
Guidewire ClaimCenter™
for Guidewire Cloud

Cloud API Business Flows Guide

Release: 2021.04

© 2023 Guidewire Software, Inc.
For information about Guidewire trademarks, visit https://www.guidewire.com/legal-notices.
Guidewire Proprietary & Confidential — DO NOT DISTRIBUTE

Product Name: Guidewire ClaimCenter for Guidewire Cloud
Product Release: 2021.04
Document Name: Cloud API Business Flows Guide
Document Revision: 18-March-2023

https://www.guidewire.com/legal-notices

Contents
Support.. 11

Part 1
Consuming the Cloud API

1 REST API fundamentals in Cloud API...15
The InsuranceSuite Cloud API.. 15
Resources... 16
Endpoints... 17

Root resources... 17
Child resources... 17
Operations..18
Paths... 19

Requests and responses... 19
Testing requests and responses... 20

Tutorial: Set up your Postman environment.. 21
2 Overview of the system APIs in Cloud API.. 23

The base configuration system APIs... 23
Cloud API versions.. 23

Viewing Cloud API information.. 24
Swagger UI... 25
View a system API using Swagger UI.. 25
Organization of API information in Swagger UI.. 26
The metadata endpoints and Postman.. 26
View a system API using Postman.. 27
Organization of information in metadata endpoint output... 28

Beta APIs.. 28
Published APIs and endpoints.. 28
Beta APIs and endpoints.. 28
Beta APIs for this release..29

Additional metadata endpoint functionality.. 30
Functionality for alternate API tools...30
The /typelists endpoints...31
Tutorial: Query for typelist metadata... 32

Routing related API calls in clustered environments.. 32
3 GETs and response payload structures... 35

Overview of GETs... 35
Standardizing payload structures... 35

Viewing response schemas.. 37
View a response schema in Swagger UI... 37

Sending GETs.. 37
Send a GET using Postman... 37
Tutorial: Send a basic Postman request... 38

Payload structure for a basic response.. 38
Structure of a basic response... 39

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Contents 3

The count property.. 39
The data section... 39
The attributes section.. 40
The checksum field...41
The links subsection (for an element).. 42
The collection-level links section..42

Payload structure for a response with included resources.. 42
Tutorial: Send a Postman request with included resources... 43
Structure of a response with included resources... 44
The related section (for a resource)... 44
The included section (for a response).. 45
Including either a collection or a specific resource.. 46
Determining which resources can be included.. 46

4 Refining response payloads...47
Overview of query parameters.. 47

Viewing query parameter documentation in Swagger UI.. 48
Query parameter error messages.. 48

Specifying the resources and fields to return...48
Filtering GETs.. 48
Tutorial: Send a GET with the filter parameters... 50
Specifying which fields to GET..50
Tutorial: Send a GET with the fields parameter..53

Sorting the result set.. 53
Tutorial: Send a GET with the sort query parameter..54

Controlling pagination.. 54
Limiting the number of resources per payload.. 54
Selecting a single resource in a collection.. 55
Paging through resources...55
Retrieving the total number of resources.. 56
Tutorial: Send a GET with the pageSize and totalCount parameters..57

Using query parameters on included resources...57
Specifying query parameters that apply to an included resource..57
Summary of query parameters for included resources..58
Tutorial: Send a GET with query parameters for included resources... 59

5 POSTs and request payload structures..61
Overview of POSTs... 61
Standardizing payload structures... 62

Viewing request schemas...63
View a request schema in Swagger UI..63

Designing a request payload.. 63
Determining the required, optional, and write-only fields.. 63
Request payload structure... 65
Specifying scalar values in a request payload...65
Specifying objects in a request payload... 66

Sending POSTs.. 67
Send a POST using Postman... 67
Tutorial: Create a new note that specifies required fields only..67
Tutorial: Create a new note that specifies optional fields.. 68

Responses to a POST.. 69
Postman behavior with redirects... 69
Business action POSTs.. 70

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

4 Contents

Improving POST performance.. 71
6 PATCHes... 73

Overview of PATCHes... 73
The PATCH payload structure... 73

Designing a request payload.. 74
PATCHes and arrays.. 74
Sending PATCHes.. 74

Send a PATCH using Postman... 74
Tutorial: PATCH an activity..75

Responses to a PATCH.. 75
PATCHes and lost updates.. 76
Postman behavior with redirects... 76

7 DELETEs.. 77
Overview of DELETEs..77

Tutorial: DELETE a note.. 77
DELETEs and lost updates...78

8 Reducing the number of calls.. 79
Features that execute multiple requests at once... 79

Comparing features that execute multiple requests.. 79
Determining which feature to use..80

Request inclusion... 80
Syntax for simple parent/child relationships.. 81
Syntax for named relationships.. 82
Additional request inclusion behaviors.. 84

Batch requests..84
Optional subrequest attributes.. 84
Batch request syntax.. 85
Simple batch requests.. 86
Batch requests with query parameters.. 86
Batch requests with request payloads... 86
Batch requests with distinct operations...87
Specifying subrequest headers.. 87
Specifying onFail behavior..88

Composite requests... 88
Constructing composite request calls.. 89
The requests section.. 89
Using variables to share information across subrequests.. 90
Responses to the subrequests..91
The selections section.. 93
Error handling...95
Composite request limitations... 96
Complete composite request syntax.. 97

9 Lost updates and checksums... 99
Lost updates... 99
Checksums... 100
Checksums for PATCHes and business action POSTs.. 100

Tutorial: PATCH an activity using checksums.. 101
Tutorial: Assign an activity using checksums.. 102

Checksums for DELETEs..102
Send a checksum in a request header using Postman... 102
Tutorial: DELETE a note using checksums...103

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Contents 5

10 Cloud API headers... 105
HTTP headers... 105

Overview of Cloud API headers.. 105
Send a request with a Cloud API header using Postman..107

Preventing duplicate database transactions.. 107
Warming up an endpoint... 108
Handling a call with unknown elements.. 108
Validating response payloads against additional constraints... 109

11 Globalization..111
Specifying language and locale in API requests..111
Addresses and locales.. 111
Address locale configuration.. 112

Part 2
ClaimCenter business flows

12 Executing FNOL.. 117
Overview of the FNOL process... 117

Draft claims and open claims... 117
Verified and unverified policies.. 118

Overview of the FNOL process in the system APIs... 118
The system API FNOL process.. 118
FNOL use cases by policy state... 119
Canceling claims... 120
Claim modes... 120

The Testsupport API... 121
Viewing Testsupport API information...121
Set the ClaimCenter environment in Studio...121
View the Testsupport API in Swagger UI.. 121
Creating test policy data...122
Tutorial: Creating a policy using the Testsupport API... 125
Creating test data for contacts, user roles, and users.. 126

POSTing a minimal draft claim... 126
Tutorial: POSTing a minimal draft claim for personal auto...126

PATCHing a draft claim..127
Tutorial: PATCHing a draft claim for personal auto... 127

POSTing a typical draft claim.. 128
Tutorial: POSTing a typical draft claim for personal auto... 128

Creating claims with unverified policies...129
Minimum criteria for an unverified policy and claim... 129
Contacts on an unverified policy.. 130
Locations on an unverified policy... 131
Risk units on an unverified policy...132
Coverages on unverified policies.. 133
PATCH an unverified policy... 136
Retrieving information about an unverified policy...136

Submitting a draft claim... 136
Minimum criteria for submitting a claim with an unverified policy... 137
Tutorial: Submitting a draft claim... 138

Canceling a draft claim... 139
Sample payload addendum..139

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

6 Contents

Sample policy payload..139
Sample typical claim payload... 140

13 Working with claims.. 143
Querying for claims associated with you..143
Querying for a claim by claim ID.. 144
Querying for claims regardless of association.. 145

Request payload for a claim search..145
Response payload for a claim search... 147

Retrieving policy information... 147
Summary of the policy endpoints.. 148

Assigning claims... 149
Validating claims...150

ClaimCenter validation levels... 150
Validating a claim through the system APIs... 151

14 Working with ClaimContacts... 153
Overview of ClaimContacts in ClaimCenter..153
Overview of ClaimContacts in the system APIs.. 154
Modifying ClaimContact roles.. 156

Setting reserved roles...156
Setting non-reserved roles... 157

Identifying the ClaimContact..159
Creating a new ClaimContact and specifying its role... 159
Specifying a role for a ClaimContact that is already on the claim.. 159
Specifying a role for a contact that is on the policy... 160

ClaimContact role constraints.. 161
15 Working with incidents... 163

Overview of incidents in ClaimCenter.. 163
Overview of incidents in the system APIs...164
Creating incidents.. 166

Dwelling incidents.. 166
Fixed property incidents...166
Injury incidents...167
Living expenses incidents... 168
Vehicle incidents.. 168

Summary of incident types.. 169
16 Working with exposures..171

Overview of exposures in ClaimCenter.. 171
Creating exposures... 173

Minimum creation criteria... 173
Building an exposure payload.. 174
Step 1: Identify the coverage type... 174
Step 2: Identify the coverage subtype..175
Step 3: Create or identify the claimant.. 175
Step 4: Create or identify the incident... 176

Querying for and modifying exposures.. 177
Assigning exposures... 177
Additional exposure endpoints.. 179

Deleting draft exposures.. 179
Validating exposures.. 179
Closing exposures... 179

17 Working with service requests.. 181

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Contents 7

Overview of service requests in ClaimCenter...181
Service request kinds... 181
The service request lifecycle.. 182
Invoices for service request..184

Overview of service requests in the system APIs... 184
Service request APIs and vendor portals..184
Required service request data model.. 184
Service request numbers..185
Support for each service request kind... 185

Querying for service requests.. 186
Creating service requests... 186

Minimum creation criteria... 186
Modifying existing service requests... 188

PATCHing service requests..188
Assigning service requests to users.. 189

Advancing a service request in its lifecycle.. 190
Submitting, accepting, and declining service requests.. 191
Completing and canceling service requests... 192

Service request invoices... 193
Querying for invoices... 193
Creating invoices for service requests.. 193
Withdrawing service request invoices..194

18 Working with activities..195
Querying for activities.. 195
Creating activities... 195
Assigning activities... 197

Assignment options..197
Assignment examples...197
Retrieving recommended assignees...198

Closing activities... 199
Additional activity functionality... 201

19 Working with documents.. 203
Overview of documents... 203
Querying for document information.. 204

Querying for document metadata..204
Querying for document content...204

POSTing documents... 205
POSTing documents using Postman... 206

PATCHing documents... 206
DELETEing documents.. 208

20 Working with notes... 209
Querying for notes... 209
Creating claim notes...209
Additional notes functionality.. 211

21 Working with users..213
Querying for users.. 213
Creating users...214
Updating users... 214

Part 3
Configuring the Cloud API

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

8 Contents

22 Extending system API resources..217
Schema organization.. 217
Extending schema definitions.. 218

Schema definition extension syntax... 218
Extending mappers.. 222

Mapper extension syntax... 222
Extending updaters.. 223

Updater extension syntax...224
Tutorial: Create a resource extension.. 225
Providing feedback... 234

23 Obfuscating Personally Identifiable Information (PII).. 235
Nullifying PII... 235
Masking PII... 236

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Contents 9

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

10 Contents

Support

For assistance, visit the Guidewire Community.

Guidewire customers
https://community.guidewire.com

Guidewire partners
https://partner.guidewire.com

https://community.guidewire.com
https://partner.guidewire.com

part 1

Consuming the Cloud API

The InsuranceSuite Cloud API is a set of RESTful system APIs that caller applications can use to request data from or
initiate action within an InsuranceSuite application. These APIs provide content for the REST API framework that is
present in all InsuranceSuite applications. The APIs are built using the Swagger 2.0 Specification. These are also
referred to as the system APIs.

The following topics discuss how caller applications can consume the system APIs in Cloud API. This includes how
to:

• Construct GET requests to query for data
• Construct POST requests to create new data
• Construct PATCH requests to modify existing data
• Construct DELETE requests to remove data
• Use query parameters to refine response payloads
• Reduce the number of calls needed to accomplish a business flow
• Prevent lost updates using checksums

Consuming the Cloud API 13

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

14 Consuming the Cloud API

chapter 1

REST API fundamentals in Cloud API

This topic discusses the fundamental concepts of REST APIs and how those concepts are used in Cloud API. This
topic is intended primarily for developers with minimal experience using REST APIs.

For information on functionality specific to the APIs in the Cloud API (such as the APIs that exist in the base
configuration, the beta APIs, or the openapi.json endpoints), see “Overview of the system APIs in Cloud API” on
page 23.

The InsuranceSuite Cloud API
The InsuranceSuite Cloud API is a set of RESTful system APIs that caller applications can use to request data from or
initiate action within an InsuranceSuite application. These APIs provide content for the REST API framework that is
present in all InsuranceSuite applications. The APIs are built using the Swagger 2.0 Specification. These are also
referred to as the system APIs.

The system APIs can be used by browser-based applications and service-to-service applications. This documentation
uses the term caller application to generically refer to any application or service calling a system API.

Making system API calls

The following diagram provides a high-level overview of the interaction between the caller application and the system
APIs.

1. The caller application constructs a request object. The request object consists of:

REST API fundamentals in Cloud API 15

• A header, which can contain authentication information and other metadata.
• A payload, when necessary.

2. The caller application sends the request to the system API using an HTTP command.
• The command calls a specific API endpoint.
• The command may include query parameters that further identify the data that is desired.
• The request object is sent with the command.

3. The system API processes the request.
• This activity uses all of the InsuranceSuite application logic, such as validation logic and pre-update rules.
• The request is restricted by authorization controls within the system APIs.

4. The system API responds with an HTTP response code (such as 200 for success) and a response object. The
response object consists of:

• A header
• A payload, when necessary.

System APIs and InsuranceSuite logic

In the software industry, some RESTful APIs are configured to interact directly with the database. The system APIs are
not configured to behave this way. The system APIs interact with operational data only through the layer of the
application's business logic. Therefore, the system APIs always leverage the existing business logic of the application.

For example:

• Suppose an internal user does not have permission to create an activity. If the internal user attempts to create an
activity through the system APIs, the attempt results in an insufficient permissions error.

• Suppose there is a validation rule that requires an activity's due date to be set in the future. If an external system
attempts to create an activity with a due date in the past, the attempt results in a validation error.

• Suppose there is a pre-update rule that creates an approval activity whenever a document is marked as "Final". If an
external system creates a "Final" document through a system API, the pre-update rule will create an approval
activity.

Resources
The primary mechanism for passing information between the caller application and ClaimCenter is the resource. A
resource is an instance of data that you can create, modify, delete, or query for. Resources are defined in JSON schema
files.

Every resource has a type. The type defines the Guidewire data model entities that the resource maps to. For example,
Activity resources map to the Activity data model entity. In most cases, each resource maps to a single data model
entity. However, there are some resources which map to multiple data model entities. For example, the ClaimContact
resource maps to three data model entities in ClaimCenter: ClaimContact, Contact, and ClaimContactRole.

Resources contain a set of fields. Each field stores information about the resource. Depending on the context, fields are
also referred to as properties or attributes.

Resources are exchanged in the payloads of the request and response objects. The payload is a block of JSON-
formatted text that contains fields from the relevant resources and their values. The following is a portion of the
response payload for an Activity resource.

"attributes": {
 "assignedGroup": {
 "displayName": "Auto1 - TeamA",
 "id": "demo_sample:31"
 },
 "assignedUser": {
 "displayName": "Andy Applegate",
 "id": "demo_sample:1"
 },
 "dueDate": "2020-11-16T08:00:00.000Z",
 "id": "xc:20",
 "priority": {
 "code": "urgent",
 "name": "Urgent"

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

16 REST API fundamentals in Cloud API

 "subject": "Contact claimant"
}

Note that a field can store:

• A scalar value, such as the subject field.
• A set of values, such as the assignedUser field. This is referred to as an inline object.
• An array of objects. (There is no example of this in Activity. If there were, the field name would be followed by

square braces ([and]) delimiting the array. Each array member would be listed in curly braces ({ and }).

Every resource can be uniquely defined by its resource ID. This value maps to the data model entity's PublicID field.
The activity in the previous example is activity xc:20.

A single resource is called an element. For example, /contact/xc:203 is an element. (In some REST API literature,
this is also referred to as a singleton.)

A set of resources is called a collection. For example, /contact/xc:203/addresses (the addresses associated with
contact xc:203) is a collection.

Endpoints
Every API consists of a set of endpoints. An endpoint is a command that a caller application can use to request data
from or trigger action in ClaimCenter. For example, the /common/v1/activities endpoint can be used to either
request data about ClaimCenter activities or trigger actions related to ClaimCenter activities. When referenced in
documentation, endpoints start with a slash (/), such as the /activities endpoint. Endpoints are defined in Swagger
schema files.

In Cloud API, the endpoint path (the full name of the endpoint) includes the API and the version. For convenience
sake, the documentation often refers to endpoints using only the last part of the endpoint path. For example, the /rest/
common/v1/activities endpoint is often referred to simply as "the /activities endpoint".

Endpoints in Cloud API have four fundamental components: root resources, child resources, operations, and paths.

Root resources
Every endpoint has a root resource. The root resource is the resource which the endpoint creates, updates, deletes, or
queries for. Every call to an endpoint makes use of the root resource.

For example, the root resource for the /common/v1/activities endpoint is Activity. This endpoint is used to
potentially create, update, delete, or queries for activities.

Child resources
Most endpoints also include child resources. A child resource is a resource related to the root resource. Child resources
improve the usability of an endpoint by providing access to information related to the root resource. For example, the /
common/v1/activities endpoint has one child resource - Notes. This means you could use the endpoint to:

• Query for a specific activity (and only the activity)
• Query for a specific activity and its related notes

Every call to an endpoint must make use of the root resource. The use of child resources is optional.

Inline and included resources

Child resources can be declared either as inline resources or included resources.

• An inline resource is a resource that appears in the attributes section of the payload inline with the other root
resource fields, such as an Activity resource's assignedUser field. These resources may be included in a response
by default and can be controlled through the fields query parameters.

• An included resource is a resource that appears in the included section at the bottom of the payload, such as an
Activity resource's Notes. These resources are not included in a response by default and must be controlled
through the included query parameters.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

REST API fundamentals in Cloud API 17

For more information on inline and included resources, see “GETs and response payload structures” on page 35.

Operations
An operation is a type of action a caller application can take on a resource through an endpoint. Operations are also
referred to as verbs or methods. The system APIs support the following subset of HTTP operations:

• GET - Used to request resources.
• POST - Used to create resources. Also used to execute business actions, such as quoting a submission or

submitting a claim.
• PATCH - Used to update resources.
• DELETE - Used to delete resources.

Every endpoint supports one or more of these operations. For example, in the Common API:

• The notes/{noteId} endpoint supports GET, PATCH, and DELETE.
• The /activities endpoint supports only the GET operation.

The HTTP operations are designed for CRUD operations (Create, Read, Update, Delete). Some business processes in
InsuranceSuite applications are available to the system APIs but do not readily map to any of these operations, such as
assigning objects, closing objects, or approving objects. As a general rule, the custom actions that trigger these
processes use the POST operation.

Operation mapping to elements and collections

In general:

• You can GET either an element or a collection.
• You POST a collection to create an element.
• You POST to a custom action (to execute a business action).
• You PATCH an element.
• You DELETE an element.

For example:

Operation On endpoint... Does the following...

GET /activities Returns all activities assigned to the current user

GET /activities/{activityId} Returns the details for the specified activity

POST /activities/{activityId}/notes Adds a new note to the specified activity

POST /activities/{activityId}/assign Assigns the activity

PATCH /activities/{activityId} Updates information on the specified activity

DELETE /notes/{NoteId} Deletes the specified note

Contrasting endpoints and operations

Technically speaking, when an endpoint supports multiple operations, it is still a single endpoint. However, in casual
discussion, each operation is sometimes referred to as a separate endpoint. For example, consider the following:

• GET /common/v1/activities
• POST /common/v1/activities

This is a single endpoint (/common/v1/activities) that supports two operations (GET and POST). However, in a
casual sense, it is sometimes referred to as two endpoints (the GET /activities endpoint and the POST /activities
endpoint).

The PUT operation

Within REST API architecture, there are two operations that modify existing resources - PATCH and PUT. PATCH is
used to modify a portion of an existing resource (while leaving other aspects of it unmodified). PUT is used to replace

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

18 REST API fundamentals in Cloud API

the entire contents of an existing resource with new data. The system APIs support the PATCH operation, but not the
PUT operation. This is because nearly every operation that modifies an InsuranceSuite object modifies only a portion
of it while keeping the rest of the object untouched. This behavior maps to PATCH, but not to PUT.

Paths
Every endpoint has a path. The path is the portion of the URL used by caller applications to identify the specific
endpoint.

For Cloud API, every path consist of the following pattern:

rest/<APIname>/<APImajorVersion>/<endpointName>

For example, consider the path: rest/common/v1/activities:

• common is the name of the API to which the endpoint belongs.
• v1 is the major version number of the API
• activities is the endpoint name

The major version number provides information about the backwards compatibility of the endpoint. For more
information, see “Cloud API versions” on page 23.

A path can also contain a reference to a specific resource. For example, the path /activities/xc:20/notes refers to
the notes for activity xc:20. When a path includes a reference to a specific resource, the generic path name is specified
using {typeId}, where type is the resource type. For example, the generic path for /activities/xc:20/notes is /
activities/{activityID}/notes. A reference to a specific resource in a path is known as a path parameter.

For most endpoints, the endpoint name is the same as the resource name, with the following conventions and caveats:

• If the endpoint's root resource is an element, the endpoint name ends in a singular noun (such as /activity) or a
resource reference (such as /activity/{activityId}).

• If the endpoint's root resource is a collection, the endpoint name ends in a plural noun (such as /activities).
• If the endpoint executes a business action, the endpoint name ends in a verb (such as /{activityId}/assign).
• The endpoint name is often close to, but not identical to, the resource name

◦ Endpoint names use lower case, whereas resource names use mixed case (for example, the root resource for
the /activity endpoint is Activity)

◦ Endpoint names use hyphens to separate words, whereas resource names do not (for example, the root resource
for the /fixed-property-incidents endpoint is FixedPropertyIncident)

◦ In some cases, the endpoint name may differ from the root resource name (for example, the root resource for
the /contacts endpoint is ClaimContact)

Requests and responses
Requests

A request is a call from a caller application to an endpoint to either query for data or initiate action.

Requests are made using URLs. Request URLs have the following components:

https://iap:8880/xc/rest/common/v1/activities/xc:207?fields=assignedGroup
__________________/______________________________/___________________/
 application URL endpoint path query parameters

• Application URL - The URL to the InsuranceSuite application.
◦ This value is required.

• Endpoint path - The path to the specific endpoint that the request is requesting.
◦ This value is required.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

REST API fundamentals in Cloud API 19

◦ Endpoint paths end either with a resource name (such as .../activities) or the ID of a specific element (such
as .../activities/xc:207 in the example above). The ID of a specific element is also referred to as a path
parameter.

• Query parameters - This is a set of query parameters that further defines the data that is desired in the response.
For most endpoints, query parameters are optional.

◦ For example, when you add ?fields=assignedGroup, you are specifying that the only field you want returned
in the response is the assignedGroup field.

Some requests require a payload. The payload is a block of JSON-formatted text that contains information about one or
more resources associated with the operation. Typically:

• GETs and DELETEs do not require request payloads.
◦ For a GET, you only need to identify the resource you want information about, and this is done in the URL.
◦ For a DELETE, you only need to identify the element to delete, and this is done in the URL.

• POSTs and PATCHes do require request payloads.
◦ For a POST, you must specify data about the element to create.
◦ For a PATCH, you must specify the data about the element that must be updated.

Responses

A response is the set of information returned by an API endpoint for a request to the caller application.

Some responses include a payload. The payload contains information about one or more resources that are returned by
the operation. For example, for a request to get all open activities assigned to a given user, the response includes a
payload with information about the open activities. For more information about the payload structure, see “GETs and
response payload structures” on page 35.

The outcome of the operation is specified as an HTTP status code, also referred to as a response code. These codes are
three-digit numbers. The general meanings of these codes are defined in the following table:

Status code Category Meaning

1xx Information Used for transfer protocol-level information

2xx Success The server accepted the client request successfully.
(The code 200 indicates a successful GET or PATCH. 201 indicates a successful POST. 204 indicates
a successful DELETE.)

3xx Redirection The client must take some additional action in order to complete its request.

4xx Errors (client-side) An error condition occurred on the client side of the HTTP request and response.

5xx Faults (server-side) An error condition occurred on the server side of the HTTP request and response.

Testing requests and responses
Developers who work with system APIs typically use a tool that can send requests and get responses within an
acceptable amount of time. Guidewire recommends Postman. This tool has the ability to:

• Save API calls, including headers and payloads
• Save collections of calls
• Automatically create a collection of calls for a schema's paths by importing the Swagger schema file
• Share collections with other developers on your team

For more information and to download the tool, see https://www.postman.com/.

Note: Swagger UI is also able to send requests to a working API and show responses. However, the system APIs are
significantly robust, and performance time for getting responses to requests can be unacceptably long. Guidewire
recommends using Swagger UI only for viewing system API documentation.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

20 REST API fundamentals in Cloud API

https://www.postman.com/

Tutorial: Set up your Postman environment
The system API documentation contains a set of tutorials that guide you through examples of how to send requests and
review the responses. All of these tutorials assume the following base environment:

• A default instance of ClaimCenter installed on your machine that contains only the Demo sample data set.
• An instance of Postman.

This tutorial walks you through the process of setting up this environment.

Note: If your instance of ClaimCenter is installed on a different machine, you will need to adjust the endpoint URLs
provided in the tutorials. Also, if you create data in addition to the Demo sample data, then your responses may differ
from the ones described in the tutorials.

Tutorial steps

1. Install Postman. (For more information, refer to https://www.postman.com/.)
2. Start ClaimCenter and load the Demo sample data set.

You can test your environment by sending your first Postman request.

1. Open Postman.
2. Start a new request by clicking the + to the right of the Launchpad tab.
3. Under the Untitled Request label, make sure that GET is selected. (This is the default operation.)
4. In the Enter request URL field, enter the following URL: http://localhost:8080/cc/rest/common/v1/

activities
5. Every tab in Postman requires authorization information to execute the request. To provide sufficient

authorization information:
a. Click the Authorization tab.
b. For the Type drop-down list, select Basic Auth.
c. In the Username field, enter aapplegate.
d. In the Password field, enter gw.

6. Click the Send button to the right of the request field.

Checking your work

Once a response has been received, its payload is shown in the lower portion of the Postman interface. If your
environment has been set up correctly, the first few lines of the response payload are:

{
 "count": 25,
 "data": [
 {
 "attributes": {
 "activityPattern": "contact_claimant",
 "assignedGroup": {
 "displayName": "Auto1 - TeamA",
 "id": "demo_sample:31"
 },
 "assignedUser": {
 "displayName": "Andy Applegate",
 "id": "demo_sample:1"
 },

Troubleshooting: No response

Requests can be sent only to running applications. All of the tutorials in this documentation require that ClaimCenter is
running. If you send a request when the application is not running, you will see an error similar to the following:

Could not get any response

There was an error connecting to http://localhost:8080/cc/rest/common/v1/activities.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

REST API fundamentals in Cloud API 21

https://www.postman.com/

Troubleshooting: NotFoundException

Unless it is stated otherwise, all of the tutorials use basic authentication and the aapplegate user. If you encounter a
NotFoundException such as the following example, this could be caused by not providing correct authentication
information for this user.

"status": 404,
"errorCode": "gw.api.rest.exceptions.NotFoundException",
"userMessage": "No resource was found at path /common/v1/activities/xc:20"

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

22 REST API fundamentals in Cloud API

chapter 2

Overview of the system APIs in Cloud
API

This topic provides an overview of the system APIs in the Cloud APIs. This includes a discussion of the base
configuration APIs, the tools available for viewing API information, and the beta APIs.

