the same product. Both UART
and Ethernet devices are used, but this time, veth1 is used
instead of veth0. Cross-constraints are also present in both
products, specifying that the selected CPU device must use
the corresponding Ethernet device. The cross-constraints, in
this case, differ from those commonly found in SPLs, as the
VMs need to coexist on the same platform, while typical SPLs
generate products for a single machine/platform.

As mentioned in Section II-C, the complete configuration of
the Bao hypervisor requires one DTS for the platform (acts as
a platform configuration) and one DTS for each VM. We can

CustomSBC

cpus

cpu@0 cpu@1

memory uarts

uart0 uart1

vEthernet

veth0 veth1

veth0 → cpu@0
veth1 → cpu@1

Legend

Mandatory

Optional

Or

Exclusive

Abstract

Concrete

(a)

+++ CustomSCB
+++ cpus

+++ cpu@0
−−− cpu@1

+++ uarts
+++ uart0
+++ uart1

+++ vEthernet
+++ veth0
−−− veth1

(b)

+++ CustomSCB
+++ cpus

−−− CPU@0
+++ CPU@1

+++ uarts
+++ uart0
+++ uart1

+++ vEthernet
−−− veth0
+++ veth1

(c)

Fig. 1: The feature model for the running example includes two CPUs, one memory device, two serial devices, and two virtual
Ethernet devices (a). Valid products of this feature model are illustrated in (b) and (c).

generate valid DTSs for each VM by taking the two products
presented in Fig. 1, while the platform DTS is the union of
selected features in both products.

B. Define the DTS product line

The goal of defining the product line for DT is to generate
a DTS for both the hypervisor platform and VMs. Once the
DTS files are created, the Listing 3 (discussed in Section II-C)
can be automatically generated using a source-to-source trans-
formation. To define the DOP product line, the core-module
of the product is the DTS presented in Section I-A. However,
since virtual devices cannot be included in the core-module, a
set of delta-modules must be defined to modify the initial DTS
with bindings for these virtual devices. Listing. 4 presents the
set of deltas required to define two separate VMs.

To modify the core-module, four delta-modules are required,
namely d1, d2, d3, and d4. The order in which these
deltas are applied is determined by the propositional formula
next to the when clause and the values specified next to
the after clause, as per the semantics of DOP. Initially, the
delta-modules are activated based on the feature selection.
Subsequently, the application order is determined using the
subset of active deltas.

Let us consider that in our running example, the hypervisor
manages two VMs. The DTSs for the first and second VMs
are generated from the feature configurations in Fig. 1b and
Fig. 1c, respectively. The induced strict partial order between
deltas for the first VM is d3 < d4 < d2 while the second
VM is d3 < d4 < d1 .

The first delta, d3, modifies the root DT node (/) in the
core DTS by stating that the hypervisor uses 32-bit addresses
(#address-cells = <1> and #size-cells = <1>)
and introduces a new DT node called vEthernet. The
second delta, d4, then modifies the memory DT node and
defines two banks of 32-bit addressed memory. Finally, the
third delta, d2, adds a DT node called veth0@80000000
to the vEthernet node.

Although the partial order in the after clauses of delta-
modules can establish dependencies between modifications of
the same DT node, these dependencies only capture essen-
tial semantic requirements, name the well-formedness of the

Listing 4: The set of deltas that define the product line
1delta d1 after d3 when veth0 {
2adds binding vEthernet {
3veth0@80000000 {
4compatible = "veth";
5reg = <0x80000000 0x10000000>;
6id = <0>;
7};
8}
9}
10

11delta d2 after d3 when veth1 {
12adds binding vEthernet {
13veth0@70000000 {
14compatible = "veth";
15reg = <0x70000000 0x10000000>;
16id = <1>;
17};
18}
19}
20

21delta d3 when (veth0 || veth1) {
22modifies / {
23#address-cells = <1>;
24#size-cells = <1>;
25vEthernet { };
26}
27}
28

29delta d4 after d3 when memory {
30modifies memory@40000000 {
31reg = <0x40000000 0x20000000
320x60000000 0x20000000>;
33}
34}

generated DTS. In fact, during delta-module application, it is
not guaranteed that the resulting DTS is correct. As previously
mentioned in Section II-A, syntax errors are only raised during
the compilation of the generated DTS by the dtc compiler, but
semantic errors are detected only at boot-time.