The base configuration system APIs
The base configuration includes the following system APIs:

Name Description Path

Claim API for claims and claim-specific objects /claim/v1

Admin API for administration objects /admin/v1

Testsupport API for testing during development
(Available only when ClaimCenter is started in the ci-test
environment)

/testsupport/v1

Common API for common InsuranceSuite platform objects like
activities and notes

/common/v1

API List Dynamically lists the APIs that are available /apis

You can use the API path to view metadata about the API. This is discussed in detail in the following section.

There are also a minimal set of APIs for ContactManager. For more information, refer to the <appURL>/rest/apis
endpoint for ContactManager.

Cloud API versions
Note: The following section defines what a minor release is. Minor releases are not expected to have "breaking
changes". The types of changes that do and do not fall into the definition of "breaking change" are described in
the Schema Backwards Compatibility Contract. To access a copy of this contract, consult your Guidewire
representative.

Every version of Cloud API has a version number. For example, suppose that there were four releases of the system
APIs in January, April, July, and October of a given year. Each release could have the following version numbers:

• January: 1.0.0
Overview of the system APIs in Cloud API 23

• April: 1.1.0
• July: 1.2.0
• October: 2.0.0

Minor and major releases

In future releases, system API functionality is expected to change. To define and control these changes, the Cloud API
makes use of minor versions and major versions.

• A minor version is a version of the Cloud API in which functionality is either identical to the previous release or
additive.

• A major version is a version of the Cloud API in which functionality has changed from the previous release.

A given release of the Cloud API can have multiple versions of the APIs, some of which are minor and some of which
are major.

Major versions are indicated by the "endpoint path number" in API endpoint paths. This is the number that appears
after the "/v". (For example, in /common/v1/activities, the endpoint path number is 1.) When Guidewire makes a
change to an API that is not purely additive, the changed API is considered a major release. Its endpoint number is
incremented by 1.

When a release of the Cloud API includes a new major release, the previous minor release is also included. The minor
release may be identical to the previous release, but it may also have additive changes.

For example, suppose that for the releases from the previous example:

• The Cloud API in the January release is major version 1.
• The Cloud API in the April release is identical or additive.
• The Cloud API in the July release is identical or additive.
• The Cloud API in the October release includes changes to existing functionality.

In this case, the January, April, and July releases would all include a single version of the APIs whose endpoint
included "/v1". The October release would both the "/v1" set of APIs and a new "/v2" set of APIs. This is summarized
in the following table.

Release Month Version # Compared to the previous release, this
release...

Major versions in this release

January 1.0.0 ...is identical or additive /common/v1

April 1.0.1 ...is identical or additive /common/v1

July 1.0.2 ...is identical or additive /common/v1

October 2.0.0 ...includes changes to existing functionality /common/v1 (identical or additive to July's release)
and
/common/v2 (containing the changed functionality)

Viewing Cloud API information
In order to write system API calls, developers need detailed information about the APIs. This includes:

• The endpoints included in the API
• The schemas used by each endpoint that dictate how payloads are structured
• The resources used by each endpoint
• The fields available in each resource
• The properties that apply to each field

This information is often referred to as the API metadata. The metadata is defined in a series of swagger files. These
are the common approaches for viewing the metadata:

• Swagger UI

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

24 Overview of the system APIs in Cloud API

• Calling either the /openapi.json endpoint or the /swagger.json directly through a request tool, such as Postman

Swagger UI
There is an open source tool named Swagger UI that automatically presents this information as an interactive web
page. For information on Swagger UI, refer to the Swagger web site: https://swagger.io/tools/swagger-ui/

Swagger UI is automatically bundled with InsuranceSuite applications that have system APIs.

Swagger UI can be helpful when viewing schema information. Swagger UI presents this information hierarchically.
Child schemas are indented with respect to parent schemas, and individual nodes of the hierarchy can be expended and
collapsed. Searching through a complex schema is relatively straight-forward in Swagger UI.

However, Swagger UI strips out some of the metadata that is present in the source files. For example, Guidewire-
proprietary tags are not rendered in Swagger UI. When you need access to all the metadata for an API, it may be better
to call the /openapi.json endpoint directly.

Note: Be aware that Swagger UI also has the capability to send requests to a working API and observe
responses. However, Guidewire recommends using Swagger UI only to view system API documentation. The
system APIs are significantly robust. When sending requests using Swagger UI, the performance time for
getting responses can be unacceptably long. For more information on recommended request tools, see
“Requests and responses” on page 19.

View a system API using Swagger UI
Procedure

1. Identify the path for the API. (For a list of paths for each API, see “The base configuration system APIs” on page
23.)

2. Start ClaimCenter.
3. In a web browser, enter the URL for Swagger UI. This loads the Swagger UI tool.

• The format of the URL is <applicationURL>/resources/swagger-ui/
• For example, for a local instance of ClaimCenter, use: http://localhost:8080/cc/resources/swagger-
ui/

4. In the text field at the top of the Swagger UI interface, enter the URL that points to the desired API's
swagger.json file. Then, click Explore.

• The format of the URL is <applicationURL>/rest<APIpath>/swagger.json.
• For example, to view the common API, enter: <applicationURL>/rest/common/v1/swagger.json

Results

The following screenshot shows the top of the Swagger UI display of the Common API.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Overview of the system APIs in Cloud API 25

https://swagger.io/tools/swagger-ui/

Organization of API information in Swagger UI
The Cloud API version number at the top in a gray bubble after the API name. (Note that individual APIs do not have
distinct version numbers. The version numbers the appear in Swagger UI are for the entire Cloud API release.)

Every endpoint in the API appears in a list. For each API, the following information is shown by default:

• The endpoint's operation (such as GET)
• The endpoint's path (such as /activities)
• An endpoint summary (such as "Returns a list of activities assigned to the current user")

If you click the operation button, additional information about the endpoint appears. This includes:

• A more detailed endpoint description
• A list of query parameters supported by the endpoint
• A hierarchical list of resources and schemas used by the endpoint (This appears in the Responses section on the

Model tab.)

The metadata endpoints and Postman
In some situations, it is useful to view raw data about the endpoints of an API. Every system API includes two
endpoints that return metadata about the API: /openapi.json and /swagger.json.

• /openapi.json returns metadata information using the OpenAPI 3.0 specification, often referred to as "OpenAPI
3.0"

• /swagger.json returns metadata information using the Swagger 2.0 specification, often referred to as "Swagger
2.0"

Note: Cloud API is built using the Swagger 2.0 Specification. However, metadata about each API can be
returned in either the Swagger 2.0 specification (using the /swagger.json endpoint) or the OpenAPI 3.0
specification (using the /openapi.json endpoint).

The metadata endpoints can be helpful when you want to view all metadata about an endpoint, including metadata that
Swagger UI might strip out. However, the metadata endpoints present information in a "raw" format. There is no use of

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

26 Overview of the system APIs in Cloud API

color, font, or placement to help separate information. Schema hierarchies are not as readable as in Swagger UI. When
you need to review a schema hierarchy in detail, it may be easier to use Swagger UI.

From a metadata perspective, the OpenAPI 3.0 specification is richer. So whenever either endpoint is an option,
Guidewire recommends using the /openapi.json endpoint. For example, Guidewire-proprietary tags (such as x-gw-
typelist) are listed in the /openapi.json response, but not in the /swagger.json response. However, some tools
used to render API metadata may not be robust enough to process information using the OpenAPI 3.0 specification.
The /swagger.json endpoint is available for these types of circumstances.

In the base configuration, the metadata endpoints are available to any caller, including unauthenticated callers.

Postman

You can call the metadata endpoints using a request tool. Request tools are not automatically bundled with
InsuranceSuite applications. You must download and install them on your own.

Postman is a request tool that Guidewire recommends. This tool has the ability to:

• Save API calls, including headers and payloads

• Save collections of calls

• Automatically create a collection of calls for a schema's paths by importing the Swagger schema file

• Share collections with other developers on your team

For more information and to download the tool, see https://www.postman.com/.

View a system API using Postman
Before you begin

Install Postman. For more information and to download the tool, see https://www.postman.com/.

About this task

This task does not involve authentication information. This is because every type of caller can request API metadata,
including unauthenticated callers.

Procedure

1. Identify the path for the API. (For a list of paths for each API, see “The base configuration system APIs” on page
23.)

2. Start ClaimCenter.
3. Start Postman.
4. In Postman, start a new request by clicking the + tab to the right of the Launchpad tab.
5. Under the Untitled Request label, make sure that GET is selected. (This is the default operation.)
6. In the Enter request URL field, enter the following URL: <applicationURL>/rest<APIpath>/openapi.json (or

<applicationURL>/rest<APIpath>/swagger.json). For example, to view the Common API on a local instance
of ClaimCenter, enter the following:

• http://localhost:8080/cc/rest/common/v1/openapi.json (OR http://localhost:8080/cc/rest/common/v1/
swagger.json)

7. Click the Send button to the right of the request field.

Results

The API information appears in the results pane. For example, the following is the first part of the results when calling
the previously referenced openapi.json endpoint:

{
 "components": {

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Overview of the system APIs in Cloud API 27

https://www.postman.com/
https://www.postman.com/

 "parameters": {
 "activityId": {
 "description": "The REST identifier for the activity, as returned via previous requests that return a
list of activities\n",
 "in": "path",
 "name": "activityId",
 "required": true,
 "schema": {
 "type": "string"
 }
 },
...

Organization of information in metadata endpoint output
The output of the metadata endpoints is "raw" JSON.

• General information about the API can be found in the info section.
• The list of endpoints can be found in the paths section.

◦ If an endpoint path has multiple operations, the endpoint path is listed only once. Each operation appears under
it.

◦ For example, in the Common API, the /activities/{activityId} path has listings for GET and PATCH.
• Summaries and descriptions API appear inline with the thing they summarize or describe.

Beta APIs

Published APIs and endpoints
In future releases, system API functionality is expected to change. To help insurers manage potential future changes,
Guidewire maintains a Schema Backwards Compatibility Contract. This document identifies the rules for what
Guidewire is allowed to change in an API minor or maintenance release while still having that release considered to be
backwards compatible. To request a copy of the Schema Backwards Compatibility Contract, consult your Guidewire
representative.

The Schema Backwards Compatibility Contract applies to published APIs and endpoints. These APIs and endpoints
have been certified to be stable. By default, schema documentation resources (such as Swagger UI or the /
openapi.json endpoints) return only published APIs and endpoints.

Beta APIs and endpoints
Each release of Guidewire Cloud API may include one or more beta APIs or beta endpoints. A beta API and a beta
endpoint are an API or endpoint that is not yet covered by the Schema Backwards Compatibility Contract. These APIs
and endpoints have not been certified as stable. They may change in the future in ways beyond what is covered by the
Schema Backwards Compatibility Contract.

In the base configuration, beta APIs and endpoints:

• Are not enabled
• Are not returned by any schema documentation resources (such as Swagger UI or the /openapi.json endpoints)

Guidewire provides beta APIs and endpoints to help insurers with the development of system API functionality that
may be available in the future. However, Guidewire recommends using beta APIs and endpoints with caution. They are
not certified to be stable, and they are subject to change in future releases.

WARNING: Guidewire does not support the use of beta APIs or beta endpoints in production.

Enabling beta APIs and endpoints

Every beta API or endpoint is controlled by a toggle in the config.properties file. A toggle is an expression in
config.properties that turns a feature on when the expression is set to true.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

28 Overview of the system APIs in Cloud API

For some beta APIs and endpoints, the toggle is listed in config.properties, but it is set to false. For other beta APIs
and endpoints, there is no toggle in config.properties. To enable beta APIs and endpoints, you must either set the
existing toggle to true, or add a toggle to config.properties and set it to true. After you modify config.properties in
this way, you must restart the server.

For example, suppose that a release of Guidewire Cloud API included a fictitious set of beta endpoints that managed
insurance metrics. For these endpoints, the following toggle appears in config.properties:

feature.InsuranceMetricsApisBeta = false

To enable these endpoints, you would need to change the line to the following, and then restart the server:

feature.InsuranceMetricsApisBeta = true

Identifying beta APIs

The beta APIs and endpoints for this release are listed in the following section.

Once enabled, beta APIs and endpoints appear in the output of the /openapi.json and /swagger.json endpoints. All
beta APIs endpoints have the following attribute:

"x-gw-beta": true

For beta APIs, the x-gw-beta attribute is listed at the API level. The attribute does not appear at the endpoint level. All
endpoints in a beta API are considered beta endpoints.

For beta endpoints in a published API, the x-gw-beta attribute is listed with each endpoint.

The x-gw-beta attribute appears only for APIs and endpoints that are beta. Published APIs and published endpoints do
not have a listing of "x-gw-beta": false.

Once enabled, beta APIs also appear in Swagger UI. However, Swagger UI does not indicate whether a given API or
endpoint is beta.

WARNING: Swagger UI does not render information from Guidewire proprietary tags, including the x-gw-beta
tag. This means that, once you enable beta APIs, Swagger UI does not distinguish between published APIs and
beta APIs. Guidewire strongly recommends that, if you enable beta APIs on a given development instance, alert
all developers using this instance to the fact that beta APIs have been enabled. Without this alert, other
developers may not be able to distinguish between published APIs and beta APIs.

Beta APIs for this release

Beta functionality for ClaimCenter

In this release, the following endpoints in published ClaimCenter APIs are beta:

• Endpoints that are enabled through the feature.ClaimFinancialsApisBeta toggle:
◦ POST /claims/{claimId}/check-sets
◦ GET /claims/{claimId}/payments
◦ GET /claims/{claimId}/payments/{transactionId}
◦ GET /claims/{claimId}/payments/{transactionId}/approvals
◦ POST /claims/{claimId}/reserve-sets
◦ GET /claims/{claimId}/reserves
◦ GET /claims/{claimId}/reserves/{transactionId}
◦ GET /claims/{claimId}/reserves/{transactionId}/approvals
◦ GET /claims/{claimId}/reserves/{transactionId}/group-reserves

• Endpoints that are enabled through the feature.ClaimServicingApisBeta toggle:

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Overview of the system APIs in Cloud API 29

◦ POST /claims/{claimId}/service-requests/{serviceRequestId}/add-quote
◦ POST /claims/{claimId}/service-requests/{serviceRequestId}/completion-date
◦ GET /claims/{claimId}/service-requests/{serviceRequestId}/history
◦ GET /claims/{claimId}/service-requests/{serviceRequestId}/history/{serviceRequestChangeId}
◦ GET /claims/{claimId}/service-requests/{serviceRequestId}/instructions
◦ POST /claims/{claimId}/service-requests/{serviceRequestId}/instructions
◦ GET /claims/{claimId}/service-requests/{serviceRequestId}/instructions/{instructionId}
◦ POST /claims/{claimId}/service-requests/{serviceRequestId}/invoices/{invoiceId}/approve
◦ POST/claims/{claimId}/service-requests/{serviceRequestId}/invoices/{invoiceId}/pay
◦ POST /claims/{claimId}/service-requests/{serviceRequestId}/invoices/{invoiceId}/reject
◦ GET /claims/{claimId}/service-requests/{serviceRequestId}/messages
◦ POST /claims/{claimId}/service-requests/{serviceRequestId}/messages
◦ GET /claims/{claimId}/service-requests/{serviceRequestId}/messages/{messageId}
◦ POST /claims/{claimId}/service-requests/{serviceRequestId}/quote-date
◦ GET /claims/{claimId}/service-requests/{serviceRequestId}/quotes
◦ GET /claims/{claimId}/service-requests/{serviceRequestId}/quotes/{quoteId}
◦ PATCH /claims/{claimId}/service-requests/{serviceRequestId}/quotes/{quoteId}
◦ POST /claims/{claimId}/service-requests/{serviceRequestId}/quotes/{quoteId}/approve
◦ POST /claims/{claimId}/service-requests/{serviceRequestId}/resume
◦ POST /claims/{claimId}/service-requests/{serviceRequestId}/suspend
◦ GET /service-messages

This release contains no ClaimCenter APIs that are entirely beta.

Beta functionality for ContactManager

This release contains no ContactManager APIs that are entirely beta.

This release contains no beta endpoints in any of the published ContactManager APIs.

Additional metadata endpoint functionality

Functionality for alternate API tools
Developers using the InsuranceSuite system APIs may want to interact with API metadata using tools other than
Swagger UI or Postman. The following functionality may be useful when working with alternate tools. (Note that the /
swagger.json endpoints do not support the following query parameters. They are supported only by the /
openapi.json endpoints.)

Alternate options for rendering schemas

A query parameter is an expression added to the HTTP request that modifies the default response. The /openapi.json
endpoints support the following query parameters, which can be used to change the way in which schema metadata is
rendered.

• filterByUser - Whether to filter endpoints and schema properties by the authorization of this user.
◦ Defaults to false

• prettyPrint - Whether to "pretty-print" the returned schema, making it larger but more human readable.
◦ Defaults to false.

To add a query parameters to an HTTP request, use the following syntax:

?<parameterName>=<value>

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

30 Overview of the system APIs in Cloud API

To add additional query parameters to an HTTP request, use the following syntax for each query parameter after the
first:

&<parameterName>=<value>

For example, the following HTTP request retrieves the metadata for the Common API. It also enables filterByUser
and prettyPrint.

http://localhost:8080/cc/rest/common/v1/openapi.json?filterByUser=true&prettyPrint=true

Converting schema metadata into SDKs

Some tools, such as openapi-generator, provide the ability to consume a Swagger schema and output a Software
Development Kit (SDK). The /openapi.json endpoints support the following query parameter, which can be used to
change the way in which an SDK is rendered.

• enablePolymorphism - Whether to use the discriminator/oneOf pattern to output schemas in cases where the valid
set of fields can vary based on some attribute of the data such as the country or subtype.

◦ Defaults to true.
◦ When set to false, the schema in these cases will contain the superset of all valid fields. For example, address

schemas will contain all fields for all countries, rather than have separate schemas for different countries.
◦ Setting this to false may make the schema output more consumable by tools that do not support that part of the

OpenAPI schema.

To add a query parameters to an HTTP request, use the following syntax:

?<parameterName>=<value>

For example, the following HTTP request retrieves the metadata for the Common API. It also disables polymorphism.

http://localhost:8080/cc/rest/common/v1/openapi.json?enablePolymorphism=false

(For more information on openapi-generator, see https://github.com/OpenAPITools/openapi-generator/.)

The /typelists endpoints
The Common API contains two /typelist endpoints:

• common/v1/typelists - By default, this returns the names and descriptions of all typelists in ClaimCenter.
• common/v1/typelists/{typelistName} - By default, this returns the non-retired typecodes in the named typelist.

These endpoints can be useful when a caller application needs to retrieve typecode information from ClaimCenter. In
the base configuration, these endpoints are available only to callers who have been authenticated.

Querying with typekey filters

Some typelists have a parent/child relationship. These typelists make use of typekey filters. A typekey filter is a
mapping that identifies, for a typecode in one typelist, the valid values in a related typelist. For more information on
typekey filters, refer to the Application Guide.

For example, the following typelists make use of typekey filters:

• ActivityType - The activity's broad type, such as General, Approval, or Assignment Review.
• ActivityCategory - An activity's specific category, such as Interview, Reminder, or Approval Denied.

If an activity's ActivityType is set to General, then some ActivityCategory values (such as Interview and
Reminder) are valid, whereas others (such as Approval Denied) are not.

When using the /typelists/{typelistName} endpoint, if the typelist is associated with a typekey filter, you can use
it to limit the response to only the typecodes that are valid when the parent typelist is set to a given typecode. The
syntax for this is:

/typelists/{typelistName}?typekeyFilter=category:cn:relatedTypelist.Typecode

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Overview of the system APIs in Cloud API 31

https://github.com/OpenAPITools/openapi-generator

where:

• relatedTypelist is the name of the related typelist.
• Typecode is the typecode to use as a filter

For example, this call retrieves all typecodes in the ActivityCategory typelist:

GET /common/v1/typelists/ActivityCategory

However, this call retrieves only the typecodes in the ActivityCategory typelist that are valid when ActivityType is
General:

GET /common/v1/typelists/ActivityCategory?typekeyFilter=category:cn:ActivityType.general

Including retired typecodes

By default, the common/v1/typelists/{typelistName} endpoint returns only non-retired typecodes. You can include
retired typecodes by adding the following query parameter to the call:

?includeRetired=true

Tutorial: Query for typelist metadata
This tutorial assumes you have set up your environment with Postman and the correct sample data set. For more
information, see “Tutorial: Set up your Postman environment” on page 21.

In this tutorial, you will query for all typecodes in the ClaimantType typelist. You will then use a typekey filter to
query for all claimant types that are related to a claim loss type of PR (which means the claim's policy is a property
policy).

Tutorial steps

1. In Postman, start a new request by clicking the + to the right of the Launchpad tab.
2. Specify Basic Auth authorization using user su and password gw.
3. Enter the following call and click Send:

• GET http://localhost:8080/cc/rest/common/v1/typelists/ClaimantType
4. The response payload contains all non-retired claimant types. Verify that the first three codes in the payload are:

insured, householdmember, veh_ins_driver.)
5. Modify the call by adding the following query parameter to the end, and then click Send:

• ?typekeyFilter=category:cn:LossType.PR
6. The response payload now contains only claimant types relevant to property claims. Verify that the first three

codes in the payload are now: insured, householdmember, propertyowner. (veh_ins_driver no longer appears
because it is not a valid claimant type for a property claim.)

Routing related API calls in clustered environments
To improve performance and reliability, you can install multiple ClaimCenter servers in a configuration known as a
cluster. A ClaimCenter cluster distributes client connections among multiple ClaimCenter servers, reducing the load on
any one server. If one server fails, the other servers seamlessly handle its traffic. For more information on clusters, refer
to the Administration Guide.

When ClaimCenter is running in a cluster, it is possible for related system API calls to be routed to different nodes.
This can cause problems, such as Concurrent Data Change Exceptions. Typically, multiple related system API calls
need to be routed to the same node.

There are two ways that you can ensure a series of related system API calls are routed to the same instance: session IDs
and cookies.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

32 Overview of the system APIs in Cloud API

Using session IDs

Within the context of system API calls in a clustered environment, a session ID is an arbitrary string generated by the
caller application to identify related API calls. The ID is passed in the header of each request. Every request that uses a
given session ID will be routed to the same node in the cluster. The header key for a session ID is x-gwre-session.

For example, suppose that a caller application makes the following calls to ClaimCenter cluster:

1. A POST to create an activity.
2. A PATCH to update the activity.
3. A POST to create a note on the activity.

All three calls include the following header:

x-gwre-session: 09d0fbf0-243c-4337-a582-725df8d33e39

Because all three calls specify the same session ID, all three calls will be routed to the same node.

Using cookies

Within the context of system API calls in a clustered environment, a cookie is an arbitrary string generated by
Guidewire Cloud Platform that can be used to identify subsequent related API calls.

If a request header does not contain an x-gwre-session header key, Guidewire Cloud Platform generates a cookie and
returns it in the response header with a Set-Cookie header key. Subsequent calls can include this cookie in the request
header using the Cookie header key. Every request that uses a given cookie will be routed to the same node in the
cluster that generated the cookie.

For example, suppose that a caller application makes the following calls to ClaimCenter cluster:

1. A POST to create an activity
• The request header contains no x-gwre-session header key.
• The response header contains the following: Set-Cookie: gwre=ccd37ca0-f8d3-4a8e-
b278-83274d82b355; Path=/

2. A PATCH to update the activity.
• The request header contains the following: Cookie: gwre=ccd37ca0-f8d3-4a8e-b278-83274d82b355

3. A POST to create a note on the activity
• The request header contains the following: Cookie: gwre=ccd37ca0-f8d3-4a8e-b278-83274d82b355

Because the second and third call specify the cookie returned by the first call, the second and third call are routed to the
same node that processed the first call.

Comparing session IDs and cookies

Under most circumstances, it may be easier to use session IDs.

• Session IDs are generated by the caller application.
• Session IDs do not require the caller application to identify information in a response header and then manage the

storage that information for later use.

However, Guidewire supports both approaches.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Overview of the system APIs in Cloud API 33

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

34 Overview of the system APIs in Cloud API

chapter 3

GETs and response payload structures

This topic discusses how the GET operation queries for data and the structure of the response payload that contains the
query results. For information on how you can add query parameters to a GET to refine the query, see “Refining
response payloads” on page 47.

If you want to interact directly with the concepts in this topic, go to the following tutorials:

• “Tutorial: Send a basic Postman request” on page 38
• “Tutorial: Send a Postman request with included resources” on page 43

Overview of GETs
A GET is an HTTP method that is used to retrieve data from an InsuranceSuite application.

In its simplest format, a GET consists of the GET operation and the endpoint, such as GET /activities. A GET can
return either information about a single element (such as GET /activities/{activityId}) or information about a
collection (such as GET /activities/{activityId}/notes).

The response to a GET includes:

• An HTTP response code indicating success or failure.
• A response payload that contains the data that was queried for.

When a developer configures a caller application to query information using a GET, the construction of the API call is
fairly straight-forward. The call may require query parameters, but GETs do not require a request payload.

The majority of the work lies in parsing the response payload. The remainder of this chapter discusses how response
payloads are structured and how developers can learn about response payload formats.

Standardizing payload structures
Communication between caller applications and system APIs is easier to manage when the information in the payloads
follows a standard structure. The system APIs have standard structures for both request payloads and response
payloads. The structures are defined by data envelopes, and by request and response schemas.

Standardizing information common to all endpoints

A data envelope is a wrapper that wraps JSON sent to or returned from the system APIs. To maintain a standard
payload structure, the system APIs use two data envelopes: DataEnvelope and DataListEnvelope.

DataEnvelope is used to standardize the format of information for a single element. It specifies a data property with
the following child properties:

GETs and response payload structures 35

• checksum
• id
• links (for a single element)
• method
• refid
• related
• type
• uri

The format of a payload for a single element looks like:

{
 "data": {
 "checksum": ...,
 "id": ...,
 "links": ...,
 "method": ...,
 "refid": ...,
 "related": ...,
 "type": ...,
 "uri": ...
 }
 }
}

DataListEnvelope is used to standardize the format of information for collections. It specifies the following
properties, which are siblings to the data section:

• count
• links (for a collection)
• total

The format of a payload for a collection looks like:

{
 "count" ...,
 "data": [
 { properties_for_element_1 },
 { properties_for_element_2 },
 ...
],
 "links": ...,
 "total": ...
}

Every property does not appear in every payload. There are different reasons why a property may not appear in a given
payload. For example:

• Some properties, such as refid, apply only to requests and do not appear in response payloads.
• Some properties, such as count, apply only to responses and do not appear in request payloads.
• Some properties, such as related, do not appear by default and appear only when the request includes certain

query parameters.

Standardizing information specific to a given endpoint

DataEnvelope and DataListEnvelope provide a standard format for information that is applicable to all request and
response payloads. But, different endpoints interact with different types of resources. For each endpoint, some portion
of the payload must provide information about a specific type of resource.

To address this, the system APIs also use request schemas and response schemas. A request schema is a schema that is
used to define the valid structure of a request payload for a specific set of endpoints. Similarly, a response schema is a
schema that is used to define the valid structure of a response payload for a specific set of endpoints.

Request and response schemas are hierarchical. For example, for responses, the GET /activity/{activityId}
endpoint uses the ActivityResponse schema. This schema has two child schemas: ActivityData and
ActivityResponseInclusions.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

36 GETs and response payload structures

Request and response schemas extend DataEnvelope or DataListEnvelope. This ensures that information relevant to
all endpoints appears in payloads in a standard way.

Request and response schemas also define an attributes property for the payload. This property is associated with a
schema that includes resource-specific information for the payload. For example, the GET /activity/{activityId}
endpoint specifies an attributes property in the ActivityData child schema. This property is associated with the
Activity schema, which contains activity-specific fields, such as activityPattern and activityType. As a result,
response payloads for the GET /activity/{activityId} endpoint have this structure:

{
 "data": {
 "checksum": ...,
 "attributes" : {
 "activityPattern": ... ,
 "activityType": ...,
 ...},
 "id": ...,
 "links": ...,
 "method": ...,
 "refid": ...,
 "related": ...,
 "type": ...,
 "uri": ...
 }
 }
}

Viewing response schemas
You can use Swagger UI to review the structure of a response payload for a given endpoint. This includes the hierarchy
of response schemas and the type of information in each schema. The information appears in each endpoint's Responses
section on the Model tab.