Thus, to achieve safety in the product line, it is necessary
to extend the constraints expressing dependencies between
delta names with additional constraints expressing syntax
and semantic properties. In this way, if an error is detected
by the checker, it can easily be traced back to the delta-
module causing it. In the next Section, we present the checker
component of llhsc, a constraint-based automatic mechanism
that enables the generation of correct DTSs and, consequently,

Core-Module

Delta
Modules

Delta
Modules

Syntax
and

Semantic
Checker

DTSsDTSs

Hypervisor
Config.

LLHSC

Fig. 2: The workflow of the llhsc tool.

correct configuration files for the Bao hypervisor.
Fig. 2 depicts the process of artifact generation, which

implies adhering to a particular sequence involving the core-
module, which is the DTS presented in Listing. 1, and the
delta modules. Upon completion, the output consists of DTSs
and a hypervisor configuration file where certain correctness
properties are proven to hold by the checker.

IV. CONSTRAINT CHECKING

In this Section, we present the three kinds of constraints
that the llhsc uses to ensure correctness. All these constraints
are then solved using the Z3 API for Python. First, in Sec-
tion IV-A, are presented the constraints used to build valid
configurations in the context of static-partitioning employing
feature models. Next, in Section IV-B, the syntax of DT
bindings is checked against a set of constraints derived from
the dt-schema specifications. Finally, in Section IV-C, a set
of semantic constraints statically ensure that a given sort of
VM configurations are valid and will run well in execution.

A. Resource Allocation Checker

This checker verifies that hardware configurations are cor-
rect by construction concerning their variability point through
a refinement process controlled by the semantics of feature
models. For one hypervisor configuration with k VMs, are
required k + 1 feature models, where every VM shares the
same feature model with other VMs. The feature model for
the hypervisor platform derives a particular type of feature
model that is, in fact, a multi-product feature model, where
static-partitioning is defined by an XOR relation over features
that range across VM models.

For example, the sub-features of cpus, which are cpu@0
and cpu@1, can be freely selected when configuring one VM,
but in static-partitioning it is unreasonable to allocate the same
CPU to different VMs. Therefore, the semantics of XOR will
take into consideration the product, i.e. the VM, from where
the feature was selected.

Consider a set of n sub-features of a feature model f , and
let fk

i be the ith sub-feature of f , 1 ≤ i ≤ n, selected in the
product k, where k, 1 ≤ k ≤ m, is the index of the VM. The

constraint for exclusive resource usage across VMs is given
by the following Boolean formula:

(f1
1 ∨ · · · ∨ fm

1 ∨ f1
2 . . . fm

2 ∨ f1
n . . . fm

n ⇔ f) ∧
k<l∧
i<j

¬(fk
i ∧ fk

j) ∧ ¬(fk
i ∧ f l

i)

For the feature model in Fig. 1a, this constraint specifies that
the 2 CPUs, cpu@0 and cpu@1, are alternative sub-features
in the same VM and, additionally, that cpu@0 is exclusive to
one VM. Since cpus is also a mandatory feature, this means
that the maximum number of VMs is two (m = 2), and the
assignment of CPUs is automatic (in Fig. 1 CPU features are
grayed-out and cannot be selected by the user). The remaining
feature relations, i.e. mandatory, optional and OR, correspond
to the original semantics of feature models [10].

This checker guarantees that a set of features that violates
the constraints is never selected by the user. In this sense,
relations between hardware features, which are mapped into
relation between DT nodes, are correct by construction.

B. Syntactic Checker

The verification of syntactic correctness is a fully automatic
process, where constraints are extracted from dt-schema [12],
and proof obligations are extracted from DT bindings. In this
section, we present both kinds of constraints.

A fragment of the dt-schema specification of the memory
DT node is shown in Listing 5. It states that there are two
properties, device_type, which must have the constant
value “memory”, and reg, which is an array. Furthermore,
it states that both these properties are required.

Listing 5: Fragment of the dt-schema for the memory DT node
1properties:
2device_type:
3const: memory
4reg:
5minItems: 1
6maxItems: 1024
7

8required:
9- device_type
10- reg

The constraints related to this dt-schema specification
are given by the constraints (1) (2) and (3). The names of
nodes and properties are encoded into strings using the hybrid
theory in Z3, and the first-order formula ∀x.R(x) specifies the
presence condition of a given property x by means of the R
predicate. Let memory be the Boolean variable denoting the
validity of the memory DT node, and device_type and reg
be the string variables denoting the corresponding properties
in the schema. The set of constraints derived from the schema
include the following:

R(device_type) → (const ↔ "memory") (1)
memory → R(device_type)∧

(device_type ↔ "device_type") (2)
memory → R(reg) ∧ (reg ↔ "reg") (3)

Constraints (2) and (3) specify that device_type and
reg are required properties, as shown in Listing 5.