View a response schema in Swagger UI

Procedure

1. Start ClaimCenter.
2. In a web browser, navigate to the Swagger UI for the appropriate API.

• For more information, see “View a system API using Swagger UI” on page 25.
3. Click the operation button for the appropriate endpoint. Swagger UI shows details about that endpoint underneath

the endpoint name.
• For example, to view the response schema for GET /activities/{activityID}, click the GET button for

that endpoint.
4. Scroll down to the Responses section. The Model tab shows the hierarchy of schemas for this endpoint, and the

contents defined by each schema.

Sending GETs
You can use a request tool, such as Postman, to ensure GETs are well-formed and to review the structure of the
response payloads. For more information, see “Requests and responses” on page 19.

Send a GET using Postman

Procedure

1. Start ClaimCenter and Postman.
2. Start a new request by clicking the + to the right of the Launchpad tab.
3. Under the Untitled Request label, make sure that GET is selected. (This is the default operation.)

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

GETs and response payload structures 37

4. In the Enter request URL field, enter the URL for the server and the endpoint.

• For example, to do a GET /activities on an instance of ClaimCenter on your machine, enter: http://
localhost:8080/cc/rest/common/v1/activities

5. On the Authorization tab, provide sufficient authorization information to execute the request. For example, to set
up basic authentication for aapplegate:
a) Click the Authorization tab.
b) For the Type drop-down list, select Basic Auth.
c) In the Username field, enter aapplegate.
d) In the Password field, enter gw.

6. Click the Send button to the right of the request field.

Tutorial: Send a basic Postman request
This tutorial assumes you have set up your environment with Postman and the correct sample data set. For more
information, see “Tutorial: Set up your Postman environment” on page 21.

Tutorial steps

1. In Postman, start a new request by clicking the + to the right of the Launchpad tab.
2. Specify Basic Auth authorization using user aapplegate and password gw.
3. Enter the following call and click Send: GET http://localhost:8080/cc/rest/common/v1/

activities

Checking your work

Once a response has been received, its payload is shown in the lower portion of the Postman interface. The first few
lines of the response payload are:

{
 "count": 25,
 "data": [
 {
 "attributes": {
 "activityPattern": "contact_claimant",
 "assignedGroup": {
 "displayName": "Auto1 - TeamA",
 "id": "demo_sample:31"
 },
 "assignedUser": {
 "displayName": "Andy Applegate",
 "id": "demo_sample:1"
 },

Payload structure for a basic response
The following sections describe the response payload for a basic response. For the purpose of this discussion, a basic
response is a response that contains information about a specific element or collection, but does not include any
included resources. Included resources are discussed in “Payload structure for a response with included resources” on
page 42.

Examples of response payloads in Postman

You can use the following Postman calls to load examples of response payloads. All of these calls assume the
following:

• Your instance of ClaimCenter is installed on your local machine.
• The Demo sample data has been loaded.
• The call uses basic authentication with user aapplegate and password gw.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

38 GETs and response payload structures

Response payload examples

Response payload for a single resource:

1. Activity "Contact claimant" (whose Public ID is cc:20)
• GET http://localhost:8080/cc/rest/common/v1/activities/cc:20

2. Claim 235-53-365870 (whose Public ID is demo_sample:1)
• GET http://localhost:8080/cc/rest/claim/v1/claims/demo_sample:1

Response payload for a collection:

1. All activities assigned to Andy Applegate
• GET http://localhost:8080/cc/rest/common/v1/activities

2. All claims assigned to Andy Applegate
• GET http://localhost:8080/cc/rest/claim/v1/claims

Structure of a basic response
The high-level structure of a basic response is shown below. The first and last properties (count and collection-level
links) are used only for collection payloads. All other properties are used for both element and collection payloads.

(Note: JSON does not support comments. However, to clarify the code, pseudo-comments have been added. Each
pseudo-comment is preceded by a hashtag (#).)

{
 "count": N, # Number of resources in collection*
 "data": [# List of resources
 { # Resource 1 begins here
 "attributes": { # Resource 1 name/value pairs
 "propertyName": "propertyValue",
 ... },
 "checksum": "val", # Resource 1 checksum value
 "links": { ... } # Resource 1 links
 }, # Resource 1 ends here
 { # Resource 2 begins here
 "attributes": { # Resource 2 name/value pairs
 "propertyName": "propertyValue",
 ... },
 "checksum": "val", # Resource 2 checksum value
 "links": { ... } # Resource 2 links
 }, # Resource 2 ends here
 ...], # Resources 3 to N
 "links": { ... } # Collection-level links*
}
 # *-used only for collection responses

The count property
The count property identifies the number of elements returned in the payload. It is used only in responses that contain
collections.

The data section
The data section contains information about the resources returned by the endpoint. For each resource, the following
subsections appear by default:

• attributes - A set of name/value pairs for the fields of each resource.
• checksum - A checksum value for each resource.
• links - HTTP links that can be used to take action on each resource.

If an endpoint returns a single resource, the data section has a single set of attributes, checksum, and links. If an
endpoint returns a collection, the data section has one set of attributes, checksum, and links for each resource.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

GETs and response payload structures 39

The attributes section
The attributes subsection lists the fields returned for a resource, and the values for those fields. For example:

"attributes": {
 "activityPattern": "check_coverage",
 "activityType": {
 "code": "general",
 "name": "General"
 },
 ...
},

Each resource has a default set of fields that are returned. This is typically a subset of all the fields that could be
returned. You can override the default set of fields returned using the fields query parameter. For more information,
see “Specifying which fields to GET” on page 50.

Simple values

When a field is a scalar, its value is listed after the colon. For example:

"subject": "Verify which coverage is appropriate"

ID properties

Every resource has an id field. This has the same value as the Public ID of the object in ClaimCenter. This is typically
one of the fields returned by default. For example:

"id": "xc:20",

This value is also used in an endpoint that names a specific element, such as:

GET /activities/xc:20/notes

Date and datetime values

Date and datetime values appear in payloads as a string with the following format:

• Datetime: YYYY-MM-DDThh:mm:ss.fffZ
• Date: YYYY-MM-DD

where:

• YYYY is the year.
• MM is the month.
• DD is the day.
• For datetime values:

◦ T is a literal value that separates the date portion and the time portion.
◦ hh is the hour.
◦ mm is the minute.
◦ ss is the second.
◦ fff is the second fraction.
◦ Z is a literal value that means "zero hour offset". It is also known as "Zulu time" (UTC).

For example:

"dueDate": "2020-03-23T07:00:00.000Z",

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

40 GETs and response payload structures

Inlined resources

Some response payloads contain inlined resources. An inlined resource is a resource that is not the root resource, but
some of its fields are listed in the attributes section by default along with fields from the root resource. Inlined
resources follow the format:

"inlinedResourceName": {
 "inlinedResourceField1": value,
 "inlinedResourceField2": value,
 ...
},

Inlined resources are declared in the response schema. Similar to scalar values, you can control which inlined resources
and inlined resource fields are returned in a response by using the fields query parameter. For more information, see
“Specifying which fields to GET” on page 50.

Broadly speaking, there are four types of inlined resources: typelists, monetary amount values, simple references, and
complex references.

Typelists are listed with a code field and a name field. They use the TypeCodeReferences schema. For example:

"priority": {
 "code": "urgent",
 "name": "Urgent"
},

Monetary amount values are complex values with a currency field and an amount field. For example:

"transactionAmount": {
 "amount": "500.00",
 "currency": "usd"

(Note that in the system APIs, the datatype is referred to as MonetaryAmount. But in ClaimCenter, these values are
actually stored using the CurrencyAmount datatype.)

Simple references are references to a related object that use the SimpleReferences schema. This schema includes
only the following fields: displayName, id, refId, type, and uri. By default, most endpoints return only
displayName and id.

For example, in the following snippet, assignedGroup and assignedUser are simple references:

"assignedGroup": {
 "displayName": "Auto1 - TeamA",
 "id": "demo_sample:31"
},
"assignedUser": {
 "displayName": "Andy Applegate",
 "id": "demo_sample:1"
},

Complex references are references to a related object that uses a schema more complex than the SimpleReferences
schema. For example, when a contact's primary address is added to a response payload, it uses the Address schema,
which includes a larger number of fields.

Fields with null values are omitted

Response payloads contain only fields whose values are non-NULL. Fields with NULL values are omitted from the
response payload.

If a given field is expected in a response payload but it is missing, this is often because the value was NULL.

The checksum field
The checksum field lists a value that identifies the "version" of a resource. Whenever a resource is modified at the
database level, it is assigned a new checksum value. Processes that modify data can use checksums to verify that a
resource has not been modified by some other process in between the time the resource was read and the time the
resource is to be modified.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

GETs and response payload structures 41

For more information, see “Lost updates and checksums” on page 99.

The links subsection (for an element)
The links subsection of the data section lists paths that identify actions that can be taken on the specific element, if
any. Each link has a name, an href property, and a list of methods. Caller applications can use these links to construct
HTTP requests for additional actions to take on that resource.

For example, suppose that a given caller application gets activity xc:20. This application has sufficient permission to
assign this activity and to view the notes associated with this activity. The following would appear in the links section
for activity xc:20:

"links": {
 "assign": {
 "href": "/common/v1/activities/xc:20/assign",
 "methods": [
 "post"
]

 },
 "notes": {
 "href": "/common/v1/activities/xc:20/notes",
 "methods": [
 "get",
 "post"
]
 },
 "self": {
 "href": "/common/v1/activities/xc:20",
 "methods": [
 "get"
]
 }
}

The self link is a link to the resource itself. The self link is useful when a caller application receives a list of
resources and wants to navigate to a specific resource in the list.

For a given object, links that execute business actions appear only if the action makes sense given the state of the
object, and only if the caller has sufficient permission to execute the action. For example, the link to close an activity
will not appear if the activity is already closed. Similarly, the link to assign an activity will not appear if the caller lacks
permission to assign activities.

The collection-level links section
If a response contains a collection, there is a links section at the end of the payload. This section is a sibling of the
data section. It contains links that are relevant to the entire collection, such as the prev and next links that let you
page through a large set of resources.

Payload structure for a response with included resources
Some endpoints support the ability to query for a given type of resource and for resource types related to that type. For
example, by default, the GET /activities endpoint returns only activity resources. However, you can use the
include query parameter to include any notes related to the returned activities in the response payload. These types of
resources are referred to as included resources. The technique of adding included resources to a GET is sometimes
referred to as response inclusion or read inclusion.

The syntax for adding included resources is:

?include=<resourceName>

For example GET /activities?include=notes returns all activities assigned to the current user, and all notes
associated with those activities.

You can include multiple resource types in a single query. To do this, identify the resources in a comma-delimited list.
For example, GET /claims?include=exposures,activities returns all claims assigned to the current user, and all
exposures and activities associated with those claims.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

42 GETs and response payload structures

When you execute a call with include, the response payload contains information about the primary resources and the
included resources. However, most of the information about the included resources do not appear inline with the
primary resources. Rather:

• Every primary resource has a related section. This section lists the IDs (and types) of included resources related to
that resource. However, each related section does not include any other details about those resources.

• Details about the included resources appear at the end of the payload in a section called included.

The IDs of included objects appear in both the related section and the included section. You can use these IDs to
match a primary resource with details about its included resources.

Contrasting included resources and inlined resources

A response payload can contain two types of resources that have a relationship to the root resources: inlined resource
and included resources. The following table contrasts the two types of resources.

Resource
type

How many related resources
for each primary resource?

Where do their fields
appear?

When do they appear?

Inlined
resource

Typically one. (For example,
every activity has only one
related assignedUser.)

Entirely in the attributes
section of the root resource

If the query does not use the fields query
parameter, then each inlined resource appears only if
it is one of the default attributes.
If the query does use the fields query parameter,
then each inlined resource does or does not appear
based on whether it is specified in that query
parameter.

Included
resource

One to many. (For example,
every activity can have
several related notes.)

IDs appear in the related
section of the root resource.
The remaining attributes
appear in the included
section at the bottom of the
payload.

When the query parameter includes the ?
include=resourceName query parameter

Tutorial: Send a Postman request with included resources
This tutorial assumes you have set up your environment with Postman and the correct sample data set. For more
information, see “Tutorial: Set up your Postman environment” on page 21.

Tutorial steps

1. In Postman, start a new request by clicking the + to the right of the Launchpad tab.
2. Specify Basic Auth authorization using user aapplegate and password gw.
3. To get a response payload for Claim 235-53-365870 (Public ID demo_sample:1) and its contacts, enter the

following and click Send:
GET http://localhost:8080/cc/rest/claim/v1/claims/demo_sample:1?include=contacts

In the response payload:

• In the data section, line 254 identifies a related contact with the ID of cc:2
• In the related section, lines 410 to 449 provides the details about contact cc:2. (The ID is in the related section

on line 424.)
4. To get a response payload for Claim 235-53-365870 (Public ID demo_sample:1) and its main contact, enter the

following and click Send:
GET http://localhost:8080/cc/rest/claim/v1/claims/demo_sample:1?include=mainContact

In the response payload:

• In the data section, line 250 identifies a related contact with the ID of cc:1
• In the related section, lines 260 to 372 provides the details about contact cc:1. (The ID is in the related section

on line 274.)

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

GETs and response payload structures 43

Structure of a response with included resources
The high-level structure of a response with included resources is shown below. Information that pertains specifically to
included resources appears in bold. (Note: JSON does not support comments. However, to clarify the code, pseudo-
comments have been added. Each pseudo-comment is preceded by a hashtag (#).)

{
 "count": N, # Number of resources is payload
 "data": [# Details for each resource
 { # Resource 1 begins here
 "attributes": { # Resource 1 name/value pairs
 "propertyName": "propertyValue",
 ... },
 "checksum": "val", # Resource 1 checksum value
 "links": { # Links relevant to Resource 1
 ... },
 "related": { # List of resources related to R1
 "resourceType": { # Related resource type
 "count": NN, # Number of related resources for R1
 "data": [
 { # First resource related to R1 starts
 "id": "relatedResourceID",
 "type": "resourceType"
 }, # First resource related to R1 ends
 ... # Other resources related to R1
] } }
 }, # Resource 1 ends here
 { # Resource 2 begins here
 "attributes": { # Recourse 2 name/value pairs
 "propertyName": "propertyValue",
 ... },
 "checksum": "val", # Resource 2 checksum value
 "links": { # Links relevant to Resource 2
 ... },
 "related": { # List of resources related to R2
 "resourceType": { # Related resource type
 "count": NN, # Number of related resources for R2
 "data": [
 { # First resource related to R2 starts
 "id": "relatedResourceID",
 "type": "resourceType"
 }, # First resource related to R2 ends
 ... # Other resources related to R2
] } }
 }, # Resource 2 ends here
 ...], # Resources 3 to N
 "links": { # Links relevant to collection
 ...
 },
 "included": { # List of related resources
 "resourceType": [# First related resource type
 {
 "attributes": { # Related resource 1 start
 ... # Related resource 1 name/value pairs
 "id": " relatedResourceID ",
 ... },
 "checksum": "0", # Related resource 1 checksum value
 "links": { ... } # Links relevant to Related resource 1
 },
 ... # Related resources 2 to end
] }
}

The related section (for a resource)
For every resource, there is an additional related section that identifies:

• The number of included resources, and
• The IDs of the included resources

For example, the following code snippet is from the response for a query for all activities and related notes. Activity
xc:44 has one included note, whose ID is xc:55.

{
 "attributes": {
 ...
 "id": "xc:44",
 ...
 "subject": "Check coverage"
 },
 "checksum": "2",

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

44 GETs and response payload structures

 "links": {
 ...
 },
 "related": {
 "notes": {
 "count": 1,
 "data": [
 {
 "id": "xc:55",
 "type": "Note"
 }
]
 }
 }
},

If a GET uses the included query parameter, but no related resources exist, the related section still appears. But, the
count is 0 and the data section is empty. For example:

"related": {
 "notes": {
 "count": 0,
 "data": []
 }
}

If a GET omits the included query parameter, the related section is omitted from the response payload.

The included section (for a response)
For every response, there is an included section that appears at the end of the response payload. It lists details about
every included resource for the primary resources.

For example, the following code snippet is from the included section from the previous example.

"included": {
 "Note": [
 {
 "attributes": {
 "author": {
 "displayName": "Betty Baker",
 "id": "demo_sample:8"
 },
 "bodySummary": "Main contact is on vacation 03/20",
 "confidential": false,
 "createdDate": "2020-03-30T23:11:33.346Z",
 "id": "xc:55",
 "relatedTo": {
 "displayName": "235-53-373871",
 "id": "demo_sample:8002",
 "type": "Claim"
 },
 "subject": "Main contact is on vacation 03/20",
 "topic": {
 "code": "general",
 "name": "General"
 },
 "updateTime": "2020-03-30T23:12:08.892Z"
 },
 "checksum": "0",
 "links": {
 "self": {
 "href": "/common/v1/notes/xc:55",
 "methods": [
 "get",
 "patch"
]
 }
 }
 }
]
},

Recall that activity xc:44 has one included note. The included note's ID is xc:55. The note shown in the included
section is the note related to activity xc:44.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

GETs and response payload structures 45

Including either a collection or a specific resource
For a given endpoint, some of the include options return a collection of resources for each primary resource. Other
include options return a single resource for each primary resource.

An example of the first case is GET /claims/{claimId}?include=contacts. This call returns the claim with the
given Claim ID and all ClaimContacts related to that claim. There are theoretically several related resources
(ClaimContacts) for each primary resource (the claim with the given Claim ID).

An example of the second case is GET /claims/{claimId}?include=mainContact. This call returns the claim with
the given Claim ID and the ClaimContact who is designated as the main contact. There is only a single related resource
(the main ClaimContact) for each primary resource (the claim with the given Claim ID).

You can also specify multiple include options, as in GET /claims/{claimId}?include=contacts,mainContact. In
this case, for each claim, the related section specifies the IDs of all related contacts and it also explicitly identifies the
ID of the main contact.

As a general rule, if an include option is named using a plural, it returns a set of resources for each primary resource. If
an include option is named using a singular, it returns a single resource for each primary resource.

Determining which resources can be included
For each endpoint, you can determine the resources that can be included by referring to the Swagger UI model for the
endpoint. There will be a data envelope in the model whose name ends with ...Inclusions. This data envelope lists
all the resources that can be included when querying for that type of resource.

For example, in the Common API, the model for GET /activities references an ActivityResponseInclusions
element. This element has a single child element - Note. This means that the only type of element you can include on
an activity query is notes.

If you attempt to include a resource type that a given endpoint does not support for inclusion, the API returns a 400
error code and message. For example, the following is the message if you attempt to do a GET /activities?
include=users:

"userMessage": "Bad value for the 'include' query parameter - The requested
inclusions '[users]' are not valid for this resource. The valid options are [notes]."

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

46 GETs and response payload structures

chapter 4

Refining response payloads

This topic discusses how to use query parameters to refine a request to customize the response payload. This is most
often done with GETs, but query parameters can also be used with POSTs and PATCHes.

If you want to interact directly with the concepts in this topic, go to the following tutorials:

• “Tutorial: Send a GET with the filter parameters” on page 50
• “Tutorial: Send a GET with the fields parameter” on page 53
• “Tutorial: Send a GET with the sort query parameter” on page 54
• “Tutorial: Send a GET with the pageSize and totalCount parameters” on page 57
• “Tutorial: Send a GET with query parameters for included resources” on page 59

Overview of query parameters
When you execute a system API call using only the endpoint (as in GET /activities), the response payload has a
default set of resources and a default structure.

You may want to refine the response payload beyond the default behavior by:

• Specifying a custom set of properties.
• Filtering out resources that do not meet a given criteria
• Sorting the resources
• Limiting the number of elements returned in each payload
• Retrieving a count of the total number of resources in the database that meet the query's criteria

You can refine the response payload using query parameters. A query parameter is an expression added to the HTTP
request that modifies the default response payload.

A system API call can include any number of query parameters. The list of query parameters starts with a question
mark (?). If there are multiple query parameters, each is separated by an ampersand (&). For example:

• GET /activities?fields=*all
• GET /activities?filter=escalated:eq:false
• GET /activities?fields=*all&filter=escalated:eq:false

Included resources

You can use the include query parameter to include resources related to the primary resources of the response. You
can also use query parameters to specify a custom set of properties for included resources, filter out included resources
that do not meet a given criteria, sort the included resources, and so on. For more information, see “Using query
parameters on included resources” on page 57.

Refining response payloads 47

Viewing query parameter documentation in Swagger UI
For every endpoint, Swagger UI provides descriptions of the query parameters supported by that endpoint. This
information is hidden by default. To show the descriptions, click the endpoint's operation button (such as the GET
button for GET /activities). The query parameter descriptions appear under the endpoint.

Parameter definitions

The Parameters section describes each query parameter.

Supported parameters

The Responses section include a Model tab. This tab provides information about the fields that support particular query
parameters. For example, you can sort results on some fields, but not all of them. The fields that support sorting appear
in the model with the text "sortable": true.

Query parameter error messages
If you attempt to use a query parameter on a field that does not support that parameter, the system API returns a 400
Bad Request error and an error message. For example, if you execute: GET /activities?sort=escalationDate, the
system API provides the following error message:

"message": "The sort column 'escalationDate' is not a valid option. The valid
 sort options are [assignedUser, dueDate, escalated, priority, status, subject],
 optionally prefixed with '-' to indicate a descending sort."

Specifying the resources and fields to return
You can use query parameters to:

• Specify filtering criteria to narrow which resources are returned
• Specify which fields you want returned for the resources that are returned

Filtering GETs
You can narrow which resources are returned using the filter keyword followed by one or more criteria. The criteria
are specified using the following syntax:

?filter=field:op:value

where:

• field is the name of a filterable field
• op is one of the comparison operators from the following table
• value is the value to compare

op value Meaning Example using the GET /activities endpoint Returns activities where...
eq Equal ?filter=escalated:eq:true ...the escalated field equals true

ne Not equal ?filter=escalated:ne:true ...the escalated field equals false

lt Less than ?filter=dueDate:lt:
2020-05-11T07::00::00.000Z

...the due date is less than (before) May 11,
2020.

gt Greater than ?filter=dueDate:gt:
2020-05-11T07::00::00.000Z

...the due date is greater than (after) May
11, 2020.

le Less than or equal ?filter=dueDate:le:
2020-05-11T07::00::00.000Z

...the due date is less than or equal to (on
or before) May 11, 2020.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

48 Refining response payloads

ge Greater than or equal ?filter=dueDate:ge:
2020-05-11T07::00::00.000Z

...the due date is greater than or equal to
(on or after) May 11, 2020.

in In ?filter=priority:in:urgent,high ...the priority is either urgent or high

ni Not in ?filter=priority:ni:urgent,high ...the priority is neither urgent nor high

sw Starts with ?filter=subject:sw:Contact
%20claimant

...the subject starts with the string "Contact
claimant"

cn Contains ?filter=subject:cn:Contact
%20claimant

...the subject contains the string "Contact
claimant"

The query parameter is passed as part of a URL. Therefore, special conventions must be used for certain types of
values to ensure the URL can be parsed correctly.

• Specify strings without surrounding quotes. If a string has a space in it, use the URL encoding for a space (%20).
(For example, ?filter=subject:sw:Contact%20claimant)

• Specify Booleans as either true or false. (For example, ?filter=escalated:eq:true)
• Date and datetime fields must be specified as an ISO-8601 datetime value. All datetime fields can accept either date

values or datetime values. For datetime values, the colons in the value must be expressed as "::". The first colon
acts as an escape character. For example, "due date is less than 2020-04-03T15:00:00.000Z" is specified as ?
filter=dueDate:lt:2020-05-11T07::00::00.000Z.

References to typekey fields automatically resolve to the field's code. For example, to filter on activities whose priority
is set to urgent, use: GET /activities?filter=priority:eq:urgent.

You can also use the filter query for related resources added through the include parameter. For more information, see
“Using query parameters on included resources” on page 57.

Determining which values you can filter on

For a given endpoint, you can identify the attributes that are filterable by reviewing the endpoint Model in Swagger UI.
If a field is filterable, then the schema description of the field includes the text: "filterable": true.

For example, the following is the schema description for two fields returned by the Common API's /activities
endpoint.

escalated boolean
 readOnly: true
 x-gw-extensions: OrderedMap { "filterable": true, "sortable": true }
escalationDate string($date-time)
 x-gw-nullable: true

Note that the escalated field includes the "filterable": true expression, but the escalationDate field does not.
This means that you can filter on escalated, but not escalationDate.

Do not filter on the id property

In general, endpoints do not have an id property that is filterable. When you want to retrieve a specific resource, use an
element endpoint rather than a collection endpoint with a filter on id. For example, do not attempt to query for activity
xc:20 with this call:

GET /activities?filter=id:eq:xc::20

Use this call:

GET /activities/xc:20

Filtering on multiple values

You can include multiple filter criteria. To do this, each criteria requires its own filter expression. Separate the
expressions with an ampersand (&). The syntax is:

?filter=field:op:value&filter=field:op:value

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Refining response payloads 49

When multiple criteria are specified, the criteria are ANDed together. Resources must meet all criteria to be included in
the response. For example, the following GET returns only high priority activities that have not been escalated.

GET /activities?filter=priority:eq:high&filter=escalated:eq:false

Endpoints with default filters

Some endpoints have default filters. For example, the /claims endpoint has a default filter that returns only claims
assigned to the caller making the API call.

You can identify whether an endpoint has a default filter by checking the endpoint summary in Swagger UI. The
summary is visible after you click the GET button in Swagger UI for the given endpoint.

For example, the summary for the /claims endpoint says: "Retrieve a list of claims, by default those assigned to the
current user."

You can use the filter query parameter to override default filters. For example, if you are a caller who is authorized
to view claims not assigned to you (such as the super user su), the following GET returns claims assigned to Betty
Baker: GET claims?filter=assignedUser:eq:demo_sample::8

If you add a filter query parameter on an endpoint with a default filter, the default filter is discarded. If you want the
response payload to reflect both the default filter and a custom filter, you must specify both explicitly.

Tutorial: Send a GET with the filter parameters
This tutorial assumes you have set up your environment with Postman and the correct sample data set. For more
information, see “Tutorial: Set up your Postman environment” on page 21.

Tutorial steps

1. In Postman, start a new request by clicking the + to the right of the Launchpad tab.
2. Specify Basic Auth authorization using user aapplegate and password gw.
3. Enter the following and click Send:

GET http://localhost:8080/cc/rest/common/v1/activities
4. Open a second request tab and specify Basic Auth authorization using user aapplegate and password gw.
5. Enter the following and click Send:

GET http://localhost:8080/cc/rest/common/v1/activities?filter=priority:eq:high

Checking your work

Compare the two payloads. Note that the first response payload includes all activities, whereas the second response
payload contains only the activities with a high priority.

Specifying which fields to GET
Every endpoint returns a default set of fields. You can override this default set using the fields parameter. This is
useful when you need properties not returned by default, or when you want to avoid getting properties that are not
necessary. (You can also use the fields query parameter for related resources added through the include parameter.
For more information, see “Using query parameters on included resources” on page 57.)

The fields parameter can be set to one or more of the following values:

• *all - Return all fields
• *default - Return the default fields (typically used in conjunction with an additional field list)
• field_list - Return one or more fields specified as a comma-delimited list

The set of fields returned by default

For endpoints that return a single element, the default fields to return are defined in a "detail" list. Similarly, for
endpoints that return a collection, the default fields to return are defined in a "summary" list.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

50 Refining response payloads

For example, the following list compares the detail fields for a claim resource (for example, the default fields for the /
claims/{claimId} endpoint) and the summary fields returned for a claim collection (for example, the default fields
for the /claims endpoint). Fields included in the Detail only are in bold:

• Detail: assignedGroup, assignedUser, assignmentStatus, claimNumber, description, faultRating, flagged,
id, incidentOnly, insured, jurisdiction, lobCode, lossCause, lossDate, lossLocation, lossType,
mainContact, policyAddresses, policyNumber, reportedByType, reportedDate, reporter, segment, state,
strategy, validationLevel

• Summary: assignedGroup, assignedUser, assignmentStatus, claimNumber, faultRating, flagged, id,
incidentOnly, insured, jurisdiction, lobCode, lossCause, lossDate, lossType, mainContact,
policyNumber, reportedByType, reportedDate, reporter, segment, state, strategy, validationLevel

The fields parameter has three options related to these default sets:

• *detail - Returns the fields in the detail list
• *summary - Returns the fields in the summary list
• *default - Returns the fields in the detail list (if the endpoint returns a single element) or the fields in the summary

list (if the endpoint returns a collection)

For endpoints that return a single element:

• ?fields=*default and ?fields=*detail are logically equivalent.
• You can override the default behavior by using ?fields=*summary, which returns the summary fields instead of the

detail fields.

For endpoints that return a collection:

• ?fields=*default and ?fields=*summary are logically equivalent.
• You can override the default behavior by using ?fields=*detail, which returns the detail fields instead of the

summary fields.

Some API calls need a set of fields that is not exactly equivalent to either the detail list or the summary list. These calls
can name specific fields, either on their own or in addition to a default list of fields. They can also specify all fields.

Returning the default properties plus additional specific properties

To return the default fields of an endpoint with an additional set of fields, use:

?fields=*default,field_list

where field_list is a comma-delimited list of fields.

For example, the following query returns all default fields for activity xc:20 as well as the description and the start
date.

GET /activities/xc:20?fields=*default,description,startDate

Returning a specific set of properties

To return a specific set of fields, use:

?fields=field_list

where field_list is a comma-delimited list of fields.

For example, the following query returns only the description and the start date for activity xc:20:

GET /activities/xc:20?fields=description,startDate

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Refining response payloads 51

Returning a specific set of properties on inlined resources

Some response payloads include inlined resources in the attributes section. For example, the following is a snippet
of the response for a GET /activities. This payload contains two inline resources, assignedGroup and
assignedUser.

"attributes": {
 "activityPattern": "contact_claimant",
 "assignedGroup": {
 "displayName": "Auto1 - TeamA",
 "id": "demo_sample:31"
 },
 "assignedUser": {
 "displayName": "Andy Applegate",
 "id": "demo_sample:1"
 },
 "closeDate": "2020-04-06T07:00:00.000Z",
 "dueDate": "2020-04-06T07:00:00.000Z",
 "escalated": false,
 "id": "cc:20",
 ...
}

You can use the fields query parameter to specify an inlined resource. When you do, all default fields for that
resource are returned. For example, you could specify that you want a GET /activities to return only the
assignedGroup and assignedUser fields (and all of their default subfields) using the following:

GET /activities?fields=assignedGroup,assignedUser

This would return:

"attributes": {
 "assignedGroup": {
 "displayName": "Auto1 - TeamA",
 "id": "demo_sample:31"
 },
 "assignedUser": {
 "displayName": "Andy Applegate",
 "id": "demo_sample:1"
 }
}

You can also specify specific subfields using the following syntax:

?fields=inlinedResourceName.fieldName

For example, you could specify that you want a GET /activities to return only the IDs of the assigned user and
group using the following:

GET /activities?fields=assignedGroup.id,assignedUser.id

This would return:

"attributes": {
 "assignedGroup": {
 "id": "demo_sample:31"
 },
 "assignedUser": {
 "id": "demo_sample:1"
 }
}

Returning all properties

To return all of the fields that an endpoint is configured to return, use:

?fields=*all

For example, the following query returns all the possible fields for activity xc:20.

GET /activities/xc:20?fields=*all

Note that the *all query parameter returns all fields that the caller is authorized to view. If there are fields on a
resource that a caller is not authorized to view, they are excluded from queries using the *all query parameter.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

52 Refining response payloads

Tutorial: Send a GET with the fields parameter
This tutorial assumes you have set up your environment with Postman and the correct sample data set. For more
information, see “Tutorial: Set up your Postman environment” on page 21.

Tutorial steps

1. In Postman, start a new request by clicking the + to the right of the Launchpad tab.
2. Specify Basic Auth authorization using user aapplegate and password gw.
3. Enter the following and click Send:

GET http://localhost:8080/cc/rest/common/v1/activities
4. Open a second request tab and specify Basic Auth authorization using user aapplegate and password gw.
5. Enter the following and click Send:

GET http://localhost:8080/cc/rest/common/v1/activities?fields=id,subject

Checking your work

Compare the two payloads. Note that the first response payload includes the default fields for activities, whereas the
second response payload includes only the id and subject fields.

Sorting the result set
For endpoints that return collections, you can sort the elements in the collection. To do this, use:

?sort=properties_list

where properties_list is a comma-delimited list of properties that support sorting for that endpoint.

For example, the following query returns all activities assigned to the current caller and sorts them by due date:

GET /activities?sort=dueDate

You can specify multiple sort properties. Resources are sorted based on the first property. Any resources with the same
value for the first property are then sorted by the second property, and so on. For example, the following query returns
all activities assigned to the current caller and sorts them first by escalation status and then by due date:

GET /activities?sort=escalated,dueDate

You can also use the sort query for related resources added through the include parameter. For more information, see
“Using query parameters on included resources” on page 57.

Sort orders

The default sort order is ascending. To specify a descending sort, prefix the property name with a hyphen (-). For
example, the following queries return all activities assigned to the current caller, sorted by due date. The first query
sorts them in ascending order. The second sorts them in descending order.

GET /activities?sort=dueDate

GET /activities?sort=-dueDate

Determining which values you can sort on

For a given endpoint, you can identify the attributes that are sortable by reviewing the endpoint Model in Swagger UI.
If a field is sortable, then the schema description of the field includes the text: "sortable": true.

For example, the following is the schema description for two fields returned by the Common API's /activities
endpoint.

escalated boolean
 readOnly: true
 x-gw-extensions: OrderedMap { "filterable": true, "sortable": true }

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Refining response payloads 53

escalationDate string($date-time)
 x-gw-nullable: true

Note that the escalated field includes the "sortable": true expression, but the escalationDate field does not.
This means that you can sort on escalated, but not escalationDate.

Tutorial: Send a GET with the sort query parameter
This tutorial assumes you have set up your environment with Postman and the correct sample data set. For more
information, see “Tutorial: Set up your Postman environment” on page 21.

Tutorial steps

1. In Postman, start a new request by clicking the + to the right of the Launchpad tab.
2. Specify Basic Auth authorization using user aapplegate and password gw.
3. Enter the following and click Send:

GET http://localhost:8080/cc/rest/common/v1/activities
4. Open a second request tab and specify Basic Auth authorization using user aapplegate and password gw.
5. Enter the following and click Send:

GET http://localhost:8080/cc/rest/common/v1/activities?sort=dueDate

Checking your results

Compare the two payloads. In the first response payload, the activities are not sorted. In the second response payload,
the activities are sorted by due date.

Controlling pagination
Some endpoints return collections. However, the entire collection is typically not returned in a single call. Instead, only
the first N resources are returned in the first payload. A caller can use "previous" and "next" links to access additional
payloads with the previous or next "page" of N resources. The practice of separating a list of resources into discrete
groups that can be paged through is referred to as pagination.

Every endpoint that returns a collection has default pagination behaviors. Each payload contains one page of resources.
There are several query parameters that refine these behaviors.

Limiting the number of resources per payload
GETs that return collections typically return multiple root resources. You can use the pageSize parameter to limit the
number of root resources returned in a given payload. This can be useful when a query may return more resources than
what is practical for performance and parsing. To limit the number, use the following syntax:

pageSize=n

where n is the maximum number of resources per payload to return. For example:

GET /activities?pageSize=20

Every resource type has a default pageSize. This value is used when the query does not specify a pageSize. You can
specify a pageSize less than or greater than the default pageSize.

Also, every resource has a maximum pageSize, and you cannot execute a query with a pageSize larger than the
maximum.

For example, suppose a given user has 125 activities, and the activities resource has a default pageSize of 25 and
maximum pageSize of 100.

• GET /activities returns the first 25 activities (using the default pageSize value).
• GET /activities?pageSize=10 returns the first 10 activities.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

54 Refining response payloads

• GET /activities?pageSize=30 returns the first 30 activities.
• GET /activities?pagesize=120 returns an error because the value for pageSize exceeds the maximum for the

resource.

The pageSize values for a resource defaults to defaultPageSize=25 and maxPageSize=100. Individual resources may
override these values in the API's apiconfig.yaml file. (For example, in claim-1.0apiconfig.yaml, the
ActivityPatterns resource overrides the default values and uses defaultPageSize=100 and maxPageSize=500.)

You can also use the pageSize query for related resources added through the include parameter. For more
information, see “Using query parameters on included resources” on page 57.

Selecting a single resource in a collection
When a response payload contains a collection, every element in the collection is listed in the data section of the
payload. For every element, there is a links section that contains endpoints relevant to that element. One of the links is
the self link. For example:

{
 "attributes": {
 ...
 "id": "cc:32",
 ... },
 ...
 "links": {
 ...
 "self": {
 "href": "/common/v1/activities/cc:32",
 "methods": [
 "get",
 "patch"
]
 }
 }
}

The href property of the self link is an endpoint to that specific element. When necessary, you can use this link to
construct a call to act on that element.

Paging through resources
Whenever a response payload includes some but not all of the available resources, the payload also include a
collection-level links section at the bottom. These links provide operations and endpoints you can use to act on a
specific "page" of resources. (In the following descriptions, N is the pageSize of the query.)

• The first link is an endpoint to the first N elements.
◦ This appears for all collections.

• The prev link is an endpoint to the N elements before the current set of elements.
◦ This appears if there are elements earlier than the elements in the payload.

• The next link is an endpoint to the N elements after the current set of elements.
◦ This appears if there are elements later than the elements in the payload.

• The self link is an endpoint to the current set of elements.
◦ This always appears (for elements and for collections).

For example, suppose there are 25 activities assigned to the current owner. The response payloads have a pageSize of
5, and a specific payload has the second set of activities (activities 6 through 10). The collection-level links for this
payload would be:

"links": {
 "first": {
 "href": "/common/v1/activities?pageSize=5&fields=id",
 "methods": [
 "get"
]
 },
 "next": {
 "href": "/common/v1/activities?pageSize=5&fields=id&pageOffset=10",

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Refining response payloads 55

 "methods": [
 "get"
]
 },
 "prev": {
 "href": "/common/v1/activities?pageSize=5&fields=id",
 "methods": [
 "get"
]
 },
 "self": {
 "href": "/common/v1/activities?pageSize=5&fields=id&pageOffset=5",
 "methods": [
 "get"
]
 }
}

To access a collection that starts with a specific resource, the system APIs use a pageOffset parameter. This parameter
is used in the prev and next links for a collection. The pageOffset index starts with 0, so a theoretical pageOffset=0
would start with the first element and pageOffset=5 skips the first 5 elements and starts with the sixth.

There can be some complexity involved in determining how to construct a link with the correct pageOffset value.
Therefore, Guidewire recommends that you use the prev and next provided in response payloads and avoid
constructing pageOffset queries of your own.

Retrieving the total number of resources
When querying for data, you can get the total number of resources that meet the criteria. To get this number, use the
following syntax:

includeTotal=true

When you submit this query parameter, the payload includes an additional total value that specifies the total. For
example:

"total": 72

When the includeTotal query parameter is used, the response payload contains two counting values:

• count - The number of resources returned in this payload.
• total - The total number of resources that meet the query's criteria.

If the total number of resources that meet the criteria is less than or equal to the pageSize, then count and total are
the same. If the total number of resources that meet the criteria is greater than the pageSize, then count is less than
total. count can never be greater than total.

For performance reasons, Guidewire will count the total number of items up to 1000 only. If a total value is equal to
1000, the actual count could be 1000 or some number greater than 1000.

Note: If the number of resources to total is sufficiently large, using the includeTotal parameter can affect
performance. Guidewire recommends you use this parameter only when there is a need for it, and only when
the number of resources to total is unlikely to affect performance.

In some situations, you may be interested in retrieving only the total number of resources that meet a given criteria,
without needing any information from any specific resource. However, a GET cannot return only an included total. If
there are resources that meet the criteria, it must return the first N set of resources and at least one field for each
resource. For calls that are sent to retrieve only the total number of resources, Guidewire recommends using a call with
query parameters that return the smallest amount of resource information, such as GET ...?
includeTotal=true&fields=id&pageSize=1.

You can also use the includeTotal query for related resources added through the include parameter. For more
information, see “Using query parameters on included resources” on page 57.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

56 Refining response payloads

Tutorial: Send a GET with the pageSize and totalCount parameters
This tutorial assumes you have set up your environment with Postman and the correct sample data set. For more
information, see “Tutorial: Set up your Postman environment” on page 21.

Tutorial steps

1. In Postman, start a new request by clicking the + to the right of the Launchpad tab.
2. Specify Basic Auth authorization using user aapplegate and password gw.
3. Enter the following and click Send:

GET http://localhost:8080/cc/rest/common/v1/activities
4. Open a second request tab and specify Basic Auth authorization using user aapplegate and password gw.
5. Enter the following and click Send:

GET http://localhost:8080/cc/rest/common/v1/activities?pageSize=10&includeTotal=true

Checking your work

Compare the two payloads. In the first payload, the count of activities included in the payload is 25. Also, there is no
count for the total number of activities the endpoint could return. In the second payload, the count of activities included
in the payload is 10. Also, the count for the total number of activities the endpoint could return is 30. (This appears at
the end of the payload.)

Using query parameters on included resources
Some endpoints support the ability to query for a given type of resource and for resource types related to that type. For
example, by default, the GET /activities endpoint returns only activity resources. However, you can use the
include query parameter to include any notes related to the returned activities in the response payload. These types of
resources are referred to as included resources. The technique of adding included resources to a GET is sometimes
referred to as response inclusion or read inclusion.

The syntax for adding included resources is:

?include=<resourceName>

For example GET /activities?include=notes returns all activities assigned to the current caller, and all notes
associated with those activities.

For more information on the default behavior of include, see “Payload structure for a response with included
resources” on page 42.

Most query parameters that can be used on primary resources can also be used on included resources.

Specifying query parameters that apply to an included resource
The general pattern for query expressions on included resources is to specify the included resource name somewhere in
the expression's value. For example, the following call gets all activities assigned to the current user and any related
notes. The number of notes returned is limited to 5.

GET /activities?include=notes&pageSize=notes:5

Included resources and primary resources

Query expressions for included resources are independent of query expressions for primary resources. There could be a
query expression for primary resources only, for included resources only, or for both. For example, the following three
queries all return activities and their related notes. But, the impact of the pageSize parameter varies.

• GET /activities?pageSize=7&include=notes
◦ The response is limited to 7 activities.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Refining response payloads 57

◦ There is no limit on notes.
• GET /activities?include=notes&pageSize=notes:5

◦ There is no limit on activities.
◦ The response is limited to 5 notes per activity.

• GET /activities?pageSize=7&include=notes&pageSize=notes:5
◦ The response is limited to 7 activities.
◦ The response is limited to 5 notes per activity.

Included resources and other included resources

Query expressions for each included resource are also independent of query expressions for other included resources. If
a given GET includes multiple included resources and you want to apply a given query expression to all included
resources, you must specify the query expression for each included resource.

For example, suppose you want to GET all claims. But you want the response payload to include only the main contact
and reporter, and you want only the id, primary phone, and work phone for these contacts. To get this response, you
must send the following:

GET /claims?include=mainContact,reporter
 &fields=mainContact,reporter
 &fields=mainContact:id,primaryPhone,workPhone
 &fields=reporter:id,primaryPhone,workPhone

Note that, in this example, the logic to restrict the returned fields to only id, primary phone, and work phone needs to
be specified for each included resource.

Summary of query parameters for included resources
The filter parameter

You can filter out included resources that do not meet a given criteria.

• Syntax: filter=resource:field:op:value
• Example:

GET claim/v1/claims/demo_sample:1?
 include=activities&
 filter=activities:escalated:eq:true

• Returns: Claim demo_sample:1 and its included activities that have been escalated

The fields parameter

You can specify which fields you want returned in the included resources.

• Syntax: fields=resource:field_list
• Example:

GET claim/v1/claims/demo_sample:1?
 include=activities&
 fields=activities:id,dueDate

• Returns: Claim demo_sample:1 and its included activities. For the activities, return only id and dueDate.

The sort parameter

You can sort the included resources. This sorting is reflected in both the payload's related sections and the included
section.

• Syntax: sort=resource:properties_list
• Example:

GET claim/v1/claims/demo_sample:1?
 include=activities&
 sort=activities:dueDate

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

58 Refining response payloads

• Returns: Claim demo_sample:1 and its included activities, sorted by their due date.

The pageSize parameter

You can specify a maximum number of included resources per root resource. Also, when you use pageSize on
included resources, there are no prev and next links at the included resource level.

• Syntax: pageSize=resource:n
• Example:

GET claim/v1/claims/demo_sample:1?
 include=activities&
 pageSize=activities:5

• Returns: Claim demo_sample:1 and up to 5 of its included activities.

The includeTotal parameter

You can include the total number of included resources.

• Syntax: includeTotal=resource:true
• Example:

GET claim/v1/claims/demo_sample:1?
 include=activities&
 includeTotal=activities:true

• Returns: Claim demo_sample:1, its included activities, and the total number of included activities for
demo_sample:1.

Tutorial: Send a GET with query parameters for included resources
This tutorial assumes you have set up your environment with Postman and the correct sample data set. For more
information, see “Tutorial: Set up your Postman environment” on page 21.

Tutorial steps

1. In Postman, start a new request by clicking the + to the right of the Launchpad tab.
2. Specify Basic Auth authorization using user aapplegate and password gw.
3. Enter the following and click Send:

GET http://localhost:8080/cc/rest/common/v1/activities?included=notes
4. Open a second request tab and specify Basic Auth authorization using user aapplegate and password gw.
5. Enter the following and click Send:

GET http://localhost:8080/cc/rest/common/v1/activities?
included=notes&fields=id,subject&filter=notes:escalated

Checking your results

Compare the two payloads. Note the following differences:

In the first payload:

• For activities, the default activity fields are returned.
• For notes, all notes are returned.

In the second payload:

• For activities, only the id and subject fields are returned.
• For notes, only the escalated notes are returned.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Refining response payloads 59

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

60 Refining response payloads

chapter 5

POSTs and request payload structures

This topic discusses the POST operation and how to construct a request payload for creating a single resource. For
information on how to create request payloads that specify multiple resources, see “Reducing the number of calls” on
page 79.

If you want to interact directly with the concepts in this topic, go to the following tutorials:

• “Tutorial: Create a new note that specifies required fields only” on page 67
• “Tutorial: Create a new note that specifies optional fields” on page 68

Overview of POSTs
A POST is a system API operation that creates a resource or a set of related resources in ClaimCenter. The POST
operation is also used to execute specific business processes, such as assigning an activity.

A POST consists of the POST operation and the endpoint, such as POST /activities/{activityId}/notes, and a
request payload. The request payload contains data about the resource to create.

The response to a POST includes an HTTP code indicating success or failure. It also includes a response payload. The
contents of the response payload is determined by the endpoint's schema.

• For an endpoint used to create data, the response payload contains data from the request payload. It may also
contain data generated by ClaimCenter, such as IDs and timestamps.

• For an endpoint used to execute a business action, the response payload is a resource related to the business action.
It could be the resource on which the action was executed. For example, when assigning an activity, the response
payload contains the assigned activity. It could also be a resource generated by the business action. For example,
when canceling a policy the response payload contains a JobResponse.

When a developer is configuring a caller application to POST information to a system API, they will need to determine
the correct structure for the request payload. They may also need to parse information out of the response payload. The
remainder of this topic discusses how request payloads for resources are structured and how developers can learn about
request payload formats.

POSTs are also used to execute business actions. For these types of POSTs, request payloads may be unnecessary,
optional, or required. For example:

• A POST that completes an activity does not require a request payload.
◦ You can optionally provide a request payload to add a note to the completed activity.

• A POST that assigns an activity requires a request payload. The payload specifies how to assign the activity.

POSTs and request payload structures 61

Standardizing payload structures
Communication between caller applications and system APIs is easier to manage when the information in the payloads
follows a standard structure. The system APIs have standard structures for both request payloads and response
payloads. The structures are defined by data envelopes, and by request and response schemas.

Standardizing information common to all endpoints

A data envelope is a wrapper that wraps JSON sent to or returned from the system APIs. To maintain a standard
payload structure, the system APIs use two data envelopes: DataEnvelope and DataListEnvelope.

DataEnvelope is used to standardize the format of information for a single element. It specifies a data property with
the following properties: checksum, id, links (for a single element), method, refid, related, type and uri. At a
high level, the format of a payload for a single element looks like:

{
 "data": {
 "checksum": ...,
 "id": ...,
 "links": ...,
 "method": ...,
 "refid": ...,
 "related": ...,
 "type": ...,
 "uri": ...
 }
 }
}

DataListEnvelope is used to standardize the format of information for collections. It specifies the following
properties, which are siblings to the data section: count, links (for a collection), and total. At a high level, the
format of a payload for a single element looks like:

{
 "count" ...,
 "data": [
 { properties_for_element_1 },
 { properties_for_element_2 },
 ...
],
 "links": ...,
 "total": ...
}

Every property does not appear in every payload. There are different reasons why a property may not appear in a given
payload. For example:

• Some properties, such as refid, apply only to requests and do not appear in response payloads.
• Some properties, such as count, apply only to responses and do not appear in request payloads.
• Some properties, such as related, do not appear by default and appear only when the request includes certain

query parameters.

Standardizing information specific to a given endpoint

DataEnvelope and DataListEnvelope provide a standard format for information that is applicable to all request and
response payloads. But, different endpoints interact with different types of resources. For each endpoint, some portion
of the payload must provide information about a specific type of resource.

To address this, the system APIs also use request schemas and response schemas. A request schema is a schema that is
used to define the valid structure of a request payload for a specific set of endpoints. Similarly, a response schema is a
schema that is used to define the valid structure of a response payload for a specific set of endpoints.

Request and response schemas are hierarchical. For example, for responses, the GET /activity/{activityId}
endpoint uses the ActivityResponse schema. This schema has two child schemas: ActivityData and
ActivityResponseInclusions.

Request and response schemas extend DataEnvelope or DataListEnvelope. This ensures that information relevant to
all endpoints appears in payloads in a standard way.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

62 POSTs and request payload structures

Request and response schemas also define an attributes property for the payload. This property is associated with a
schema that includes resource-specific information for the payload. For example, the GET /activity/{activityId}
endpoint specifies an attributes property in the ActivityData child schema. This property is associated with the
Activity schema, which contains activity-specific fields, such as activityPattern and activityType. As a result,
response payloads for the GET /activity/{activityId} endpoint have this structure:

{
 "data": {
 "checksum": ...,
 "attributes" : {
 "activityPattern": ... ,
 "activityType": ...,
 ...},
 "id": ...,
 "links": ...,
 "method": ...,
 "refid": ...,
 "related": ...,
 "type": ...,
 "uri": ...
 }
 }
}

Viewing request schemas
You can use Swagger UI to review the structure of a request payload for a given endpoint. This includes the hierarchy
of schemas and the type of information in each schema. The information appears in the description of the endpoint's
body parameter on the Model tabs.

View a request schema in Swagger UI
Procedure

1. Start ClaimCenter.
2. In a web browser, navigate to the Swagger UI for the appropriate API.

• For more information, see “View a system API using Swagger UI” on page 25.
3. Click the operation button for the appropriate endpoint. Swagger UI shows details about that endpoint underneath

the endpoint name.
• For example, to view the request schema for POST /activities/{activityID}/notes, click the POST

button for that endpoint.
4. Scroll down to the Body entry in the Parameters section. The Model tab shows the hierarchy of data envelopes for

this endpoint, and the contents of each data envelope.

Designing a request payload

Determining the required, optional, and write-only fields
Within the context of a request payload, each field of a given resource is either:

• Required - This field must be included.
• Optional - This field can be included or omitted.
• Read-only - This field cannot be included.

Required fields

A required field must be included in the request payload. A field can be required for one of several reasons:

• The field is marked as required on the associated schema, and therefore must be included on all POSTs using that
schema.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

POSTs and request payload structures 63

• The field is not marked as required on the associated schema, but it is always required by ClaimCenter. (For
example, the underlying database column could be marked as non-nullable with no default and the application does
not generate a value for it.)

• The field is not required by the API, but it is sometimes required by ClaimCenter. (For example, there could be a
validation rule in ClaimCenter that says non-confidential documents do not require an author, but confidential
documents do. Therefore, the author field is required only some of the time.)

Whether a field is required or allowed in a POST does not always match the requiredness of the corresponding data
model entity or database column. For example:

• A field may be marked as non-nullable in the database (and therefore "required"). But, ClaimCenter always
generates a value for it. Therefore, the field is marked as read-only and not required in the API schema.

• A field may be marked as non-nullable in the database (and therefore "required") and required when an object is
created. But once the object is created, the value of the field cannot be changed. Therefore, the field is required for
creation, but read-only for updates.

Determining that a field is required by the API

If a field is required by the API, the schema specifies the following property for the field:

"requiredForCreate": true

For example, the Claim API has a POST claim/{claimId}/contacts endpoint that creates a contact for a given
claim. One of the data envelopes used by this endpoint to define the request schema is the ClaimContact schema. It
contains the following:

contactSubtype string
 x-gw-type: typekey.Contact
 x-gw-extensions: OrderedMap { "createOnly": true,
 "requiredForCreate": true }
dateOfBirth string($date)
 x-gw-nullable: true
 x-gw-extensions: OrderedMap { "before": "now",
 "entitySubtype": "Person" }

Note that the contactSubtype field has the "requiredForCreate": true property, whereas the dateOfBirth field
does not. This means that the API requires a contact subtype for contact creation, but not a date of birth.

Determining that a field is required by the application

If a field is not required by the API but is required by the application, the only way to identify this is to send a request
to the application. If there is a required value that is missing from the request payload, you will get a
BadInputException response with a message identifying the missing fields. For example:

{
 "status": 400,
 "errorCode": "gw.api.rest.exceptions.BadInputException",
 "userMessage": "The 'body' field is required when creating notes"
 }

Read-only fields

Read-only fields are fields that are set within the application (either by a user or by application logic) and cannot be set
or modified by system API calls. Read-only fields are listed in the request schema as readonly: true. You can view
this information in Swagger UI from the endpoint's Model tab.

For example, this is the Model text for the POST /activity/{activityId}/notes endpoint's createDate field:

createdDate string($date-time)
 readOnly: true

You cannot include read-only values in a request payload. If you do, the API returns a BadInputException with an
error message such as:

"message": "Property 'createdDate' is defined as read-only and cannot be specified on inputs"

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

64 POSTs and request payload structures

Optional fields

From a technical perspective, any field that is neither required nor read-only is optional. These fields can be either
include or omitted as appropriate.

Request payload structure
The basic structure for a request payload that creates a single resource is:

{
 "data":
 {
 "attributes": {
 <field/value pairs are specified here>
 }
 }
}

For example, this request payload could be used to create a note:

{
 "data":
 {
 "attributes": {
 "subject": "Main contact vacation",
 "body": "Rodney is on vacation for the entire month of June.
 During this time, direct any questions to Sarah Jackson.",
 "confidential": false,
 "topic": {
 "code": "general"
 }
 }
 }
}

In some situations, you can create an object using an "empty body" (a body that specifies no values). An object created
in this way will contain only default values. In these situations, the payload has an empty attributes section:

{
 "data":
 {
 "attributes": {
 }
 }
}

Specifying scalar values in a request payload
Formats for values are the same for request payloads and response payloads. For a given field, you can use its format in
a response payload as a model for how to build a request payload.

On a schema, field value types for scalar values are marked using the type property. In request payloads, scalar values
follow these patterns:

Field value type Pattern Example Notes

String "fieldName" : "value" "firstName" : "Ray",
"id": "demo_date:12"

IDs are considered strings.