Proof obligations are extracted directly from the instance
of the DT binding. Constraint (4) states that the memory
node was found and that the value of the device_type
is "memory". Since both properties device_type and reg
were found, we define the constraint 5 to state the Boolean
condition (OR) for the presence of these properties.

const ↔ "memory" (4)
∀x.C(x) ↔ (x ↔ "reg" ∨ x ↔ "device_type") (5)
∀x.(C(x) → R(x)) ∧ (¬C(x) → (¬R(x))) (6)

Constraint (6) specifies that predicate R(x) will be satisfied
if condition C(x) is met. If the condition is not satisfied,
then the default value for all properties not captured in
constraint (5) is ¬R(x). Unlike the method described in
Section IV-A, where the user must manually select or remove
all hardware features, the syntactic checker automatically
generates a complete closure over the properties.

C. Semantic Checker

Purely syntactic methods do not ensure that our product
line process is sound. Here, soundness essentially means that
the process does not introduce collisions between mutually
exclusive memory addresses. This property is of major impor-
tance because the addresses inside the DTSs of the VMs must
be translated into their machine counterparts internally to the
hypervisor, which are then mapped into the physical layer [7]
(2-stage translation). If there is an error inside a DTSs, the
entire virtual environment is compromised.

Consider the case where the user forgets to update the
memory node inside core-module by omitting the delta d4
in Listing 4. Because dt-schema assumes that any mul-
tiple of the sum obtained from #address-cells and
#size-cells is valid, it fails to capture the truncation
from 64-bit to 32-bit addresses that were introduced by d3.
This example shows that static-partitioning hypervisors require
more granularity in the semantic checks.

The memory consistency between an arbitrary number of
memory banks can be defined in first-order logic by the
following formula:

¬
∨
i<j

∃x1, x2. (bi ≤ x1 ∧ (bi + si)> x1) ∧
(bj ≤ x2 ∧ (bj + sj)> x2)∧
(x1 < x2)

 (7)

where (bi, bj) is any ordered pair of base addresses, and si
and sj are the corresponding sizes. The technique of bit-
blasting is used by the Z3 theorem prover to encode memory
addresses inside bit-vectors which are then translated into a
SAT problem. In case of unsatisfiability of the negation of (7),
a counter example of consistency is produced by Z3.

The running example (Section I-A and later extended in
Section III-B), shows a simple case where the state-of-the-art
tool dt-schema fails – the reg properties can be syntactically
correct but semantically invalid. For the sake of simplicity, we

Listing 6: Example of a Bao VM Configuration for all re-
sources of Listing 1 (without partitioning)

1#include <config.h>
2VM_IMAGE(vm, vmimage.bin);
3

4struct config config = {
5CONFIG_HEADER
6.vmlist_size = 2,
7.vmlist = {
8{ .image = {
9.base_addr = 0x40000000,
10.load_addr = VM_IMAGE_OFFSET(vm),
11.size = VM_IMAGE_SIZE(vm)
12}
13},
14.entry = 0x40000000,
15.cpu_affinity = 0b11,
16.platform = { .cpu_num = 2, dev_num = 2,
17.region_num = 2,
18.regions = (struct mem_region[]){
19{ .base = 0x40000000 , .size = 0x20000000 },
20{ .base = 0x60000000 , .size = 0x20000000 }
21},
22.devs = (struct dev_region[]){
23/* from uarts.dtsi */
24{ .pa = 0x20000000,
25.va = 0x20000000, .size = 0x1000 },
26{ .pa = 0x30000000,
27.va = 0x30000000, .size = 0x1000 },
28},
29},
30.ipc_num = 1,
31.ipcs = (struct ipc[]) {
32{ /* veth0 device */
33.base = 0x70000000, .size = 0x00010000,
34.shmem_id = 0,
35}
36},
37},
38.shmemlist_size=1,
39.shmemlist = (struct shmem[]) {
40[0] = { .size = 0x00010000 }
41},
42};

assume that the virtual and physical addresses of both UART
are the same. While dt-schema fails to detect the error caused
by the missing conversion from 64 to 32-bit, our checker can
find an actual collision on the address 0x0, because four banks
of memory are found, instead of the original two.