Integer "fieldName" : value "numDaysInRatedTerm": 180 Unlike the other scalar value types,
integer, Boolean, and null values are
expressed without quotation marks.

Decimal "fieldName" : "value" "speed": "60.0"

Date "fieldName" : "value" "dateReported":
"2020-04-09"

Expressed using the format
YYYY-MM-DD

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

POSTs and request payload structures 65

Field value type Pattern Example Notes
Datetime "fieldName" : "value" "createdDate":

"2020-04-09T18:24:57.
256Z"

Expressed using the format
YYYY-MM-DDT
hh:mm:ss.fffZ
where T and Z are literal values.

Boolean "fieldName" : value "confidential": false Unlike the other scalar value types,
integer, Boolean, and null values are
expressed without quotation marks.

Fields with NULL values "fieldName" : null "directValue": null You can set any scalar value to null.
Express it without quotation marks.

IDs

ID values are assigned by ClaimCenter. Therefore, you cannot specify an ID for an object that is being created.
However, you can specify IDs when identifying an existing object that the new object is related to.

Specifying objects in a request payload
The syntax for specifying an object is:

"objectName": {
 "field1": value_or_"value",
 "field2": value_or_"value",
 ...
 }

For example:

"assignedUser": {
 "displayName": "Andy Applegate",
 "isActive": true
 }

The value of each object's field either uses or does not use quotation marks based on the datatype of the field. (For
example, assignedUser has a displayName field. The value for this field is a string, so the value is specified in quotes.
If assignedUser also had an isActive field, which was a Boolean, the value would be specified as either true or
false without quotes.

Typekeys and money values are expressed in objects. Each of these are specified using a standard pattern.

Typekeys

Typekeys use the following format:

"field": {
 "code": "value"
}

For example:

"priority": {
 "code": "urgent"
}

Typekeys also have a name field, which is included in responses. But, the name field is not required. If you include it in
a request schema, it is ignored.

Monetary amounts

Monetary amounts use the following format:

"field": {
 "amount": "amountValue",

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

66 POSTs and request payload structures

 "currency": "currencyCode"
}

For example:

"transactionAmount": {
 "amount": "500.00",
 "currency": "usd"
}

(Note that in the system APIs, the datatype is referred to as MonetaryAmount. But in ClaimCenter, these values are
actually stored using the CurrencyAmount datatype.)

Related objects

For information on how to specify related objects in a request payload, see “Request inclusion” on page 80.

Sending POSTs
You use a request tool, such as Postman, to ensure POSTs are well-formed and to review the structure of the response
payloads. For more information, see “Requests and responses” on page 19.

Send a POST using Postman
Procedure

1. In Postman, start a new request by clicking the + to the right of the Launchpad tab.
2. Specify Basic Auth authorization using user aapplegate and password gw.
3. Under the Untitled Request label, make sure that POST is selected.
4. In the Enter request URL field, enter the URL for the server and the endpoint.

• For example, to create a new note for activity cc:2 on an instance of ClaimCenter on your machine, enter:
http://localhost:8080/cc/rest/common/v1/activities/cc:2/notes

5. Specify the request payload.
a) In the first row of tabs (the one that starts with Params), click Body.
b) In the row of radio buttons, select raw.
c) At the end of the row of radio buttons, change the drop-down list value from Text to JSON.
d) Paste the request payload into the text field underneath the radio buttons.

6. Click Send. The response payload appears below the request payload.

Tutorial: Create a new note that specifies required fields only
This tutorial assumes you have set up your environment with Postman and the correct sample data set. For more
information, see “Tutorial: Set up your Postman environment” on page 21.

In this tutorial, you will create a note whose subject is "API tutorial note 1" for an existing activity. The other fields
will not be specified and will be assigned default values by the application (such as not being confidential and having a
subject of "General").

Tutorial steps

1. In Postman, start a new request by clicking the + to the right of the Launchpad tab.
2. Specify Basic Auth authorization using user aapplegate and password gw.
3. Enter the following call and click Send:

GET http://localhost:8080/cc/rest/common/v1/activities
4. Identify the id of the first activity in the payload. (It is cc:20.)
5. Enter the following call, but do not click Send yet:

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

POSTs and request payload structures 67

POST http://localhost:8080/cc/rest/common/v1/activities/cc:20/notes
6. Specify the request payload.

a. In the first row of tabs (the one that starts with Params), click Body.
b. In the row of radio buttons, select raw.
c. At the end of the row of radio buttons, change the drop-down list value from Text to JSON.
d. Paste the following into the text field underneath the radio buttons.

{
 "data":
 {
 "attributes": {
 "body": "API tutorial note 1"
 }
 }
}

7. Click Send. The response payload appears below the request payload.

Checking your work

1. View the new note in ClaimCenter.
a. In the response payload, note the claim number of the claim this note is related to. (It is on line 13. The

claim number is 235-53-365889.)
b. Log on to ClaimCenter as aapplegate and navigate to the claim.
c. Click Notes.

The API tutorial note should be listed as one of the notes.

Tutorial: Create a new note that specifies optional fields
This tutorial assumes you have set up your environment with Postman and the correct sample data set. For more
information, see “Tutorial: Set up your Postman environment” on page 21.

In this tutorial, you will create a note whose subject is "API tutorial note 2" for an existing activity. You will also
specify values for two optional fields: confidential (set to true) and subject (set to "Litigation").

Tutorial steps

1. In Postman, start a new request by clicking the + to the right of the Launchpad tab.
2. Specify Basic Auth authorization using user aapplegate and password gw.
3. Enter the following call and click Send:

GET http://localhost:8080/cc/rest/common/v1/activities
4. Identify the id of the first activity in the payload. (It is cc:20.)
5. Enter the following call, but do not click Send yet:

POST http://localhost:8080/cc/rest/common/v1/activities/cc:20/notes
6. Specify the request payload.

a. In the first row of tabs (the one that starts with Params), click Body.
b. In the row of radio buttons, select raw.
c. At the end of the row of radio buttons, change the drop-down list value from Text to JSON.
d. Paste the following into the text field underneath the radio buttons.

{
 "data":
 {
 "attributes": {
 "body": "API tutorial note 2",
 "confidential": true,
 "topic": {
 "code": "litigation"
 }
 }
 }
}

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

68 POSTs and request payload structures

7. Click Send. The response payload appears below the request payload.

Checking your work

1. View the new note in ClaimCenter.
a. In the response payload, note the claim number of the claim this note is related to. (It is on line 13. The

claim number is 235-53-365889.)
b. Log on to ClaimCenter as aapplegate and navigate to the claim.
c. Click Notes.

The API tutorial note should be listed as one of the notes. This note is confidential and it has the category specified in
the request payload.

Responses to a POST
Every successful POST generates a response object with a response payload. This payload may contain values
generated by ClaimCenter during resource creation that are needed by the caller application For example:

• The resource's Public ID (which is also the system API id value)
• Generated human-readable ID values, such as the claim number
• Values generated by a business flow, such as:

◦ The user and group that the resource was assigned to
◦ Activities generated to process the resource

Similarly to request schemas, response schemas follow certain patterns around using data envelopes to wrap the
resource schema. In many instances, the request and response schemas will match.

Fields with null values are omitted

Similar to GETs, the response payloads for POSTs contain only fields whose values are non-null. Fields with null
values are omitted from the response payload.

If a given field is expected in a response payload but it is missing, this is often because the value was null.

POSTs and query parameters

You can use the fields query parameter with a POST to control the fields that appear in the response payload. For
example, the following creates a note for activity xc:20 based on the request payload. The response payload has the
default fields.

POST /activities/xc:20/notes

The following also creates a note for activity xc:20 based on the request payload. But, the response payload includes
only the id field.

POST /activities/xc:20/notes?fields=id

Postman behavior with redirects
Some servers automatically redirect incoming calls to different URLs. For example, a call that uses a non-secure URL
(one starting with http://) may get automatically redirected to a secure URL (one starting with https://).

When Postman executes a POST or PATCH and is redirected to a new URL, Postman automatically changes the
operation to a GET. This changes the outcome of the operation, as a GET will only retrieve data. This behavior can
cause confusion during development, as the developer using Postman may not realize the POST or PATCH is being
turned into a GET, or they may not realize why Postman is making the change.

You can avoid this behavior by ensuring that you use URLs in Postman that avoid any redirect behavior from the
server. Alternately, you can disable the Postman behavior by disabling the "Automatically follow redirects" setting in
File > Settings.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

POSTs and request payload structures 69

Business action POSTs
True REST APIs focus exclusively on the CRUD operations (Create, Read, Update, Delete). Like other REST APIs,
Cloud API exposes these CRUD operations through endpoints that support the POST, GET, PATCH, and DELETE
operations.

However, in some circumstances, a system API needs to trigger a business process that does not readily map to a single
Create, Read, Update, or Delete operation. For example, the system APIs expose the ability to assign an activity. This
action modifies the value of the activity's assignedUser and assignedGroup fields. But, the assigned user and group
can be determined by assignment logic internal to ClaimCenter. Assignment could vary based on the activity itself, on
the current workload of each group, or on whether a given user is on vacation or not. Activity assignment cannot be
executed through a PATCH because the caller application cannot always determine how to set the assignedUser and
assignedGroup fields.

In standard REST architecture, there is no operation for this type of business action. Therefore, Cloud API has adopted
the following conventions:

• Endpoints that execute business actions use the POST operation.
• Endpoints that execute business actions have paths the end in verbs (such as "assign" or "complete").

Examples of endpoints that execute business actions include:

• POST /common/v1/activities/{activityId}/assign, which assigns the corresponding activity
• POST /common/v1/activities/{activityId}/complete, which marks the corresponding activity as complete
• POST /claim/v1/claims/{claimId}/cancel, which cancels the corresponding draft claim
• POST /claim/v1/claims/{claimId}/submit, which submits the corresponding draft claim, thereby promoting it

to an open claim

Business action POSTs and request payloads

All POST endpoints that create resources (such as POST /common/v1/activities/{activityId}/notes, which
creates a note for the given activity) require a request payload. For some endpoints, the payload can be empty. But, a
request payload is always required.

For POST endpoints that execute business actions, payload requirements can vary.

• Some business action POSTs require a payload. (For example, activities/{activityId}/assign requires a
payload that specifies the assignment criteria.)

• Some business action POSTs can optionally have a payload. (For example, activities/{activityId}/complete
does not require a payload. But you can specify one if you want to attach a note to the activity while you complete
it.)

• Some business action POSTs may not permit any payload.

To determine whether a business action POST requires, allows, or forbids a request payload, refer to the relevant
section of this guide.

Business action POSTs and lost updates

When a business process spans multiple calls, the first call is typically either a GET that retrieves data, or a POST that
creates data. If the business process involves a POST that executes a business action, this POST typically comes after
the first call, and it typically acts on a resource that was queried for or created in a previous call.

It is possible for some other process to modify the data after the initial GET/POST, but before the subsequent business
action POST. This can cause a lost update. Within the system APIs, a lost update is a modification made to a resource
that unintentionally overwrites changes made by some other process.

You can prevent lost updates using checksums. For more information, see “Lost updates and checksums” on page 99.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

70 POSTs and request payload structures

Improving POST performance
The first time a caller application makes a call to a Cloud API endpoint, the call may take longer to process than
normal. This is because the Guidewire server may need to execute tasks for the first call that it does not need to re-
execute for subsequent tasks, such as:

• Loading Java and Gosu classes
• Parsing and loading configuration files that are lazy-loaded on the first reference
• Loading data from the database or other sources into local caches
• Initializing database connections

A caller application can avoid having this slow processing time occur during a genuine business call by "warming up"
the endpoint. This involves sending a dummy "warm-up request" to trigger these initial tasks. The warm-up request
helps subsequent requests execute more rapidly. The best way to accomplish this is with a POST that contains the GW-
DoNotCommit header. The POST triggers the initial endpoint tasks, and the header identifies that data modifications
made by the request are to be discarded and not committed.

For more information, see “Warming up an endpoint” on page 108.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

POSTs and request payload structures 71

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

72 POSTs and request payload structures

chapter 6

PATCHes

This topic discusses the PATCH operation, which modifies existing data.

If you want to interact directly with the concepts in this topic, go to the following tutorials:

• “Tutorial: PATCH an activity” on page 75

Overview of PATCHes
A PATCH is a system API operation that modifies an existing resource or a set of related resources in ClaimCenter.

A PATCH consists of the PATCH operation and the endpoint, such as PATCH /activities/{activityId}, and a
request payload. The request payload contains the data to modify in the specified resource.

The response to a PATCH includes an HTTP code indicating success or failure. It also includes a response payload.
The default response for a PATCH consists of a predetermined set of fields and resources. This may or may not include
the data that the PATCH modified.

When a developer is configuring a consumer application to PATCH information to a system API, they will need to
determine the correct structure for the request payload. They may also need to parse information out of the response
payload.

The PUT operation

Within REST API architecture, there are two operations that modify existing resources - PATCH and PUT. PATCH is
used to modify a portion of an existing resource (while leaving other aspects of it unmodified). PUT is used to replace
the entire contents of an existing resource with new data. The system APIs support the PATCH operation, but not the
PUT operation. This is because nearly every operation that modifies an InsuranceSuite object modifies only a portion
of it while keeping the rest of the object untouched. This behavior maps to PATCH, but not to PUT.

The PATCH payload structure
Communication between consumer applications and system APIs is easier to manage when the information in the
payloads follows a standard structure. The system APIs have standard structures for both request payloads and
response payloads. The structures are defined by data envelopes, and by request and response schemas. POSTs and
PATCHes use data envelopes, request schemas, and response schemas in the same way. For more information, see
“Standardizing payload structures” on page 62.

PATCHes 73

Designing a request payload
Designing a request payload for a PATCH is almost the same as designing a request payload for a POST. The only
differences are:

• Fields that are marked as requiredForCreate are required for POSTs but not for PATCHes.
• Fields that are marked as createOnly are allowed in POSTs but not in PATCHes.

For more information on designing request payloads for POSTs, see “Designing a request payload” on page 63.

PATCHes and arrays
You can include arrays in a PATCH request payload. Within the system APIs, PATCHing an array does not add the
PATCH members to the members already existing in the array. Instead, the PATCH replaces the existing members with
the PATCH members.

For example, in the Claim API, the Claim resource has a witnesses array. This is an array of ClaimContacts who are
witnesses to the loss. The following PATCH payload will set the witnesses array to a single witness, the ClaimContact
whose id is cc:1306. If there were witnesses in this array before the PATCH, those witnesses will be removed and the
only witness will be ClaimContact cc:1306.

{
 "data": {
 "attributes": {
 "witnesses": [
 {
 "contact": {
 "id": "cc:1306"
 }
 }
]
 }
 }
}

If you want a PATCH to be additive to an array, you must first determine the existing members of the array, and then
specify an array in the PATCH with the existing members as well as the ones you wish to add.

Sending PATCHes
You can use a request tool, such as Postman, to ensure PATCHes are well-formed and to review the structure of the
response payloads. For more information on Postman, see “Requests and responses” on page 19.

Send a PATCH using Postman

Procedure

1. In Postman, start a new request by clicking the + to the right of the Launchpad tab.
2. Specify Basic Auth authorization using user aapplegate and password gw.
3. Under the Untitled Request label, make sure that PATCH is selected.
4. In the Enter request URL field, enter the URL for the server and the endpoint.

• For example, to patch activity cc:2 on an instance of ClaimCenter on your machine, enter: http://
localhost:8080/cc/rest/common/v1/activities/cc:2

5. Specify the request payload.
• In the first row of tabs (the one that starts with Params), click Body.
• In the row of radio buttons, select raw.
• At the end of the row of radio buttons, change the drop-down list value from Text to JSON.
• Paste the request payload into the text field underneath the radio buttons.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

74 PATCHes

6. Click Send. The response payload appears below the request payload.

Tutorial: PATCH an activity
This tutorial assumes you have set up your environment with Postman and the correct sample data set. For more
information, see “Tutorial: Set up your Postman environment” on page 21.

In this tutorial, you will find an open activity from the sample data. You will then update the activity's subject and
priority.

Tutorial steps

1. In Postman, start a new request by clicking the + to the right of the Launchpad tab.
2. Specify Basic Auth authorization using user aapplegate and password gw.
3. Query for all open activities by entering the following call and clicking Send:

a. GET http://localhost:8080/cc/rest/common/v1/activities?filter=status:eq:open
4. For the first activity in the response payload that is assigned to Andy/Alice Applegate, note the following

information:
a. Activity ID
b. Priority
c. Subject

5. On the same tab, enter the following call, but do not click Send yet:
a. PATCH http://localhost:8080/cc/rest/common/v1/activities/<activityID>

6. Specify the request payload.
a. In the first row of tabs (the one that starts with Params), click Body.
b. In the row of radio buttons, select raw.
c. At the end of the row of radio buttons, change the drop-down list value from Text to JSON.
d. Paste the following into the text field underneath the radio buttons. For subject, specify the original subject

with an additional "!".

{
 "data": {
 "attributes": {
 "subject" : "<originalSubject>!",
 "priority": {
 "code": "low"
 }
 }
 }
}

7. Click Send. The response payload appears below the request payload.

Checking your work

1. View the modified activity in ClaimCenter.
a. Log on to ClaimCenter as the user aapplegate. Andy's landing page is the Activities screen, which shows

the open activities assigned to him.
b. Click the Priority column to sort the activities in reverse priority order.

The patched activity (whose priority is now Low) should be at or near the top of the list. The patched activity will have
a subject ending with an "!".

Responses to a PATCH
Every successful PATCH generates a response object with a response payload. Depending on the default fields returned
and whether any query parameters have been specified, the response payload may or may not contain the values
modified by the PATCH.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

PATCHes 75

Similarly to request schemas, response schemas follow certain patterns around using data envelopes to wrap the
resource schema. In many instances, the request and response schemas will match.

Fields with null values are omitted

Similar to GETs and POSTs, the response payloads for PATCHes contain only fields whose values are non-null. Fields
with null values are omitted from the response payload.

If a given field is expected in a response payload but it is missing, this is often because the value was null.

PATCHes and query parameters

You can use the fields query parameter with a PATCH to control the fields that appear in the response payload. For
example, the following PATCHes a note for activity xc:20 based on the request payload. The response payload has the
default fields.

PATCH /activities/xc:20/notes

The following also PATCHes a note for activity xc:20 based on the request payload. But, the response payload includes
only the id field.

POST /activities/xc:20/notes?fields=id

PATCHes and lost updates
When a business process spans multiple calls, the first call is typically either a GET that retrieves data, or a POST that
creates data. If the business process involves a PATCH, this PATCH typically comes after the first call, and it typically
acts on a resource that was queried for or created in a previous call.

It is possible for some other process to modify the data after the initial GET/POST, but before the subsequent PATCH.
This can cause a lost update. Within the system APIs, a lost update is a modification made to a resource that
unintentionally overwrites changes made by some other process.

You can prevent lost updates using checksums. For more information, see “Lost updates and checksums” on page 99.

Postman behavior with redirects
Some servers automatically redirect incoming calls to different URLs. For example, a call that uses a non-secure URL
(one starting with http://) may get automatically redirected to a secure URL (one starting with https://).

When Postman executes a POST or PATCH and is redirected to a new URL, Postman automatically changes the
operation to a GET. This changes the outcome of the operation, as a GET will only retrieve data. This behavior can
cause confusion during development, as the developer using Postman may not realize the POST or PATCH is being
turned into a GET, or they may not realize why Postman is making the change.

You can avoid this behavior by ensuring that you use URLs in Postman that avoid any redirect behavior from the
server.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

76 PATCHes

chapter 7

DELETEs

This topic provides an overview of DELETEs, which are used to delete resources.

If you want to interact directly with the concepts in this topic, go to the following tutorials:

• Tutorial: “Tutorial: DELETE a note” on page 77

Overview of DELETEs
Within the context of true REST APIs, a DELETE is an endpoint operation that deletes a resource. This typically
involves removing the resource from the underlying database.

Within the context of Cloud API, a DELETE is a system API operation that "removes" an existing resource from
ClaimCenter. What it means to "remove" the resource depends on the resource type. The DELETE operation federates
to the ClaimCenter code that matches the functionality most closely tied to deletion. That code could theoretically:

• Delete the corresponding data model instance from the operational database.
• Mark the corresponding data model instance as retired.
• Modify the corresponding data model instance and other related instances to indicate the data is no longer active or

available.

Unlike GET, POST, and PATCH, there are only a small number of endpoints in the base configuration that support
DELETE. This is because, in most cases, ClaimCenter does not support the removal of data. Several business objects
can be approved, canceled, completed, closed, declined, rejected, retired, skipped, or withdrawn. But only a few can be
deleted.

A DELETE call consists of the DELETE operation and the endpoint, such as DELETE /notes/{noteId}. Similar to
GETs, DELETEs are not permitted to have a request payload.

The response to a DELETE includes an HTTP code indicating success or failure. DELETE responses do not have a
response payload.

Tutorial: DELETE a note
This tutorial assumes you have set up your environment with Postman and the correct sample data set. For more
information, see “Tutorial: Set up your Postman environment” on page 21.

In this tutorial, you will send calls as Elizabeth Lee (user name elee). In the base configuration, Elizabeth Lee is a
manager who has permission to delete notes. As Elizabeth Lee, you will create a note and query for it. You will then
delete the note and attempt to query for it a second time.

DELETEs 77

Tutorial steps

1. In Postman, create an initial request by:
a. Clicking the + to the right of the Launchpad tab.
b. Specifying Basic Auth authorization using user elee and password gw.

2. Enter the following call, but do not click Send yet:
a. POST http://localhost:8080/cc/rest/common/v1/activities/cc:20/notes

3. Specify the request payload.
a. In the first row of tabs (the one that starts with Params), click Body.
b. In the row of radio buttons, select raw.
c. At the end of the row of radio buttons, change the drop-down list value from Text to JSON.
d. Paste the following into the text field underneath the radio buttons.

{
 "data":
 {
 "attributes": {
 "body": "API tutorial note to be deleted"
 }
 }
}

4. Click Send. In the response payload, identify the note's id.
5. Create a second request by:

a. Clicking the + to the right of the Launchpad tab.
b. Specifying Basic Auth authorization using user elee and password gw.

6. Verify that the new note exists by entering the following call and click Send:
a. GET http://localhost:8080/cc/rest/common/v1/notes/<noteID>

7. Create a third request by:
a. Clicking the + to the right of the Launchpad tab.
b. Specifying Basic Auth authorization using user elee and password gw.

8. Delete the new note by entering the following call and click Send:
a. DELETE http://localhost:8080/cc/rest/common/v1/notes/<noteID>

9. Verify the new note no longer exists by returning to the second tab (the one with the GET) and clicking Send a
second time.

Checking your work

The first GET (which was executed before the DELETE) should return details about the note.

The second GET (which was executed after the DELETE) should return an error message similar to the one below:

{
 "status": 404,
 "errorCode": "gw.api.rest.exceptions.NotFoundException",
 "userMessage": "No resource was found at path /common/v1/notes/xc:301"
}

DELETEs and lost updates
When a business process spans multiple calls, the first call is typically either a GET that retrieves data, or a POST that
creates data. If the business process involves a DELETE, this DELETE typically comes after the first call, and it
typically acts on a resource that was queried for or created in a previous call.

It is possible for some other process to modify the data after the initial GET/POST, but before the subsequent
DELETE. This can cause a lost update. Within the system APIs, a lost update is a modification made to a resource that
unintentionally overwrites changes made by some other process.

You can prevent lost updates using checksums. For more information, see “Lost updates and checksums” on page 99.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

78 DELETEs

chapter 8

Reducing the number of calls

Good integration design typically involves writing integration points so that the number of calls between services is as
small as possible. Cloud API includes multiple features that let caller applications execute multiple requests in a single
call. This topic discusses these features in detail.

Features that execute multiple requests at once
Cloud API has several features that let caller applications execute multiple requests in a single call: request inclusion,
batch requests, and composite requests.

Request inclusion is a technique for POSTs and PATCHes in which the call consists of the following:

• A single parent request that creates or modifies a resource
• One or more child requests that create or modify resources related to the parent resource

If either the parent request or any child request fails, the entire request fails.

For details about request inclusion, see “Request inclusion” on page 80.

Batch requests are requests which consist of multiple sibling subrequests, with no parent request. Each subrequest is
executed non-transactionally in the order it appears. If a given subrequest fails, other subrequests in the batch might
still be attempted. Also, there is no mechanism for passing information from one subrequest to another. Each
subrequest is essentially independent from the others.

For details about batch requests, see “Batch requests” on page 84.

Composite requests are requests which consist of multiple sibling subrequests, with no parent request. Each
subrequest is executed transactionally in the order it appears. If a given subrequest that attempts to commit data fails,
the entire composite request fails. Information can be passed from one subrequest to another.

For details about composite requests, see “Composite requests” on page 88.

Comparing features that execute multiple requests
The following table compares these features.

Feature Request inclusion Batch requests Composite requests

Request architecture A parent request with one or
more child requests

Sibling subrequests (with
no parent request)

Sibling subrequests (with no
parent request)

Reducing the number of calls 79

Feature Request inclusion Batch requests Composite requests
The endpoint to call The endpoint that creates or

modifies the parent object
(though not all endpoints
support request inclusion)

The relevant API's /batch
endpoint

The Composite API's /
composite endpoint

Behavior when one subrequest that
attempts to commit data fails

The entire request fails Other subrequests may still
be attempted

The entire request fails

Passing information between
subrequests

Through the use of refids Not possible Through the use of variables

Allows GET subrequests? No Yes Yes

Allows DELETE subrequests? No Yes Yes

Allows business action POST
subrequests (such as /assign)?

No Yes Yes

Allows the creation or modification of
two unrelated objects?

No Yes Yes

Determining which feature to use
There is no simple algorithm for determining the appropriate feature to use. In some situations, it may be possible to
use multiple features, but it is easier to write the code using one particular feature. The following guidelines may help
you determine the best feature to use:

• Use request inclusion or composite requests if:
◦ All subrequests must succeed or fail as a unit.
◦ Information must be passed from one subrequest to another.
◦ The subrequests must use endpoints from different APIs.

• Use batch requests or composite requests if:
◦ At least some of the subrequests are GETs, DELETEs, or business action POSTs

There also may be some situations where a given technique is required. For example, unverified policies can only be
created through composite requests.

At a high level, a composite request is typically the most robust option. If there is a choice of which feature to use, it
may be best or easiest to use composite requests.

Request inclusion
Request inclusion is a technique for POSTs and PATCHes in which the call consists of the following:

• A single parent request that creates or modifies a resource
• One or more child requests that create or modify resources related to the parent resource

If either the parent request or any child request fails, the entire request fails.

The parent resource is often referred to as the root resource. The root resource is specified in the payload's data
section. The related resources are specified in the payload's included section.

For example, a caller can use a single POST /claims to create a new claim, a set of ClaimContacts for that claim, a set
of incidents for that claim, and a set of exposures for that claim.

In order to use request inclusion, the following must be true:

• There must be a POST or PATCH endpoint for the root resource.
• This endpoint must have the child resource as part of its included section.
• There must also be a POST or PATCH endpoint for the child resource.

The syntax for request inclusion varies slightly, depending on whether the relationship between the root resource and
the included resource is a "simple parent/child relationship", or a "named relationship".

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

80 Reducing the number of calls

Syntax for simple parent/child relationships
In most cases, the relationship between the root resource and an included resource is a simple parent/child relationship.
Examples of this include:

• An activity and its notes
• A claim and its incidents

When using request inclusion for simple parent/child relationships, the JSON has the following structure:

{
 "data" : {
 "attributes": {
 ...
 }
 },
 "included": {
 "<resourceType>": [
 {
 "attributes": {
 ...
 },
 "method": "post",
 "uri": "/../this/..."
 }
]
 }
}

The data section

The data section includes information about the root resource, such as its attributes. (For PATCHes, the data
section could also include a checksum value for the root resource.)

The included section

The included section consists of one or more subsections of included resources. Each subsection starts with the
resource type name. Then, one or more resources of that type can be specified. For each resource, you must specify:

• The resource's attributes
• The method and uri to create or modify the resource.

The method and uri fields

Request inclusion involves a single call to a single endpoint. But internally, the system APIs use multiple endpoints to
execute the call. For every included resource, you must specify the operation and uri relevant to that resource.

For example, suppose you are writing a POST /claims call to create a claim and a note. The note is the included
resource. The included section would contain code similar to this:

"included": {
 "Note": [
 {
 "attributes": {
 ...
 },
 "method": "post",
 "uri": "/claim/v1/claims/this/notes"
 }
]
}

This specifies that in order to create the note, use the POST /claim/v1/claims/{claimId}/notes endpoint.

The uri must start with the API name, such as "/claim/v1".

The uri must also specify the ID of the root resource. When the root resource and the included resources are being
created at the same time, the root resource does not yet have an ID. Therefore, the keyword this is used in the uri to
represent the root resource's ID.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Reducing the number of calls 81

Example of request inclusion for simple parent/child relationships

The following payload is an example of creating a claim and a note for the claim. The payload assumes there is an
existing policy whose number is "FNOL-POLICY". For more information on creating policies, see “Executing FNOL”
on page 117.

POST http://localhost:8080/cc/rest/claim/v1/claims

{
 "data" : {
 "attributes": {
 "lossDate": "2020-02-01T07:00:00.000Z",
 "policyNumber": "FNOL-POLICY"
 }
 },
 "included": {
 "Note": [
 {
 "attributes": {
 "subject": "Initial phone call",
 "body": "Initial phone call with claimant"
 },
 "method": "post",
 "uri": "/claim/v1/claims/this/notes"
 }
]
 }
}

Syntax for named relationships
In some cases, the relationship between the root resource and an included resource is more than just a parent/child
relationship. It is a "named relationship" in which the relationship has a special designation or label.

For example, every claim has a "reporter". This is the ClaimContact who first reported the claim to the insurer. A claim
can have any number of child ClaimContacts, but only one of those ClaimContacts can be labeled as the reporter.

When using request inclusion for named relationships, the JSON has the following structure. The lines that are not
required for simple parent/child relationships but are required for named relationships appear in bold:

{
 "data" : {
 "attributes": {
 "<relationshipField>": "<arbitraryRefId>"
 ...
 }
 },
 "included": {
 "<resourceType>": [
 {
 "attributes": {
 ...
 },
 "refid": "<arbitraryRefId>",
 "method": "post",
 "uri": "/../this/..."
 }
]
 }
}

The data section

The data section includes information about the root resource, such as its attributes. (For PATCHes, the data
section could also include a checksum value for the root resource.)

The data section also includes the field that names the relationship with the child resource. This field is set to some
reference ID. The value of this reference ID is arbitrary. It can be any value, as long as the value also appears with the
child resource in the included section.

The included section

The included section consists of one or more subsections of included resources. Each subsection starts with the
resource type name. Then, one or more resources of that type can be specified. For each resource, you must specify:

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

82 Reducing the number of calls

• The resource's attributes
• The method and uri to create or modify the resource.

The refid field

Each included resource must include a refid field. This field must be set to the same arbitrary reference ID used in
the data section. The system APIs use refids to identify which child resource in the included section has the named
relationship with the root resource.

The method and uri fields

Request inclusion involves a single call to a single endpoint, but the system APIs internally use multiple endpoints to
execute the call. For every included resource, you must specify the operation and uri relevant to that resource.

For example, suppose you are writing a POST /claims call to create a claim and a ClaimContact who is the "reporter".
The ClaimContact is the included resource. The included section would contain code similar to this:

"included": {
 "ClaimContact": [
 {
 "attributes": {
 ...
 },
 "refid": "...",
 "method": "post",
 "uri": "/claim/v1/claims/this/contacts"
 }
]
}

This specifies that in order to create the ClaimContact, use the POST /claim/v1/claims/{claimId}/contacts
endpoint.

The uri must start with the API name, such as "/claim/v1".

The uri must specify the ID of the root resource. When the root resource and the included resources are being created at
the same time, the root resource does not yet have an ID. Therefore, the keyword this is used in the uri to represent
the root resource's ID.

Example of request inclusion for named relationships

The following payload is an example of creating a claim and a ClaimContact for the claim whose relationship is
"reporter". The payload assumes there is an existing policy whose number is "FNOL-POLICY". For more information
on creating policies, see “Executing FNOL” on page 117.

POST http://localhost:8080/cc/rest/claim/v1/claims

{
 "data" : {
 "attributes": {
 "lossDate": "2020-02-01T07:00:00.000Z",
 "policyNumber": "FNOL-POLICY",
 "reporter": {
 "refid": "robertFarley"
 }
 }
 },
 "included": {
 "ClaimContact": [
 {
 "attributes": {
 "firstName": "Robert",
 "lastName": "Farley",
 "contactSubtype": "Person"
 },
 "refid": "robertFarley",
 "method": "post",
 "uri": "/claim/v1/claims/this/contacts"
 }
]
 }
}

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Reducing the number of calls 83

Additional request inclusion behaviors
PATCHing and POSTing in a single request

When you execute a POST with request inclusion, the operation for each included resource must also be POST.

When you execute a PATCH with request inclusion, the operation for an included resource could be either POST or
PATCH.

• If you want to modify an existing resource and create a new related resource, the included resource's operation is
POST.

• If you want to modify an existing resource and modify an existing related resource, the included resource's
operation is PATCH.

Requests succeed or fail as a unit

When a POST or PATCH uses request inclusion, it is possible that there could be a failure either of the operation on the
root resource or the operation on any of the included resources. If any operation fails, the entire request fails and none
of the objects are POSTed or PATCHed.

Included resources cannot reference resources other than the root resource

When using request inclusion, each included resource must specify its own operation and uri. The uri is expected to
reference the root resource using the keyword this. This ensures that when the included resource is POSTed or
PATCHed, the included resource is related to the root resource.

For example, suppose a POST is creating a claim and a note. The uri for the exposure would have a value such as "/
claim/v1/claims/this/notes".

From a syntax perspective, you could attempt to attach an included resource not to the root resource, but rather to some
other existing resource. For example, instead of referencing the root resource, the uri for the note could reference an
existing claim, such as "/claim/v1/claims/cc:200/notes". This uri says "create a note and attach it not to the root
resource of this POST, but rather to the existing claim cc:200".

The system APIs will not allow this. Any attempt to POST or PATCH an included resource to something other than the
root resource will cause the operation to fail.

Batch requests
From a system API perspective, a batch request is a set of requests that are executed in a non-transactional sequence.
Each call within the batch request is referred to as a subrequest. The object that contains all of the subrequests is
referred to as the main request.

Subrequests are executed serially, in the order they are specified in the request payload. ClaimCenter then gathers the
response to each subrequest and returns them in a single response payload. Once again, the subresponses appear in the
same order as the corresponding subrequests.

When the response to a batch request contains a response code of 200, it means the batch request itself was well-
formed. However, each individual subrequest may have succeeded or failed.

Batch requests are limited to a maximum of 25 subrequests. Batch requests with more than 25 subrequests fail with a
BadInputException.

Optional subrequest attributes
A subrequest can optionally have query parameters that refine the corresponding subresponse payload.

By default, each subrequest inherits the information in the headers of the main request object. The one exception to this
is the GW-Checksum header. This header is not inherited because it is unlikely that a single checksum value will
correspond to multiple sub-requests. You can optionally specify header values for an individual subrequest, which will
override the corresponding values in the main request header.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

84 Reducing the number of calls

If a subrequest fails, the default is to continue processing the remaining subrequests. For each subrequest, you can
optionally specify that if the subrequest fails, ClaimCenter must skip the remaining subrequests.

For a complete list of options and further information on how they work, refer to the batch_pl-1.0.schema.json file.

Batch request syntax
Batch request call syntax

The syntax for the batch request call is:

POST <applicationURL>/rest/<apiWithVersion>/batch

For example, if you were executing a Claim API batch from an instance of ClaimCenter on your local machine, the call
would be:

POST http://localhost:8080/cc/rest/claim/v1/batch

Batch request payload syntax

The basic syntax for a batch request payload is:

{
 "requests": [
 {
 "method": "<method>",
 "path": "<path>",
 "query": "<queryParameters>",
 "data":
 {
 "attributes": {
 "<field1>": "<value1>",
 "<field2>": "<value2>",
 ...
 }
 }
 },
 {
 "method": "<method>",
 "path": "<path>",
 "query": "<queryParameters>",
 "data":
 {
 "attributes": {
 "<field1>": "<value1>",
 "<field2>": "<value2>",
 ...
 }
 }
 },
 ...
]
}

where:

• <method> is the operation in lower case, such as "get", "post", "patch", or "delete".
• <path> is the endpoint path.

◦ This path starts as if it was immediately following the API path (including the major version, such as "/v1").
For example, suppose the path for a command when executed in isolation is: http://localhost:8080/cc/
rest/claim/v1/claims/cc:22/activities/cc:55. The path within a batch is: /claims/cc:22/
activities/cc:55

• <queryParmaters> is an optional string of query parameters. Start this string without an initial "?".
• <field1/<value> are the field and value pairs of the request body.

The following sections provide examples of how to use this syntax.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Reducing the number of calls 85

Simple batch requests
The most simple batch request consist of default GET subrequests. This involves no query parameters and no request
payloads.

For this example, the response will consist of three subresponses. Each subresponse will consist of the default fields for
each claim.

{
 "requests": [
 {
 "method": "get",
 "path": "/claims/demo_sample:1"
 },
 {
 "method": "get",
 "path": "/claims/demo_sample:2"
 },
 {
 "method": "get",
 "path": "/claims/demo_sample:3"
 }
]
}

Batch requests with query parameters
The following is an example of a batch request with multiple GET subrequests. This example includes query
parameters for some of the GETs. As shown in the example, it is possible for some subrequests to use query parameters
while others do not. The subrequests that use query parameters can use different query parameters.

The response will consist of three subresponses. The fields in each subresponse will vary based on the query
parameters.

{
 "requests": [
 {
 "method": "get",
 "path": "/claims/demo_sample:1",
 "query": "sort=lossDate"
 },
 {
 "method": "get",
 "path": "/claims/demo_sample:2",
 "query": "fields=*all"
 },
 {
 "method": "get",
 "path": "/claims/demo_sample:3"
 }
]
}

Batch requests with request payloads
The following is an example of a batch request with multiple POST subrequests. This example includes request
payloads for each subrequest.

In this example, two notes are POSTed to different activities. But it would also be possible to POST each note to the
same activity.

{
 "requests": [
 {
 "method": "post",
 "path": "/activities/xc:11/notes",
 "data":
 {
 "attributes": {
 "body": "Batch note 1"
 }
 }
 },
 {
 "method": "post",

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

86 Reducing the number of calls

 "path": "/activities/xc:73/notes",
 "data":
 {
 "attributes": {
 "body": "Batch note 2"
 }
 }
 }
]
}

Batch requests with distinct operations
Every subrequest in a batch request is distinct from the other subrequests. There is no requirement for any subrequest
to share any attribute with any other subrequest. Thus, the following is an example of a batch request with multiple
subrequests where each subrequest uses a different operation.

{
 "requests": [
 {
 "method": "post",
 "path": "/activities/xc:21/notes"
 "body": {
 "data": {
 "attributes": {
 "body": "Batch activity 1",
 "subject": "Batch activity 1",
 "topic": {
 "code": "general",
 "name": "General"
 }
 }
 }
 }
 },
 {
 "method": "patch",
 "path": "/notes/xc:22",
 "body": {
 "data": {
 "attributes": {
 "body": "PATCHed note body"
 }
 }
 },
 },
 {
 "method": "delete",
 "path": "/notes/xc:23"
 },
 {
 "method": "get",
 "path": "/activities/xc:24/notes",
 "query": "sort=subject&fields=id,subject"
 }
]
}

Specifying subrequest headers
The following is an example of a batch request where each subrequest has a header that overrides the main request
header.

{
 "requests": [
 {
 "method": "delete",
 "path": "/activities/xc:55",
 "headers": [
 {
 "name": "GW-Checksum",
 "value": "2"
 }
]
 },
 {
 "method": "delete",
 "path": "/activities/xc:57",
 "headers": [
 {
 "name": "GW-Checksum",

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Reducing the number of calls 87

 "value": "4"
 }
]
 }
]
}

Specifying onFail behavior
The following is an example of a batch request that uses onFail to specify that if any of the subrequests fail, the
remaining subrequests need to be skipped.

{
 "requests": [
 {
 "method": "patch",
 "path": "/activities/xc:93",
 "body": {
 "data": {
 "attributes": {
 "subject": "PATCH body 1"
 }
 }
 },
 "onFail": "abort"
 },
 {
 "method": "patch",
 "path": "/activities/xc:94",
 "body": {
 "data": {
 "attributes": {
 "subject": "PATCH body 2"
 }
 }
 },
 "onFail": "abort"
 },
 {
 "method": "patch",
 "path": "/activities/xc:95",
 "body": {
 "data": {
 "attributes": {
 "subject": "PATCH body 3"
 }
 }
 }
 }
]
}

Composite requests
From a Cloud API perspective, a composite request is a set of requests that are executed in a single InsuranceSuite
bundle (which corresponds to a single database transaction).

• A composite request can include one or more subrequests that create or modify data. Either all of the subrequests
succeed, or none of them are executed. Each subrequest is a separate unit of work.

• A composite request can also include one or more subselections that query for data.

Subrequests and subresponses are executed serially, in the order they are specified in the composite request payload.
ClaimCenter then gathers the response to each subrequest and subselection and returns them in a single response
payload. The responses to each subrequest and subselection appear in the same order as the original composite request.

Composite requests can make use of variables. This allows data created by the execution of one subrequest to be used
by later subrequests.

Composite requests are limited to a maximum of 25 subrequests. Composite requests with more than 25 subrequests
and/or subselections fail with a BadInputException.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

88 Reducing the number of calls

Constructing composite request calls
The /composite endpoint

To create a composite request, use the /composite endpoint in the Composite API. (This is different than batches.
Every API has its own /batch endpoint. But in all of Cloud API, there is only one /composite endpoint, and it is in
the Composite API.)

The syntax for the composite request call is:

POST <applicationURL>/rest/composite/v1/composite

Sections of a composite request

A composite request can have up to two sections:

• A requests section, which contains the subrequests that commit data.
• A selections section, which contains the subselections that query for data. These are executed after the

subrequests, and only if all the subrequests commit data successfully.

At a high level, the syntax for these sections is as follows:

{
 "requests": [
 {
 <subrequest 1>
 },
 {
 <subrequest 2>
 },
 ...
],
 "selections": [
 {
 <subselection 1>
 },
 {
 <subselection 2>
 },
 ...
]
}

The requests section
In the requests section, the only supported operations are POST, PATCH, and DELETE. This includes both POSTs that
create data and POSTs that execute business actions (such as POST /assign).

The basic syntax for the requests section is shown below.

{
 "requests": [
 {
 "method": "<post/patch/delete>",
 "uri": "<path>",
 "body": {
 "data": {
 "attributes": {
 "<field1>": "<value1>",
 "<field2>": "<value2>",
 ...
 }
 }
 }
 },
 {
 <next subrequest>
 },
 ...
 {
 <final subrequest>
 }
]
}

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Reducing the number of calls 89

For example, the following simple composite request creates two notes for activity xc:202.

POST <applicationURL>/rest/composite/v1/composite

{
 "requests": [
 {
 "method": "post",
 "uri": "/common/v1/activities/xc:202/notes",
 "body": {
 "data": {
 "attributes": {
 "body": "Cloud API note #1."
 }
 }
 }
 },
 {
 "method": "post",
 "uri": "/common/v1/activities/xc:202/notes",
 "body": {
 "data": {
 "attributes": {
 "body": "Cloud API note #2."
 }
 }
 }
 }
]
}

For the complete syntax that includes all composite request features, see “Complete composite request syntax” on page
97.

Using variables to share information across subrequests
Information from one subrequest can be used in later subrequests. You can do this through the use of composite
variables.

Declaring variables

Composite variables are declared in a subrequest's vars section. Each variable has a name and path. The name is an
arbitrary string. The path specifies a value from the subrequest's response payload as a JSON path expression.

For example, suppose a subrequest that creates an activity has the following:

 "vars": [
 {
 "name": "newActivityId",
 "path": "$.data.attributes.id"
 }
]

This creates a variable named newActivityId, which is set to the value of the data section's attributes section's id
field (which would typically be the ID of the newly created activity).

Referencing variables

To reference a variable, use the following syntax:

${<varName>}

You can use variables anywhere in the body of a subrequest. The most common uses for variable values are:

• In an attributes field
• Within the path of a uri
• As part of a query parameter

For example, suppose there is a subrequest that creates an activity, and it is followed by a subrequest that creates a
note. The first subrequest creates a newActivityId variable as shown previously. The uri for the second subrequest is:

"uri": "/common/v1/activities/${newActivityId}/notes"

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

90 Reducing the number of calls

This would create the new note as a child of the first subrequest's activity.

The following is the complete code for the previous examples.

{
 "requests": [
 {
 "method": "post",
 "uri": "/claim/v1/claims/cc:34/activities",
 "body": {
 "data": {
 "attributes": {
 "activityPattern": "contact_insured",
 "subject": "Cloud API activity"
 }
 }
 },
 "vars": [
 {
 "name": "newActivityId",
 "path": "$.data.attributes.id"
 }
]
 },
 {
 "method": "post",
 "uri": "/common/v1/activities/${newActivityId}/notes",
 "body": {
 "data": {
 "attributes": {
 "body": "Cloud API note #1."
 }
 }
 }
 }
]
}

Responses to the subrequests
The response to a composite request contains a responses section. This section contains one subresponse for each
subrequest. Every subresponse has three sections:

• A body section, which by default contains the default response data defined in the corresponding endpoint.
• A headers section, which contains any custom headers.
• A status field, which indicates the subresponse's status code.

For example, the following is the responses section and the first subresponse for a composite request whose first
subrequest created an activity:

"responses": [
 {
 "body": {
 "data": {
 "attributes": {
 "activityPattern": "contact_insured",
 "activityType": {
 "code": "general",
 "name": "General"
 },
 "assignedByUser": {
 "displayName": "Andy Applegate",
 "id": "demo_sample:1",
 "type": "User",
 "uri": "/admin/v1/users/demo_sample:1"
 },
 ...
 },
 "checksum": "0",
 "links": {
 "assign": {
 "href": "/common/v1/activities/cc:403/assign",
 "methods": [
 "post"
]
 },
 ...
 }
 }
 },
 "headers": {

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Reducing the number of calls 91

 "GW-Checksum": "0",
 "Location": "/common/v1/activities/xc:403"
 },
 "status": 201
 },

Fields whose values are generated when data is committed

The individual subresponses to each subrequest specify data that has technically not been committed yet. However,
some fields contain values that are not generated until the data is committed.

When a subresponse includes a value that is generated as part of the commit, Cloud API makes effort to match the data
that will be committed as closely as possible. For example, the composite request reserves ID values so that these IDs
can be provided in subresponses and committed to the database.

But, there are some fields for which Cloud API cannot match the value. For example, the values for createTime and
updateTime cannot be determined prior to the commit. Fields of this type are always omitted from a subrequest's
subresponse. But, they can be retrieved through a subselection.

Suppressing subresponse details

In some cases, a given object may be modified by multiple subrequests. This makes the intermediate subresponses
unnecessary, and those subresponses can increase the size of the composite response unnecessarily and make the
composite response harder to parse.

You can simplify the composite response by suppressing the amount of information returned for one or more
subrequests. To do this, include the following with each relevant subrequest:

"includeResponse": false

For example:

{
 "requests": [
 {
 "method": "post",
 "uri": "/common/v1/activities/xc:202/notes",
 "body": {
 "data": {
 "attributes": {
 "body": "Cloud API note #1."
 }
 }
 },
 "includeResponse": false
 },
 ...

The composite response still includes a subresponse for the subrequest. But instead of providing the endpoint's default
response, the subresponse appears as:

{
 "responseIncluded": false
},

The responseIncluded field defaults to true. If you want a detailed response for a given subrequest, simply omit the
responseIncluded reference.

Specifying which fields to return

For a POST or PATCH subrequest, you can also refine which fields are returned. To do this, use the fields query
parameter. The syntax for this is:

{
 "requests": [
 {
 "method": "<post/patch>",
 "uri": "<path>",
 "body": {
 "data": {
 "attributes": {

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

92 Reducing the number of calls

 "<field1>": "<value1>",
 "<field2>": "<value2>",
 ...
 }
 }
 },
 "parameters" : {
 "fields" : "<value>"
 }
 },
 ...
]
}

For example, the following code snippet creates an activity. For the subresponse, it specifies to include only the
activity's ID and the assigned user.

{
 "requests": [
 {
 "method": "post",
 "uri": "/claim/v1/claims/cc:34/activities",
 "body": {
 "data": {
 "attributes": {
 "activityPattern": "contact_insured",
 "subject": "Cloud API activity"
 }
 }
 },
 "parameters" : {
 "fields" : "id,assignedUser"
 }
 },
 ...

The selections section
The selections section contains subselections that query for data. These are executed after the subselections in the
requests section, and only if all the subrequests commit data successfully.

The basic syntax for the selections section is shown below. You do not need to specify a method for each subselection,
as the only valid method in the selections section is GET.

 "selections": [
 {
 "uri": "<pathForFirstSubselection>"
 },
 {
 "uri": "<pathForSecondSubselection>"
 },

]

For example, the following code creates a new activity and a note for that activity. It then queries for the newly created
activity.

{
 "requests": [
 {
 "method": "post",
 "uri": "/claim/v1/claims/cc:34/activities",
 "body": {
 "data": {
 "attributes": {
 "activityPattern": "contact_insured",
 "subject": "Cloud API activity"
 }
 }
 },
 "vars": [
 {
 "name": "newActivityId",
 "path": "$.data.attributes.id"
 }
]
 },
 {
 "method": "post",
 "uri": "/common/v1/activities/${newActivityId}/notes",

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Reducing the number of calls 93

 "body": {
 "data": {
 "attributes": {
 "body": "Cloud API note #1."
 }
 }
 }
 }
],
 "selections": [
 {
 "uri": "/common/v1/activities/${newActivityId}
 }
]
}

For the complete syntax that includes all composite request features, see “Complete composite request syntax” on page
97.

Using query parameters in the selections section

You can use certain query parameters for each subselection. This includes:

• fields
• filter
• includeTotal
• pageOffset
• pageSize
• sort

Each subselection is independent from the others. You can use different query parameters for each subselection, and
you can have some subselections with query parameters and others without query parameters.

The syntax for adding query parameters to a subselection is as follows:

 "selections": [
 {
 "uri": "<pathForFirstQuery>",
 "parameters" : {
 "fields" : "<value>",
 "filter" : [<value>],
 "includeTotal" : <value>,
 "pageOffset" : <value>,
 "pageSize" : <value>,
 "sort" : [<value>]
 }
 },

]

Note the following:

• fields is specified as a single string of one or more fields, delimited by commas. The entire string is surrounded by
quotes.

◦ For example, "assignedUser,dueDate,priority,subject"
• filter and sort are stringified arrays consisting of one or more expressions. Each individual expression is

surrounded by quotes. The list of expressions is then surrounded by [and].
◦ For example: ["dueDate:gt:2022-12-20","status:in:open,complete"]

• includeTotal , pageOffset, and pageSize are either Boolean or integer values, and therefore do not use quotes.

For example, when querying for activities, to return only the assigned user, due date, priority and subject fields:

 {
 "uri": "/common/v1/activities",
 "parameters" : {
 "fields" : "assignedUser,dueDate,priority,subject"
 }

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

94 Reducing the number of calls

To return only open and complete activities with due dates after 2022-12-20:

 {
 "uri": "/common/v1/activities",
 "parameters" : {
 "filter" : ["dueDate:gt:2022-12-20","status:in:open,complete"] }

To return activities based on multiple criteria:

 {
 "uri": "/common/v1/activities",
 "parameters" : {
 "fields" : "assignedUser,dueDate,priority,subject",
 "filter" : ["dueDate:gt:2022-12-20","status:in:open,complete"],
 "includeTotal" : true,
 "pageSize" : 5,
 "sort" : ["dueDate"]
 }

Composite requests that execute only queries

You can create a composite request that does not create or modify data and instead only queries for data. To do this,
create a composite request with only a selections section and no requests section. In this case, the GETs in the
selections section are always executed.

Responses to the selections subrequests

When a composite request contains a selections section, the response also contains a selections section. This
section has the same structure as the responses section. It contains one subresponse for each subselection. Every
subresponse has three sections:

• A body section, which by default contains the default response data defined in the corresponding endpoint.
• A headers section, which contains any custom headers.
• A status field, which indicates the subresponse's status code.

Error handling
If any of the subrequests in the requests section fail, Cloud API does the following:

• Does not commit any of the data
• Does not execute any GETs in the selections section
• Returns a 400 error

Cloud API also returns a response.

• The response begins with the following: "requestFailed": true. This is to make it easy to identify that the
composite request did not commit data.

• For the initial subrequests that did not fail (if any), the response is returned.
◦ This is either the response as specified by the associated endpoint (and any query parameters), or the
"responseIncluded": false text.

◦ The standard response can be useful for debugging purposes, as you can see the state of objects that succeeded
before the subrequest that failed.

• For the subrequest that failed, the error message is returned.
• For the subrequests after the failed subrequest, the text "skipped": true is returned.
• If a selections section was included, the text "skipped": true is returned for each subselection.

For example, the following is the response for a composite request with five subrequests and a set of queries. All
subrequests have responseIncluded set to false. The third subrequest failed because the dueDate attribute was
incorrectly spelled as ueDate.

{
 "requestFailed": true,
 "responses": [
 {

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Reducing the number of calls 95

 "responseIncluded": false
 },
 {
 "responseIncluded": false
 },
 {
 "requestError": {
 "details": [
 {
 "message": "Schema definition 'ext.common.v1.common_ext-
 1.0#/definitions/Note' does not define any property
 named 'ueDate'",
 "properties": {
 "lineNumber": 1,
 "parameterLocation": "body",
 "parameterName": "body"
 }
 }
],
 "developerMessage": "The request parameters or body had issues.
 See the details elements for exact details of the problems.",
 "errorCode": "gw.api.rest.exceptions.BadInputException",
 "status": 400,
 "userMessage": "The request parameters or body had issues"
 },
 "status": 400
 },
 {
 "skipped": true
 },
 {
 "skipped": true
 }
],
 "selections": [
 {
 "skipped": true
 }
]
}

If there is an error in the selections section only, the subrequests in the requests section will execute, the data will
be committed, and the composite request will return with a 200 response code, indicating success. Cloud API also
attempts to execute each subselection as best as possible.

Composite request limitations
Composite requests have the following general limitations:

• The number of subrequests and subselections in a single composite request must be 25 or less.
• The subrequests can make use of other endpoints that are part of Cloud API. However, they cannot make use of

endpoints outside of Cloud API, such as custom endpoints created by an insurer.
• You cannot include a subrequest that uses a content type other than application/json.

◦ For example, you cannot work with document resources in composite requests, as documents use multipart/
form-data.

• There is no mechanism for iterating over a set of things.
◦ For example, you cannot start with a list of elements and include related resources for each item in that list.

There may be some business requirements where you are required to use a composite request. For example, when
creating a new claim with an unverified policy, you must create the policy and claim in a composite request.

There are also specific business requirements where you cannot use a composite request. For example:

• You cannot have a single composite request operate on more than one claim.
• You cannot create or update the child objects of a service request.
• In a composite request, you can create and submit a service request. But you cannot advance a service request to

any other stage in its life cycle (such as in progress, declined, or canceled).