V. EMPIRICAL EVALUATION

This section details the empirical assessment of our running
example. Our llhsc checker was initially designed as a tool but
has since evolved into a cloud service that we invite readers to
explore at https://llhsc.apps.vortex-colab.com. The reader can
access the paper’s running example, which includes the full
generation of the two DTS files and the Bao configuration file
for the CustomSBC. Listing 6 is also available for viewing at
the aforementioned artifact location. Listing 6 exemplifies one
VM configuration (or product) using all hardware resources
listed in Listing 1 but without partitioning. The configurations
automatically generated from the SPL can be utilized not only
in Bao hypervisor but also in other virtualization solutions
such as QEMU. Additionally, these configurations are com-
patible with SBCs that use aarch64 or RV64 architecture.

https://llhsc.apps.vortex-colab.com

VI. RELATED WORK

Approaches to the automatic generation of DT configura-
tions from embedded system designs can be found in [1] and
[9]. The DSML4DT [1] tool accomplishes automatic gener-
ation of DTSs using a domain-specific modeling language
inside a model-driven environment, where the Acceleo [8]
model query language is used to express validation rules,
such as resource allocation, static semantics and user-defined
constraint checks. The GRIP [9] framework aims at the au-
tomation of IP-integration into system-on-chip (SoC) designs,
where constraints are used to restrict the design space when
generating all candidate SoCs, before DTS code generation.

In contrast to these model-based approaches, our approach
follows the DOP-SPL [6] methodology. Artifact reuse is
accomplished using delta-modules instead of models, thus
avoiding the model-to-text transformations. Because DTS are
usually shipped unfinished and upgraded later, the SPL of
DTSs is more suited to such unstable codebases. Whereas
model query languages are used in [1] to verify only
properties of the models, our approach encodes all properties
of interest, namely the variability of feature models and the
syntactic and semantic correctness of DT bindings in a single
constraint satisfaction problem.

Different uses of constraints are proposed in [20] to address
the structure of hardware configurations. The configuration
algorithm is written in Prolog through constraint logic pro-
gramming. The algorithm for resource allocation is automatic
and tends to explode in complexity. In our setting, the allo-
cation problem involves assigning resources to VMs within
a hypervisor environment using a feature model. Because of
the structural complexity characteristics of feature models, this
problem is efficiently handled by the SAT-solver [15].

Apart from embedded system designs, low-level validation
of DTS code is a subject of debate in the embedded Linux
community. In the Request for Comments (RFC) [5], it was
suggested that contemporary standards, such as XML Schema,
should be used to represent device trees. Several attempts
were made to define a DTS-like schema language, culminating
with the adoption of dt-schema as the de facto tool for DT
validation. The validation for particular bindings implemented
directly in C code was also a topic of discussion. In our
approach, syntax and semantic checks are both expressed as
formulas in first-order logic. The incremental nature of the
Z3 solver allows for easy extensibility, as constraints can be
added incrementally to the same solver instance.

VII. CONCLUSIONS

The approach we have presented offers a constructive way
to safely configure embedded systems through the use of a
feature model and a series of deltas applied to a master DTS.
The llhsc tool ensures the correctness of the DOP product line
through a set of constraints defining the syntactic and semantic
aspects that can be proven correct by the Z3 SMT solver.
The generation of proof obligations for syntactic correctness
is done by composing the schemas of individual DT bindings,
while semantic validation of memory addresses and interrupts

is performed using bit-vector constraints. The extensibility of
the llhsc tool allows for the incremental addition of constraints
to the same Z3 instance, making it a versatile tool for future
work. Overall, the effectiveness of this approach has been
demonstrated in the configuration of a hypervisor, providing
a safe and efficient method for resource allocation.

ACKNOWLEDGMENTS

This work is supported by the European Union/Next Gen-
eration EU, through Programa de Recuperação e Resiliência
(PRR) [Project Route 25 with Nr. C645463824-00000063].

REFERENCES

[1] S. Arslan and G. Kardas, “DSML4DT: A domain-specific modeling
language for device tree software,” Comput. Ind., vol. 115, p. 103179,
2020.

[2] D. S. Batory, “Feature models, grammars, and propositional formulas,”
in SPLC, ser. Lecture Notes in Computer Science, vol. 3714. Springer,
2005, pp. 7–20.

[3] D. Benavides, S. Segura, and A. R. Cortés, “Automated analysis of
feature models 20 years later: A literature review,” Inf. Syst., vol. 35,
no. 6, pp. 615–636, 2010.

[4] P. Clements and L. M. Northrop, Software product lines - practices and
patterns, ser. SEI series in software engineering. Addison-Wesley, 2002.

[5] B. Cousson and F. Parent. Device tree schemas and validation.
(accessed on 2022-03-17). [Online]. Available: http://lists.infradead.org/
pipermail/linux-arm-kernel/2013-October/201449.html

[6] F. Damiani and I. Schaefer, “Dynamic delta-oriented programming,” in
Proceedings of the 15th International Software Product Line Conference,
Volume 2, 2011.

[7] C. Devigne, J. Bréjon, Q. L. Meunier, and F. Wajsbürt, “Executing
secured virtual machines within a manycore architecture,” Microprocess.
Microsystems, vol. 48, pp. 21–35, 2017.

[8] Eclipse Foundation. Obeo. Acceleo. (accessed on 2022-03-17). [Online].
Available: http://www.eclipse.org/acceleo/

[9] M. Jassi, Y. Hu, D. Mueller-Gritschneder, and U. Schlichtmann, “Graph-
grammar-based IP-integration (GRIP) - an EDA tool for software-
defined SoCs,” ACM Trans. Design Autom. Electr. Syst., vol. 23, no. 3,
pp. 40:1–40:26, 2018.

[10] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-oriented domain analysis (FODA) feasibility study,” Carnegie-
Mellon University Software Engineering Institute, Tech. Rep., Nov.
1990.

[11] G. Likely and J. Boyer, “A symphony of flavours : Using the device
tree to describe embedded hardware,” in ELC, 2008.

[12] ——, “Device tree schemas and validation,” in [RFC 00/15], 2013.
[13] J. Madieu, Linux Device Drivers Development: Develop Customized

Drivers for Embedded Linux. Packt Publishing Ltd, 2017.
[14] J. Martins, A. Tavares, M. Solieri, M. Bertogna, and S. Pinto, “Bao:

A lightweight static partitioning hypervisor for modern multi-core em-
bedded systems,” in NG-RES@HiPEAC, ser. OASIcs, vol. 77. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020, pp. 3:1–3:14.

[15] M. Mendonca, A. Wąsowski, and K. Czarnecki, “SAT-based analysis
of feature models is easy,” in Proceedings of the 13th International
Software Product Line Conference, 2009, p. 231–240.

[16] K. Pohl, G. Böckle, and F. van der Linden, Software Product Line
Engineering - Foundations, Principles, and Techniques. Springer, 2005.

[17] R. Ramsauer, J. Kiszka, D. Lohmann, and W. Mauerer, “Look mum, no
VM exits! (almost),” CoRR, vol. abs/1705.06932, 2017.

[18] B. Sá, J. Martins, and S. Pinto, “A first look at RISC-V virtualiza-
tion from an embedded systems perspective,” IEEE Trans. Computers,
vol. 71, no. 9, pp. 2177–2190, 2022.

[19] P. Schobbens, P. Heymans, J. Trigaux, and Y. Bontemps, “Generic
semantics of feature diagrams,” Comput. Networks, vol. 51, no. 2, pp.
456–479, 2007.

[20] A. Schüpbach, A. Baumann, T. Roscoe, and S. Peter, “A declarative
language approach to device configuration,” ACM Trans. Comput. Syst.,
vol. 30, no. 1, pp. 5:1–5:35, 2012.

[21] T. Thüm, C. Kästner, S. Erdweg, and N. Siegmund, “Abstract features
in feature modeling,” in SPLC. IEEE Computer Society, 2011, pp.
191–200.

http://lists.infradead.org/pipermail/linux-arm-kernel/2013-October/201449.html
http://lists.infradead.org/pipermail/linux-arm-kernel/2013-October/201449.html
http://www.eclipse.org/acceleo/

	Introduction
	Running Example
	Contributions
	Structure of the paper

	Preliminaries
	Devicetree Specification
	Feature Model
	Hypervisor Configuration

	DTS Generation Process
	Infer a feature model
	Define the DTS product line

	Constraint Checking
	Resource Allocation Checker
	Syntactic Checker
	Semantic Checker

	Empirical Evaluation
	Related Work
	Conclusions
	References