Many of the examples in the previous list pertain to situations where there must be an intermediate data commit, which
composite requests do not allow by design. However, the previous list is not intended to be exhaustive. Refer to the
section of the documentation that discusses each business requirement for more information on requirements or
limitations related to composite requests.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

96 Reducing the number of calls

Complete composite request syntax
The following is the complete syntax for a composite request:

{
 "requests": [
 {
 "method": "<post/patch/delete>",
 "uri": "<path>",
 "body": {
 "data": {
 "attributes": {
 "<field1>": "<value1>",
 "<field2>": "<value2>",
 ...
 }
 }
 },
 "parameters" : {
 "fields" : "<value>"
 },
 "vars": [
 {
 "name": "<name>",
 "path": "<path-starting-with-$>"
 },
 <next variable>,
 ...
],
 "includeResponse": false
 },
 {
 <next subrequest>
 },
 ...
 {
 <final subrequest>
 }
],
 "selections": [
 {
 "uri": "<pathForFirstQuery>",
 "parameters" : {
 "fields" : "<value>",
 "filter" : [<value>],
 "includeTotal" : <value>,
 "pageOffset" : <value>,
 "pageSize" : <value>,
 "sort" : [<value>]
 }
 },
 {
 <next subselection>
 },
 ...
 {
 <final subselection>
 }
]
}

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Reducing the number of calls 97

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

98 Reducing the number of calls

chapter 9

Lost updates and checksums

This topic defines lost updates and discusses how you can prevent them through the use of checksums.

If you want to interact directly with the concepts in this topic, go to the following tutorials:

• “Tutorial: PATCH an activity using checksums” on page 101
• “Tutorial: Assign an activity using checksums” on page 102
• “Tutorial: DELETE a note using checksums” on page 103

Lost updates
Business processes often span multiple system API calls. When this occurs, the first call is typically either a GET that
retrieves data or a POST that creates data. A later API call may attempt to modify the resource queried for or created in
the initial GET or POST.

Some other process could potentially modify the resource between the GET/POST and the subsequent attempt to
modify it. For example, suppose:

1. A caller application GETs activity xc:20. The activity's subject is "Contact additional insured" and the priority is
Normal.

2. An internal user manually changes the subject of activity xc:20 to "Contact primary insured" and sets the priority
to Urgent.

3. The caller application PATCHes activity xc:20 and sets the priority to Low.

The caller application's PATCH overwrites some of the changes made by the internal user. This could be a problem for
several reasons:

• The caller application's change may be based on the data it initially retrieved. The caller application may not have
initiated the change if it had known the subject or priority had later been changed by someone else.

• The internal user may not be aware that some of their changes were effectively discarded.
• The activity may now be in an inconsistent state (such as having a subject that is normally used for urgent activities

and a priority of Low).

This type of modification is referred to as a lost update. Within the system APIs, a lost update is a modification made
to a resource that unintentionally overwrites changes made by some other process. You can prevent lost updates
through the use of checksums.

Lost updates and checksums 99

Checksums
A checksum is a string value that identifies the "version" of a particular resource. The system APIs calculate checksums
as needed based on information about the underlying entities in the ClaimCenter database.

When a process modifies data, either through user action, system APIs, or other process, the system APIs calculate a
different checksum for the resource. You can prevent lost updates by checking a resource's checksum before you
modify the resource to see if it matches a previously retrieved checksum.

By default, checksums are provided in the response payloads of all GETs, POSTs, and PATCHes.

Checksums can be included in:

• Request payloads, which is appropriate for:
◦ PATCHes
◦ Business action POSTs that allow request payloads (such as POST /{activityID}/assign)

• Request object headers for:
◦ DELETEs
◦ Business action POSTs that do not allow request payloads

When you submit a request with a checksum, ClaimCenter calculates the checksum and compares that value to the
submitted checksum value.

• If the values match, ClaimCenter determines the resource has not been changed since the caller application last
acquired the data. The request is executed.

• If the values do not match, ClaimCenter determines the resource has been changed since the caller application last
acquired the data. The request is not executed, and ClaimCenter returns an error similar to the following:

{
 "message": "The supplied checksum '1' does not match the current checksum '2' for the resource with uri '/
common/v1/notes/xc:101'",
 "properties": {
 "uri": "/common/v1/notes/xc:101",
 "currentChecksum": "2",
 "suppliedChecksum": "1"
 }
}

In many cases, checksums are simple integer values that are incremented with each update. However, this is not always
the case. For some resources, the checksum is a more complicated string value, such as "fwer:3245-11xwj". Also, when
a checksum is an integer, there is also no guarantee that the next checksum will be the integer value incremented by
one. Guidewire recommends against caller applications attempting to predict what the next checksum value will be.
Limit checksums in system API requests to only the checksums returned in previous responses.

Checksums for PATCHes and business action POSTs
For operations that have a request payload, checksums can be specified in the request payload. This applies to
PATCHes and to most POSTs that execute business actions. (If a business action POST does not allow a request
payload, you can still specify a checksum. But, you must do this in the request header. For more information, see
“Checksums for DELETEs” on page 102.)

The checksum property is a child of the data property and a sibling of the attributes property. It uses the following
syntax:

"checksum": "<value>"

For example, the following payload is for a PATCH to an activity. The payload specifies a new attribute value (setting
priority to urgent) and a checksum value (2).

{
 "data": {
 "attributes": {
 "priority": {

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

100 Lost updates and checksums

 "code": "urgent"
 }
 },
 "checksum": "2"
 }
}

Checksums can be specified on the root resource and on any included resource. Specifying a checksum for any one
resource does not require you to specify checksums for the others. For example:

• You could specify a checksum for only the root resource.
• You could specify a checksum for only one of the included resources.
• You could specify a checksum for the root resource and some of the included resources, but not all of the included

resources.

Tutorial: PATCH an activity using checksums
This tutorial assumes you have set up your environment with Postman and the correct sample data set. For more
information, see “Tutorial: Set up your Postman environment” on page 21.

In this tutorial, you will attempt to PATCH an activity twice. Both PATCHes will include a checksum value. The first
PATCH will succeed, and the second will fail.

Tutorial steps

1. In Postman, start a new request by:
a. Clicking the + to the right of the Launchpad tab
b. Specifying Basic Auth authorization using user aapplegate and password gw.

2. Query for all activities by entering the following call and clicking Send:
a. GET http://localhost:8080/cc/rest/common/v1/activities

3. Note the ID, subject, and checksum of the first activity returned in the response payload. (These values are
referred to in later steps as "<ActivityID>", "<originalSubject>", and "<originalChecksum>".)

4. Start a second request by:
a. Clicking the + to the right of the Launchpad tab
b. Specifying Basic Auth authorization using user aapplegate and password gw.

5. Enter the following call, but do not click Send yet:
a. PATCH http://localhost:8080/cc/rest/common/v1/activities/<ActivityID>

6. Specify the request payload.
a. In the first row of tabs (the one that starts with Params), click Body.
b. In the row of radio buttons, select raw.
c. At the end of the row of radio buttons, change the drop-down list value from Text to JSON.
d. Paste the following into the text field underneath the radio buttons. For subject, specify the original subject

with an additional "-1".

{
 "data": {
 "attributes": {
 "subject" : "<originalSubject>-1"
 }
 },
 "checksum": "<originalChecksum>"
}

7. Click Send. The checksum value in the payload matches the checksum value for the activity stored in
ClaimCenter. So, the PATCH should be successful and the response payload should appear below the request
payload.

8. Click Send a second time. Now, the checksum value in the payload does not match the checksum value for the
activity calculated by ClaimCenter. So, the second PATCH is unsuccessful and an error message appears.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Lost updates and checksums 101

Tutorial: Assign an activity using checksums
This tutorial assumes you have set up your environment with Postman and the correct sample data set. For more
information, see “Tutorial: Set up your Postman environment” on page 21.

In this tutorial, you will attempt to execute a business action (assigning an activity) twice. Both attempts will include a
checksum value. The first attempt will succeed, and the second will fail.

Tutorial steps

1. In Postman, query for all open activities by:
a. Clicking the + to the right of the Launchpad tab.
b. Specifying Basic Auth authorization using user aapplegate and password gw.
c. Entering the following call and clicking Send:

• GET http://localhost:8080/cc/rest/common/v1/activities?filter=status:ne:complete
2. Note the ID and checksum of the first activity returned in the response payload. (These values are referred to in

later steps as "<ActivityID", and "<originalChecksum>".)
3. Start a second request by:

a. Clicking the + to the right of the Launchpad tab
b. Specifying Basic Auth authorization using user aapplegate and password gw.

4. Enter the following call, but do not click Send yet:
a. PATCH http://localhost:8080/cc/rest/common/v1/activities/<ActivityID>/assign

5. The POST /{activityId}/assign endpoint requires a request payload that specifies how the assignment is to
be done. Specify the request payload.
a. In the first row of tabs (the one that starts with Params), click Body.
b. In the row of radio buttons, select raw.
c. At the end of the row of radio buttons, change the drop-down list value from Text to JSON.
d. Paste the following into the text field underneath the radio buttons. For subject, specify the original subject

with an additional "-1".

{
 "data": {
 "attributes": {
 "autoAssign": true
 },
 "checksum": "<originalChecksum>"
 }
}

6. Click Send. The checksum value in the payload matches the checksum value for the activity stored in
ClaimCenter. So, the POST /assign should be successful and the response payload should appear below the
request payload.

7. Click Send a second time. Now, the checksum value in the payload does not match the checksum value for the
activity calculated by ClaimCenter. (The successful POST /assign from the previous step will have modified the
checksum value.) So, the second POST /assign is unsuccessful and an error message appears.

Checksums for DELETEs
For operations that do not permit a request payload, checksums can be specified in the request header. This applies to
DELETEs and a small number of business action POSTs that do not permit request payloads.

The header key for a checksum is GW-Checksum. A checksum specified in the header applies only to the root resource.

Send a checksum in a request header using Postman
About this task

You can send checksums in request headers executed from Postman.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

102 Lost updates and checksums

Procedure

1. In Postman, start a new request by clicking the + to the right of the Launchpad tab.
2. Specify authorization as appropriate.
3. Add the checksum to the header.

• In the first row of tabs (the one that starts with Params), click Headers.
• Scroll to the bottom of the existing key/value list.
• In the blank row at the bottom of the key/value list, enter the following:

◦ KEY: GW-Checksum
◦ VALUE: <checksum value>

4. Enter the request operation and URL.
5. Click Send.

Results

The response appears below the request. Depending on the checksum value provided, the response will either include a
success code or an error message.

Tutorial: DELETE a note using checksums
This tutorial assumes you have set up your environment with Postman and the correct sample data set. For more
information, see “Tutorial: Set up your Postman environment” on page 21.

In this tutorial, you will send calls as Elizabeth Lee (user name elee). In the base configuration, Elizabeth Lee is a
manager who has permission to delete notes. As Elizabeth Lee, you will create a note. You will then attempt to
DELETE the note twice. Both DELETEs will include a checksum value. The first DELETE will fail, and the second
will succeed.

Tutorial steps

1. In Postman, create an initial request by:
a. Clicking the + to the right of the Launchpad tab.
b. Specifying Basic Auth authorization using user elee and password gw.

2. Enter the following call, but do not click Send yet:
a. POST http://localhost:8080/cc/rest/common/v1/activities/cc:20/notes

3. Specify the request payload.
a. In the first row of tabs (the one that starts with Params), click Body.
b. In the row of radio buttons, select raw.
c. At the end of the row of radio buttons, change the drop-down list value from Text to JSON.
d. Paste the following into the text field underneath the radio buttons.

{
 "data":
 {
 "attributes": {
 "body": "API tutorial note to be deleted with a checksum"
 }
 }
}

4. Click Send. In the response payload, identify the note's id and checksum value.
5. Create a second request by:

a. Clicking the + to the right of the Launchpad tab.
b. Specifying Basic Auth authorization using user elee and password gw.

6. Enter the following call, but do not click Send yet:
a. DELETE http://localhost:8080/cc/rest/common/v1/notes/<noteID>

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Lost updates and checksums 103

7. Add the checksum to the header
a. In the first row of tabs (the one that starts with Params), click Headers.
b. Scroll to the bottom of the existing key/value list.
c. In the blank row at the bottom of the key/value list, enter the following:

• KEY: GW-Checksum
• VALUE: 99

8. Click Send. The checksum value in the header does not match the checksum value for the note calculated by
ClaimCenter. So, the DELETE is unsuccessful and an error message appears.

9. Change the checksum value so that it matches the one from the POST payload.
10. Click Send a second time. Now, the checksum value in the header matches the checksum value for the note

calculated by ClaimCenter. So, the DELETE is successful.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

104 Lost updates and checksums

chapter 10

Cloud API headers

This topic describes the Guidewire-proprietary headers supported by Cloud API.

HTTP headers
Request and response objects are used by REST APIs to send information between application. These objects contain
HTTP headers. An HTTP header is a name/value pair included with a request or response object that provides
metadata about the request or response. An HTTP header can specify information such as:

• The format used in the request object (such as whether it is JSON or XML)
• The format to use in the response object
• Session and connection information
• Authorization information

Overview of Cloud API headers
Cloud API supports standard HTTP headers, such as Authorization and Content-Type.

Cloud API also supports the following Guidewire-proprietary headers. Every Guidewire-proprietary header is optional.

Header Datatype Description

GW-Checksum String This can prevent lost updates.
When specified, if the call would result in a database
commit, then the API allows the commit only if the
checksum in the header matches the checksum value
from ClaimCenter.

For more information, see “Checksums” on page 100.

GW-DBTransaction-ID String of up to 128
characters

This can prevent duplicate requests.
When specified, this is used as the database transaction
ID for this request. The system API allows the commit only
if the header's value has not be submitted by any prior
request. The value is stored in the ClaimCenter database
and must be globally unique across all clients, APIs and
web services.

For more information, see “Preventing duplicate
database transactions” on page 107.

Cloud API headers 105

Header Datatype Description
GW-DoNotCommit Boolean This can be used to warm up a server connection.

Typically, a caller application specifies this on a dummy
POST that is sent prior to any genuine business requests.
The POST triggers "warm up" activities for the endpoint,
such as loading of Java and Gosu classes. But the header
prevents any data from being committed. This request can
improve the performance of subsequent requests to that
endpoint.

For more information, see “Warming up an endpoint”
on page 108.

GW-IncludeSchemaProperty Boolean This can modify the format of a JSON payload.
When this is set to true, if the operation returns JSON
with a defined schema, the $GW-Schema property is
added to the root JSON object of the response with the
fully-qualified name of the JSON Schema definition for
that object. The default is false.

GW-Language String This sets the language used when processing the request.

For more information, see “Globalization” on page 111.

GW-Locale String This sets the locale used when processing the request.

For more information, see “Globalization” on page 111.

GW-UnknownPropertyHandling One of these string values:
• log
• reject
• ignore

This specifies the behavior for handling request payloads
with unknown properties. The default behavior is
reject.

For more information, see “Handling a call with
unknown elements” on page 108.

GW-UnknownQueryParamHandling One of these string values:
• log
• reject
• ignore

This specifies the behavior for handling URLs with
unknown query parameters. The default behavior is
reject.

For more information, see “Handling a call with
unknown elements” on page 108.

GW-User-Context String This provides information about the represented user
when a service makes a service-for-user or service-for-
service call.
For more information, see the Cloud API Authentication
Guide.

GW-ValidateResponseHandling Boolean Requests that the server performs additional validation of
REST API responses against constraints such as
maxLength that are declared in the schema. Disabled by
default, but may be useful in some contexts for testing or
debugging of custom APIs.

For more information, see “Validating response
payloads against additional constraints” on page 109.

x-gwre-session String This controls how related calls are routed on instances of
ClaimCenter running in a cluster.
(Note: This header is not exclusive to Cloud API and
therefore does not follow the convention of using "GW-"
at the start of header names.)

For more information, see “Routing related API calls in
clustered environments” on page 32.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

106 Cloud API headers

Header Datatype Description
X-Correlation-ID String This permits a customer to trace a request from its initial

reception through all of the subsequent applications that
were invoked to handle that request.
The actual traceability ID present in the MDC and logs
(and returned in the response) is dependent on the
implementation of TraceabilityIDPlugin plugin. The
default implementation uses this value, if specified, or a
generated UID. However, another implementation may
always generate a unique ID and log the relationship
between these incoming values and the generated UID.
This header can be repeated, but the resulting string will
just be the comma separated values.
(Note: This header predates the REST API Framework and
was created prior to the convention of using "GW-" at the
start of header names.)

Send a request with a Cloud API header using Postman
About this task

You can include Cloud API headers in calls executed from Postman.

Procedure

1. In Postman, start a new request by clicking the + to the right of the Launchpad tab.
2. Specify authorization as appropriate.
3. Add the header and header value.

• In the first row of tabs (the one that starts with Params), click Headers.
• Scroll to the bottom of the existing key/value list.
• In the blank row at the bottom of the key/value list, enter the header name in KEY column and its value in the

VALUE column.
4. Enter the request operation and URL.
5. Click Send.

Preventing duplicate database transactions
In some circumstances, when a caller application is making a request that involves a commit to the database, the
application may want to ensure that the request is processed only once. The caller application can do this using the GW-
DBTransaction-ID header.

The GW-DBTransaction-ID header identifies a transaction ID (a string of up to 128 characters). When submitted with a
system API call, the system API attempts to insert the value into the database's TransactionID table.

• If the value does not already exist in the table, the insert is successful. The system API assumes the transaction has
not already been committed, and the call is processed as normal.

• If the value does exist in the table, the insert fails. The system API assumes the transaction has already been
committed, and the call is rejected. The system API returns a 400 status code with an
gw.api.webservice.exception.AlreadyExecutedException error.

For the call to success, the transaction ID specified in the header must be globally unique across all clients, APIs and
web services.

The GW-DBTransaction-ID header has the following limitations:

• It only works with system APIs that commit data to the database.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Cloud API headers 107

• It only works when the system API commits a single time only. (System APIs that commit multiple times are rare.)
• It only works if the commit is either the only side effect of the call, or if the commit happens before any other side

effects, such as the sending of notifications to external systems.

Duplicate requests do not return identical responses. The first request will succeed, but subsequent requests will fail. It
is the responsibility of the caller application to decide how or if to handle this situation.

Warming up an endpoint
The first time a caller application makes a call to a Cloud API endpoint, the call may take longer to process than
normal. This is because the Guidewire server may need to execute tasks for the first call that it does not need to re-
execute for subsequent tasks, such as:

• Loading Java and Gosu classes
• Parsing and loading configuration files that are lazy-loaded on the first reference
• Loading data from the database or other sources into local caches
• Initializing database connections

A caller application may want to avoid having this slow processing time occur during a genuine business call.
Therefore, the caller application may want to "warm up" the endpoint. This involves sending a dummy "warm-up
request" to trigger these initial tasks. The warm-up request helps subsequent requests execute more rapidly.

Warm-up requests are not supposed to create or modify data. Theoretically, a caller application could use a GET as a
warm-up request. However, GETs do not trigger as wide a range of start-up tasks as POSTs. The better option is to
send a POST that does not commit any changes to the database. The best way to accomplish this is with a POST that
contains the GW-DoNotCommit header. This header identifies that data modifications made by the request are to be
discarded and not committed.

Best practices for warming up endpoints

Every endpoint makes use of different resources. Therefore, to warm up multiple endpoints, you need multiple
requests. In general, the most effective warm-up request is a composite request with a large number of subrequests that
POST to each endpoint you want to warm up.

For example, this could be a composite request where you create an unverified policy, and then a claim for that policy.
This would include POSTs to other child objects as well, such as contacts, incidents, exposures, and service requests.

When executing a GW-DoNotCommit request, the response code will be the same as normal, such as 200 or 201, even
though no data is committed. Caller applications need to be careful to ensure that there are no other undesired side
effects from the warm-up request, such as integration points that might inadvertently send the dummy data
downstream.

Handling a call with unknown elements
A system API call may include a payload that includes a property that is not defined in the associated schema. By
default, the system APIs reject unknown properties. You can override the default behavior by including the GW-
UnknownPropertyHandling header. The header must be set to one of the following string values:

• ignore - Ignore all unknown properties. Do not log any messages or return any validation errors.
• log - Log a service-side info message, but then process the call, ignoring any unknown properties.
• reject - Do not process the call. Return a validation error specifying there are unknown properties.

Similarly, a system API call may include a URL with a query parameter that is not defined in the associated schema.
By default, the system APIs reject calls with unknown query parameters. You can override the default behavior by
including the GW-UnknownQueryParamHandling header. The header must be set to one of the following string values:

• ignore - Ignore all unknown query parameters. Do not log any messages or return any validation errors.
• log - Log a service-side info message, but then process the call, ignoring any unknown query parameters.
• reject - Do not process the call. Return a validation error specifying there are unknown query parameters.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

108 Cloud API headers

Validating response payloads against additional constraints
Serialization of the HTTP response is one of the final steps in handling a request. Both the response body and response
headers need to be serialized, with the response body written to the HttpServletResponse output stream and the
response headers turned into Strings that the servlet container is responsible for writing to the response. The system
APIs support serialization of a number of different Java object types that can be returned directly from an API handler
method, set as the value of the body of a Response object, or added as the value of a header on the Response object.

There are several types of response objects whose serialized format is JSON. This includes JsonObject, JsonWrapper,
and TransformResult. By default, a JsonObject or JsonWrapper is validated only against the declared response
schema to ensure that all properties on the object are declared in the schema and have the correct data type.
TransformResult objects are "implicitly validated", given that the mapping file that produces them must conform to
the associated JSON schema.

It is possible to request that the framework also validate a JsonObject, JsonWrapper, or TransformResult against
additional constraints defined in the schema, such as minLength, the set of required fields, or any custom validators
that have been defined. These additional validations are not done by default because they can potentially be an
unnecessary expense in a production situation where the assumption is that the API has been implemented correctly
and will only return valid data. It is also possible that the constraints defined in the schema are intended to only apply
to inputs, and that the response may violate some of them.

You can use the GW-ValidateResponseHandling header to have the system API validate its responses against the
declared schema. To do this, include the header and set its value to true.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Cloud API headers 109

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

110 Cloud API headers

chapter 11

Globalization

In the context of Guidewire InsuranceSuite applications, globalization refers to the internationalization and localization
aspects of system configuration. The system APIs can work with the globalization settings of your system. For details
on how Guidewire InsuranceSuite applications support globalization, refer to the Globalization Guide.

Specifying language and locale in API requests
By default, system API calls return data in the format of the default language and locale of your ClaimCenter instance,
as specified by the DefaultApplicationLanguage and DefaultApplicationLocale system parameters in
config.xml. If your instance supports additional languages and locales, then you can construct API calls to request
data in those alternative formats.

Callers can specify a preferred language and locale in the request header. Guidewire provides two header fields for this
purpose, GW-Language and GW-Locale. The GW-Language field accepts an ISO 639-1 code designating the language,
while the GW-Locale field takes the ISO 639-1 language code along with the ISO 3166-1 alpha-2 locale code,
separated by an underscore.

For example, the ISO 639-1 language code for Japanese is ja, and the ISO 3166-1 alpha-2 locale code for Japan is JP.
The following code block displays a request header with the GW-Language and GW-Locale fields set to Japanese
language and locale, respectively:

GET /pc/rest/account/v1/accounts/pc:102? HTTP/1.1
Host: localhost:8180
GW-Language: ja
GW-Locale: ja_JP
Authorization: Basic c3U6Z3c=

Addresses and locales
The formatting of postal addresses can vary by country. ClaimCenter provides a flexible way to format addresses using
the Address entity along with the State and Country typelists. In the system APIs, this address data is mapped to the
Address schema found in the Common API.

The following table lists each Address property with its associated Guidewire Address entity field:

Address property GW entity mapping Description

addressLine1 Address.AddressLine1 First line of a street address

addressLine1Kanji Address.AddressLine1Kanji First line of a street address (in Japanese)

Globalization 111

Address property GW entity mapping Description
addressLine2 Address.AddressLine2 Second line of a street address

addressLine2Kanji Address.AddressLine2Kanji Second line of a street address (in Japanese)

addressLine3 Address.AddressLine3 Third line of a street address

area Address.State Country-specific administrative area, as defined in the State typelist

city Address.City City or locality

cityKanji Address.CityKanji City or locality (in Japanese)

country Address.Country Country code, as defined in the Country typelist

county Address.State Country-specific administrative area, as defined in the State typelist

department Address.State Country-specific administrative area, as defined in the State typelist

district Address.State Country-specific administrative area, as defined in the State typelist

do_si Address.State Country-specific administrative area, as defined in the State typelist

emirate Address.State Country-specific administrative area, as defined in the State typelist

island Address.State Country-specific administrative area, as defined in the State typelist

oblast Address.State Country-specific administrative area, as defined in the State typelist

parish Address.State Country-specific administrative area, as defined in the State typelist

postalCode Address.PostalCode Postal or zip code

prefecture Address.State Country-specific administrative area, as defined in the State typelist

province Address.State Country-specific administrative area, as defined in the State typelist

sortingCode Address.CEDEXBureau Sorting code (France only)

state Address.State Country-specific administrative area, as defined in the State typelist

Address locale configuration
While the Address schema supports a wide range of properties for locale-specific administrative areas, only one such
property can be used in a given address. For example, an address cannot use both state and province properties.
Furthermore, only one administrative area property is valid in an address, and this is determined by the country or
territory of the address. Studio provides a locale-based address configuration file at configuration/config/
Integration/i18n/addresses.i18n.yaml:

countries:
 . . .
 JP:
 name: Japan
 addressFields: addressLine1, addressLine1Kanji, addressLine2, addressLine2Kanji, addressLine3, city, cityKanji,
prefecture, postalCode
 addressRequire: addressLine1, city, prefecture, postalCode
 . . .
 US:
 name: United States
 addressFields: addressLine1, addressLine2, addressLine3, city, county, state, postalCode
 addressRequire: addressLine1, city, state, postalCode
 . . .

The countries field contains a property for each locale, the name of which is derived from the relevant ISO 3166-1
alpha-2 locale code. The previous code block displays two such properties, JP and US, for Japan and the United States,
respectively. Each locale property contains the following fields and values:

• name: The name of the region (typically country or territory)
• addressFields: The address fields from the Address schema that can be included in an address for the locale
• addressRequire: The minimum subset of address fields that must be included in an address for the locale

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

112 Globalization

When starting the server, the addresses.i18n.yaml file is loaded, and its rules are applied to Address resources. The
Address schema contains code that enables this functionality:

"Address": {
 "type": "object",
 "x-gw-extensions": {
 "discriminatorProperty": "country"
 },
 "properties": {
 . . .
 }
 }
}

In the previous code snippet, the x-gw-extensions.discriminatorProperty field is set to country. As a result,
when setting the country property on an Address resource, the address fields associated with that country will be valid
for that resource, and the fields not associated with the country will be unavailable.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Globalization 113

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

114 Globalization

part 2

ClaimCenter business flows

The InsuranceSuite Cloud API is a set of RESTful system APIs that expose functionality in ClaimCenter so that caller
applications can request data from or initiate action within ClaimCenter.

The following topics discuss how caller applications can initiate specific ClaimCenter business flows or interact with
specific types of ClaimCenter resources. This includes:

• Executing FNOL
• Working with existing claims
• Working with ClaimContacts
• Working with incidents
• Working with exposures
• Working with service requests

ClaimCenter business flows 115

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

116 ClaimCenter business flows

chapter 12

Executing FNOL

This topic describes how to create claims for FNOL (First Notice of Loss) through system APIs. This topic assumes
you are familiar with the ClaimCenter FNOL process. For a more detailed discussion of the ClaimCenter FNOL
process, refer to the Application Guide.

If you want to interact directly with the concepts in this topic, go to the following tutorials:

• “Tutorial: Creating a policy using the Testsupport API” on page 125
• “Tutorial: POSTing a minimal draft claim for personal auto” on page 126
• “Tutorial: PATCHing a draft claim for personal auto” on page 127
• “Tutorial: POSTing a typical draft claim for personal auto” on page 128
• “Tutorial: Submitting a draft claim” on page 138

Overview of the FNOL process
FNOL (First Notice of Loss) is the event in which the insurer is informed of a potentially covered loss.

The following section provides an overview of FNOL behavior in ClaimCenter.

Draft claims and open claims
During the FNOL process, the claim is first created. The claim passes through two states: draft and open.

• A draft claim is a claim that has been saved to the ClaimCenter database, but there is not yet enough information
for the claim to enter the adjudication process. Draft claims are not assigned to any user.

• An open claim is a claim that has been saved to the ClaimCenter database with enough information to enter the
adjudication process. Once a claim becomes open, it is assigned to an adjuster. (Open claims are often referred to
simply as "claims".)

During the FNOL process, a claim can have two different claim numbers: a draft claim number and an open claim
number.

• Draft claim numbers are assigned when the draft is initially saved. In the base configuration, draft claim numbers
typically start with "999".

• Open claim numbers are assigned when the claim moves from draft to open. In the base configuration, open claim
numbers typically start with "000".

All claims move from draft to open, whether they are entered by a user using the New Claim Wizard or are created
through system APIs. However, the New Claim Wizard hides most of the distinction between draft and open claims. For
example, in the base configuration, draft claim numbers are not shown in the user interface.

Executing FNOL 117

Prior to finishing a draft claim in the New Claim Wizard, you can cancel the draft claim by clicking the Cancel button.
This discards the claim information from the database. This action can be taken only on draft claims. Once the New
Claim Wizard is finished, the claim cannot be canceled.

Verified and unverified policies
When a claim is created, ClaimCenter creates a policy and attaches it to the claim. This can be either a verified policy
or an unverified policy.

Verified policies

A verified policy is a policy that is based on information retrieved from the PAS. In a production system, verified
policies are the most common types of policies.

When a claim is created, if ClaimCenter can find the corresponding policy in the PAS, it creates a copy of the policy
and attaches it to the claim. This is a snapshot of the policy at the point in time that the loss occurred.

Every claim has its own copy of the policy. If two claims are created from the same policy, they will each have their
own copy.

Verified policies can be used in either a test or production system. However, they require a PAS (or test PAS) and an
integration point to that PAS.

Unverified policies

An unverified policy is a policy that is created during the FNOL process based on information supplied by an adjuster
or by the caller application. This information may or may not correctly correspond to information in a PAS. Unverified
policies let adjusters start the FNOL process without information from the PAS. This could be necessary if the reporter
does not know or cannot recall enough information to find the policy.

Eventually, the unverified policy must be refreshed with data from the PAS, thereby converting it to a verified policy.
You cannot complete the claim process and make payments on a claim while the policy is still unverified.

Unverified policies can be used in either a test or production system. In a test system, unverified policies may be a
useful way to create policies without having an integration point to a PAS and without needing to enable the
Testsupport API.

Overview of the FNOL process in the system APIs
FNOL can be accomplished entirely through the use of system APIs. The following section provides an overview of
the FNOL process when it is executed through the system APIs.

The system API FNOL process
The following diagram illustrates the FNOL process as executed through the system APIs:

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

118 Executing FNOL

Prior to making any system API call to ClaimCenter:

1. The caller application queries the Policy Administration System for information on the relevant policy and its
contacts, covered items, and coverages.

To execute the FNOL process with ClaimCenter:

2A. The caller application executes a POST /claims with a payload that describes the claim. If the call is successful,
ClaimCenter saves a draft claim to the database with a draft claim number. The response object returned to the caller
application includes the claim's ID and its draft claim number.

2B. During the creation of the draft claim, ClaimCenter retrieves information about the policy from the PAS and copies
it into the ClaimCenter policy graph.

3. Optionally, the caller application can execute a PATCH /claims/{claimID} one or more times. This may be
appropriate when you want to create a draft claim before you have all of the information needed to submit it, and you
later want to update that claim with additional information.

4A. The caller application executes a POST /claims/{claimId}/submit with no payload. If the call is successful,
ClaimCenter promotes the claim to being open and assigns it an open claim number. The response object returned to
the caller application includes the open claim number.

4B. As part of the process to promote the claim, ClaimCenter executes the automated claim setup rules. These rules can
segment the claim, assign the claim, and create and assign activities for the claim.

The entire process always consists of at least two system API calls to ClaimCenter:

• A POST /claims that creates a draft claim
• A POST /submit that submits the claim and promotes it to being open.

FNOL use cases by policy state
You cannot create a claim without a policy, and every policy belongs uniquely to one claim. (If two of more claims are
based on the same policy, each has its own copy of the policy.)

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Executing FNOL 119

There are three use cases for how FNOL can be executed through the system APIs. Each use case involves policies in a
different state.

Claims with Testsupport API policies

The Testsupport API is an API that provides functionality to facilitate testing during development. You can use the
Testsupport API to create and test policies. Testsupport API policies are appropriate for development environments that
are not connected to a PAS.

You cannot PATCH a Testsupport API policy. Because the policy reflects test data, the expectation is that it is created
correctly in the initial POST.

To create an open claim with a Testsupport API policy, you must execute the following calls:

1. POST /testsupport/v1/policies to create the test policy.
2. POST /claims/v1/claim to create the draft claim.
3. POST /claims/v1/{claimId}/submit to submit the draft claim, thereby converting it to an open claim.

Claims with verified policies

You can create claims with verified policies. This approach requires an environment connected to a PAS.

There is current no endpoint to PATCH a verified policy.

To create an open claim with a verified policy, you must execute the following calls:

1. POST /claims/v1/claim to create the draft claim. The policy is automatically copied over from the PAS as part
of the processing of this call.

2. POST /claims/v1/{claimId}/submit to submit the draft claim, thereby converting it to an open claim.

Note: In ClaimCenter, the New Claim Wizard permits the creation of a claim on a verified policy that is not in
effect on the loss date. This type of claim would not be allowed to complete the adjudication process unless the
coverage was somehow verified. But, it can be created. In contrast, Cloud API does not permit the creation of
claims on verified policies if the policy is not in force on the loss date.

Claims with unverified policies

You can create claims with unverified policies. This approach can be done in either a test or production system. The
policy is based on information provided by the call, so it does not require an environment connected to a PAS.
However, you typically cannot make payments on a claim while the claim's policy is still unverified.

You can PATCH an unverified policy. However, there is currently on endpoint to refresh an unverified policy, which is
the action that converts an unverified policy into a verified policy.

Claims with unverified policies can only be created in a composite request. Thus, to create an open claim with a
unverified policy, you must execute the following call:

1. POST /composite/v1/composite to create a composite request with the following subrequests:
a. POST /claim/v1/unverified-policies to create an unverified policy.
b. POST /claims/v1/claim to create the draft claim.
c. POST /claims/v1/{claimId}/submit to submit the draft claim, thereby converting it to an open claim.

Canceling claims
You can cancel a draft claim through the system APIs. This is done using the /claim/{claimId}/cancel endpoint.
This has the same effect as when a user clicks the Cancel button in the New Claim Wizard.

You cannot cancel a claim after it has been submitted and therefore promoted to being an open claim.

Claim modes
In the base configuration, some lines of business let you create claims in different "modes". For example, for personal
auto, you can create a "regular" claim, a "quick" claim, or a "first and final" claim. These modes are distinctions that

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

120 Executing FNOL

exist primarily in the user interface. Each mode may require a greater or lesser amount of information, and some modes
may assist in executing tasks beyond simply reporting the claim. But from a technical standpoint, the claims created in
each mode are not fundamentally different from one another.

Thus, the system APIs do not have an analog for "modes". When you create a claim through the system APIs, as long
as you provide the minimum required information, you can provide whatever amount of information is appropriate for
the use case.

The Testsupport API
To create a claim, you must have information from a Policy Administration System. In some situations, you may also
need information from an external user management system or contact management system. However, during
development, your instance of ClaimCenter may not have access to any of these systems.

To facilitate development, Cloud API includes a Testsupport API. The Testsupport API is an API that provides
functionality to facilitate testing during development. You can use the Testsupport API to:

• Create and search for test policies
• Create and search for test contacts and test user roles
• Create and search for test users

WARNING: The Testsupport API is intended for use in a development environment only. Do not use the
Testsupport API on a production system.

Viewing Testsupport API information
The Testsupport API is available only when the ClaimCenter environment is set to ci-test. The environment can be
set only during start-up. For more information on how to start ClaimCenter in a given environment, refer to the System
Administration Guide.

Set the ClaimCenter environment in Studio
About this task

In Studio, you can specify an environment for ClaimCenter to use whenever it is started from Studio.

Procedure

1. In Studio, select Run > Edit Configurations. Studio opens the Run/Debug Configurations dialog box.
2. In the left pane, click Server.
3. Add the following to the end of the VM Options field: -Dgw.cc.env=ci-test

• If the VM Options field already contains an env setting, replace the existing setting with ci-test.
4. Click OK.

Results

Whenever the server is started from Studio, it will be started using the ci-test environment. This includes:

• Starting the server from the Run menu.
• Starting the server using the Run tools in the upper right corner of the Studio user interface.

View the Testsupport API in Swagger UI
About this task

Once ClaimCenter has been started using the ci-test environment, you can use Swagger UI to view the Testsupport
API.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Executing FNOL 121

Procedure

1. Start ClaimCenter using the ci-test environment.
2. In a web browser, enter the URL for Swagger UI. This loads the Swagger UI tool.

• The format of the URL is <applicationURL>/resources/swagger-ui/
• For example, for a local instance of ClaimCenter, use: http://localhost:8080/cc/resources/swaggerui/

3. In the text field at the top of the Swagger UI interface, enter the following URL:
• <applicationURL>/rest/testsupport/v1/swagger.json

4. Click Explore.

Creating test policy data

The TestSupportPolicyPlugin class

At the beginning of the FNOL process, the user or service that is executing FNOL must identify the relevant policy.
Once identified, ClaimCenter copies information about that policy to its own policy graph. These processes are referred
to as policy search and policy retrieval. The details for how to execute these processes are specified by the
IPolicySearchAdapter plugin.

The base configuration includes an implementation of the IPolicySearchAdapter plugin that points to a Gosu class
named TestSupportPolicyPlugin. This implementation is used only when ClaimCenter is started in the ci-test
environment.

The Testsupport endpoints

In the base configuration, none of the API roles provide access to the endpoints in the Testsupport API. Therefore, the
only user who can create test policies is the super user su, who inherently has access to all endpoints.

You can configure the existing API roles to extend access to these endpoints to other users. For more information on
configuring API roles, see the Cloud API Authentication Guide.

Creating test policies

You can use the /testsupport/v1/policies endpoint to create test policies. When you execute this endpoint, the
system APIs take the data specified in the payload and add it to the data in the TestSupportPolicyPlugin class. This
allows you to reference test policies and their data in later calls that create claims and claim data.

There is no minimum data needed to create a test policy. If you create a policy with an empty request payload, the
policy will have the following attributes:

• The policy currency will be set to the ClaimCenter default currency.
• The effective date will be set to the current date.
• The expiration date will be set to one year from the current date.
• The policy will be an unverified policy.

You can use the policies in the sample data as models for how to build test policies. To do this, identify the claim ID of
a claim whose policy is an appropriate model. Then, execute a GET on any of the endpoints starting with /claims/
{claimId}/policy to view how to structure data in a JSON payload. For a complete description of the data that can be
specified in the request payload, refer to Swagger UI.

Use a unique policy number for each policy

When creating a test policy, the system APIs do not require that the policy number be unique from any existing policy
numbers. However, if there are two or more policies with the same policy number, you will not be able to create a
claim using that policy number. This is because the system API that creates claims will find multiple policies and will
not be able to identify which policy to use.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

122 Executing FNOL

Examples of test policy data

The following sections provide examples of some of the more frequently used fields. To access these examples
compiled into a single payload, see “Sample policy payload” on page 139.

Common scalar fields

The following code block creates a policy that is effective from January 1, 2020 to January 1, 2021. Its policy number
is FNOL-POLICY, and it is a verified policy.

{
 "data": {
 "attributes": {
 "effectiveDate": "2020-01-01T07:00:00.000Z",
 "expirationDate": "2021-01-01T07:00:00.000Z",
 "policyNumber": "FNOL-POLICY",
 "verifiedPolicy": true
 }
 }
}

Common typekey fields

The following code block creates a personal auto policy that is in force. (In other words, the policy has not been
canceled.)

{
 "data": {
 "attributes": {
 "policyType": {
 "code": "PersonalAuto"
 },
 "status": {
 "code": "inforce"
 }
 }
}

Policy contacts

The following code block creates a policy where the insured is a person named Ray Newton who lives at 287
Kensington Rd. #1A, South Pasadena, CA. The ID in the Policy Administration for this contact is ab:0001-1.

When creating test policies, policy contacts are specified using request inclusion. For more information on this
approach, see “Request inclusion” on page 80.

{
 "data": {
 "attributes": {
 "policyContacts": [
 {
 "contact": {
 "refid": "rayNewton"
 },
 "roles": [
 {
 "code": "insured"
 }
]
 }
]
 }
 },
 "included": {
 "Contact": [
 {
 "attributes": {
 "firstName": "Ray",
 "lastName": "Newton",
 "primaryAddress": {
 "addressLine1": "287 Kensington Rd. #1A",
 "city": "South Pasadena",
 "country": "US",
 "postalCode": "91145",
 "state": {
 "code": "CA"
 }
 },

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Executing FNOL 123

 "subtype": {
 "code": "Person"
 },
 "policySystemId": "ab:0001-1"
 },
 "method": "post",
 "refid": "rayNewton",
 "uri": "/testsupport/v1/contacts"
 }

]
 }
}

Policy locations

The following code block creates a policy location.

{
 "data": {
 "attributes": {
 "policyLocations": [
 {
 "address": {
 "addressLine1": "287 Kensington Rd. #1A",
 "city": "South Pasadena",
 "postalCode": "91145",
 "state": {
 "code": "CA"
 }
 }
 }
]
 }
 }
}

Policy-level coverages

The following code block creates a policy-level coverage. Note that the coverage has a coverage type (a typekey field),
and two currency amount fields. A policy can also contain risk unit coverages, which are shown in the next section.

{
 "data": {
 "attributes": {
 "policyCoverages": [
 {
 "coverageType": {
 "code": "PALiabilityCov"
 },
 "incidentLimit": {
 "amount": "30000.00",
 "currency": "usd"
 },
 "exposureLimit": {
 "amount": "15000.00",
 "currency": "usd"
 }
 }
]
 }
 }
}

Risk units

A risk unit is something on a policy to which coverages are attached, such as a vehicle or a building. The following
code block creates a risk unit. There are different types of risk units, depending on the policy's product type. Because
the other examples are from a personal auto policy, this example is a vehicle risk unit.

Risk units typically include risk unit coverages (such as Collision coverage on a vehicle). For each coverage, you must
specify a coverageType, which must be set to a value from the coverageType typelist. The coverage can also have
coverage terms (such as a deductible). If you include coverage terms, each coverage term must have a
covTermPattern (set to a code from the covTermPattern typelist) and a covTermSubtype (set to a code from the

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

124 Executing FNOL

covTerm typelist). Additional fields may be necessary based on the type of coverage term. For example, coverage terms
that are financial amounts require a financialAmount field.

{
 "data": {
 "attributes": {
 "vehicleRiskUnits": [
 {
 "RUNumber": 1,
 "vehicle": {
 "licensePlate": "1HGJ465",
 "make": "Saturn",
 "model": "SL",
 "policySystemId": "pcveh:0001-1",
 "state": {
 "code": "CA"
 },
 "vin": "1GV234TV347463345",
 "year": 1997
 },
 "coverages": [
 {
 "coverageType": {
 "code": "PACollisionCov"
 },
 "covTerms": [
 {
 "covTermPattern": {
 "code": "PACollDeductible"
 },
 "covTermSubtype": "FinancialCovTerm",
 "financialAmount": {
 "amount": "500.00",
 "currency": "usd"
 }
 }
],
 "incidentLimit": {
 "amount": "15000.00",
 "currency": "usd"
 }
 }
]
 }
]
 }
 }
}

Tutorial: Creating a policy using the Testsupport API
This tutorial assumes you have set up your environment with Postman and the correct sample data set. For more
information, see “Tutorial: Set up your Postman environment” on page 21.

In this tutorial, you will add a policy to the policy data stored in the TestSupportPolicyPlugin class. You can then
reference this policy when creating a new claim.

1. If you have not already done so, configure Studio to start ClaimCenter using the ci-test environment.
a. In Studio, select Run > Edit Configurations. Studio opens the Run/Debug Configurations dialog box.
b. In the left pane, click Server.
c. Add the following to the end of the VM Options field: -Dgw.cc.env=ci-test
d. Click OK.

2. Start ClaimCenter from Studio by selecting Run > Run and selecting Server.
3. In Postman, start a new request by clicking the + to the right of the Launchpad tab.
4. Specify Basic Auth authorization using user su and password gw.
5. Enter the following call, but do not click Send yet:

• POST http://localhost:8080/cc/rest/testsupport/v1/policies
6. Specify the request payload.

a. In the first row of tabs (the one that starts with Params), click Body.
b. In the row of radio buttons, select raw.
c. At the end of the row of radio buttons, change the drop-down list value from Text to JSON.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Executing FNOL 125

d. Paste the text in the “Sample policy payload” on page 139 into the text field underneath the radio buttons.
7. Click Send.

Checking your work

ClaimCenter does not show data related to policies that are not associated with a claim. Therefore, there is no
independent way to check your work for this tutorial, other than confirming that you get a response code and then
attempting to create a claim using the policy.

Creating test data for contacts, user roles, and users
You can also use the Testsupport API to create contacts, user roles, and users. This may be useful when you want to
test functionality during development and it is too cumbersome to create the required contacts, user roles, or users
manually.

POSTing a minimal draft claim
You can use the Claim API's POST /claims endpoint to create a draft claim. The minimum amount of information to
create a draft claim is:

• Policy number
• Loss date

A policy with the given policy number must exist in the system or class that is acting as the Policy Administration
System, and the loss date must occur while the policy is in force. If you provide a policy number that does not exist or
is not in effect on the given date, you will get a 400 response with an error message similar to one of the following:

"userMessage": "No policy was found with policy number ABC123 for loss date
2020-01-01T07:00:00.000Z"

Tutorial: POSTing a minimal draft claim for personal auto
This tutorial assumes you have completed the following prerequisite tutorials:

• “Tutorial: Set up your Postman environment” on page 21
• “Tutorial: Creating a policy using the Testsupport API” on page 125

In this tutorial, you will create a draft claim for a personal auto policy using the minimum amount of information
needed.

1. Start ClaimCenter using the ci-test environment.
2. In Postman, start a new request by clicking the + to the right of the Launchpad tab.
3. Specify Basic Auth authorization using user aapplegate and password gw.
4. Enter the following call, but do not click Send yet:

• POST http://localhost:8080/cc/rest/claim/v1/claims
5. Specify the request payload.

a. In the first row of tabs (the one that starts with Params), click Body.
b. In the row of radio buttons, select raw.
c. At the end of the row of radio buttons, change the drop-down list value from Text to JSON.
d. Paste the following into the text field underneath the radio buttons:

{
 "data" : {
 "attributes": {
 "lossDate": "2020-02-01T07:00:00.000Z",
 "policyNumber": "FNOL-POLICY"
 }
 }
}

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

126 Executing FNOL

e. If necessary, modify the payload's lossDate to ensure the loss occurred while the policy from the previous
tutorial is in force, but not in the future.

6. Click Send.
7. The response payload includes the claim's ID and claim number. Copy both of these values to a separate location,

as they are needed for later tutorials.

Checking your work

1. View the new draft claim in ClaimCenter.
a. In the response payload, note the claim number of the new draft claim. (It is on or near line 8, and it likely

starts with "999-99".)
b. Log on to ClaimCenter as su.
c. Click the Claim tab, enter the claim number in the Claim # menu item, and press Enter.

ClaimCenter navigates to the draft claim. Because the claim has minimal information only, ClaimCenter navigates to
the Basic Info step of the New Claim Wizard. The policy number and loss date are listed in the Info Bar. (Policy number
is labeled Pol, and loss date is labeled DoL.) The policy number and loss date should match the data in the POST /
claims request payload.

Note that, in the base configuration, the New Claim Wizard does not display claim numbers while the claim is in a draft
state.

PATCHing a draft claim
You can use the PATCH /claim/v1/claims/{claimId} endpoint to PATCH a draft or open claim. PATCHing a draft
claim may be appropriate when you want to create the draft claim before you have all of the information needed to
submit it, and you later need to update that claim with additional information. (It is also possible to create a draft claim
with a single POST. For more information, see “POSTing a typical draft claim” on page 128.)

Tutorial: PATCHing a draft claim for personal auto
This tutorial assumes you have completed the following prerequisite tutorials:

• “Tutorial: Set up your Postman environment” on page 21
• “Tutorial: Creating a policy using the Testsupport API” on page 125
• “Tutorial: POSTing a minimal draft claim for personal auto” on page 126

◦ That ID of the resulting claim is referred to below in this tutorial as TutorialClaimID.

In this tutorial, you will patch a draft claim for a personal auto policy.

1. Start ClaimCenter using the ci-test environment.
2. In Postman, start a new request by clicking the + to the right of the Launchpad tab.
3. Specify Basic Auth authorization using user aapplegate and password gw.
4. Enter the following call, but do not click Send yet:

• PATCH http://localhost:8080/cc/rest/claim/v1/claims/{TutorialClaimID}
5. Specify the request payload.

a. In the first row of tabs (the one that starts with Params), click Body.
b. In the row of radio buttons, select raw.
c. At the end of the row of radio buttons, change the drop-down list value from Text to JSON.
d. Paste the following into the text field underneath the radio buttons. (You may need to adjust the loss date to

match the effective and expiration dates of the test policy.)

{
 "data" : {
 "attributes": {
 "howReported": {
 "code": "internet"
 }

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Executing FNOL 127

 }
 }
}

6. Click Send.

Checking your work

1. View the draft claim in ClaimCenter.
a. In the response payload, note the claim number of the new draft claim. (It is on or near line 8, and it likely

starts with "999-99".)
b. Log on to ClaimCenter as aapplegate.
c. Click the Claim tab, enter the claim number in the Claim # menu item, and press Enter.

ClaimCenter navigates to the draft claim. Because the claim has minimal information only, ClaimCenter navigates to
the Basic Info step of the New Claim Wizard. The How Reported field should be set to Internet.

Note that, in the base configuration, the New Claim Wizard does not display claim numbers while the claim is in a draft
state.

POSTing a typical draft claim
You can create a typical draft claim in a single POST. This approach usually involves request inclusion. Request
inclusion is a technique you can use with POSTs where you specify a root resource (such as a claim), one or more
related child resource (such as one or more ClaimContacts), and the relationship between the root and the children. For
more information, see “Request inclusion” on page 80.

New claims often include ClaimContacts, incidents, exposures, and service requests. For more information on how to
work with each of these resource types, see the following:

• “Working with ClaimContacts” on page 153
• “Working with incidents” on page 163
• “Working with exposures” on page 171
• “Working with service requests” on page 181

Tutorial: POSTing a typical draft claim for personal auto
This tutorial assumes you have completed the following prerequisite tutorials:

• “Tutorial: Set up your Postman environment” on page 21
• “Tutorial: Creating a policy using the Testsupport API” on page 125

In this tutorial, you will create a draft claim for a personal auto policy using a typical amount of information needed.
This claim is for Ray Newton, who has a personal auto policy that covers his Toyota Prius. On March 1, Ray hit a
Honda Civic driven by Robert Farley. Both vehicles suffered minor damage.

1. Start ClaimCenter using the ci-test environment.
2. In Postman, start a new request by clicking the + to the right of the Launchpad tab.
3. Specify Basic Auth authorization using user aapplegate and password gw.
4. Enter the following call, but do not click Send yet:

• POST http://localhost:8080/cc/rest/claim/v1/claims
5. Specify the request payload.

a. In the first row of tabs (the one that starts with Params), click Body.
b. In the row of radio buttons, select raw.
c. At the end of the row of radio buttons, change the drop-down list value from Text to JSON.
d. Paste the text in the “Sample typical claim payload” on page 140 addendum into the text field underneath

the radio buttons. If necessary, modify the payload's lossDate to ensure the loss occurred while the policy
from the previous tutorial is in force, but not in the future.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

128 Executing FNOL

6. Click Send.
7. The response payload includes the claim's ID and claim number. Copy both of these values to a separate location,

as they are needed for later tutorials.

Checking your work

1. View the new draft claim in ClaimCenter.
a. In the response payload, note the claim number of the new draft claim. (It is on or near line 8, and it likely

starts with "999-99".)
b. Log on to ClaimCenter as su.
c. Click the Claim tab, enter the claim number in the Claim # menu item, and press Enter.

ClaimCenter navigates to the draft claim. Because the claim has minimal information only, ClaimCenter navigates to
the Basic Info step of the New Claim Wizard. The policy number and loss date are listed in the Info Bar. (Policy number
is labeled Pol, and loss date is labeled DoL.) The policy number and loss date should match the data in the POST /
claims request payload.

Note that, in the base configuration, the New Claim Wizard does not display claim numbers while the claim is in a draft
state.

Creating claims with unverified policies
An unverified policy is a policy that is created during the FNOL process based on information supplied by an adjuster
or by the caller application. This information may or may not correctly correspond to information in a Policy
Administration System.

Unverified policies let an adjuster start the FNOL process without information from the PAS. Eventually, the policy
must be refreshed with data from the PAS, thereby converting it to a verified policy. You cannot complete the claim
process and make payments on a claim while the policy is still unverified.

Unverified policies can be used in either a test or production system. In a test system, unverified policies may be a
useful way to create policies without having an integration point to a PAS and without needing to enable the
Testsupport API. In a production system, unverified policies are useful when there is a need to start the FNOL process
and, for some reason, the policy is unavailable to ClaimCenter or cannot be found.

Unverified policies and composite requests

In ClaimCenter, you cannot create a policy that is not attached to a claim. Also, you cannot create a claim that has no
policy. Therefore, when creating claims with unverified policies, you must create the unverified policy and the claim in
the same call. The only way to do this is in the context of a composite request.

For more information on how to work with composite requests, see “Composite requests” on page 88.

The following sections discuss the endpoints used to create unverified policies and their child objects. In most cases,
these endpoints are used as URIs inside a composite request, and not as the main URL for the request itself. The main
URL for composite requests is always POST /composite/v1/composite.

Verifying unverified policies

As of this release, there are no endpoints to refresh a policy. Thus, you can create a claim with an unverified policy
through the system APIs. But to complete the claims process, you must verify the policy either through the user
interface or through some other integration point.

Minimum criteria for an unverified policy and claim
To create an unverified policy, use the following endpoint:

• POST /claim/v1/unverified-policies

To create a draft claim (regardless of whether the policy is verified or unverified), use the following endpoint:

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Executing FNOL 129

• POST /claim/v1/claims

Minimum creation criteria

At a minimum, an unverified policy must have:

• A policy number (a String value)
• A policy type (a typecode from the PolicyType typelist)

At a minimum, a claim with an unverified policy must have:

• A policy number (which must match the unverified policy's policy number)
• A loss date

The following composite request creates an unverified policy and claim with the minimum amount of data. As is
always the case with JSON, the fields can be listed in any order. Response payloads list fields in alphabetic order.
However, the examples in the documentation list these fields in the most human readable order.

POST /composite/v1/composite

{
 "requests": [
 {
 "method": "post",
 "uri": "/claim/v1/unverified-policies",
 "body": {
 "data": {
 "attributes": {
 "policyNumber": "unverified-minimum",
 "policyType": {
 "code": "PersonalAuto"
 }
 }
 }
 }
 },
 {
 "method": "post",
 "uri": "/claim/v1/claims",
 "body": {
 "data": {
 "attributes": {
 "lossDate": "2021-03-04T07:00:00.000Z",
 "policyNumber": "unverified-minimum"
 }
 }
 }
 }
]
}

Contacts on an unverified policy
The only time you can add contacts to an unverified policy is in the composite request after the unverified policy has
been created and before the claim is created. If you need to add contacts after the claim has been created, you must add
them to the claim directly.

This requirement exists because all contacts in the ClaimCenter database must be ClaimContacts associated with a
claim. When an unverified policy is created, any contacts associated with it are in a temporary state. When the
associated claim is created, the contacts are copied over to the claim and become ClaimContacts. This occurs before
the claim is committed to the database. If the system APIs gave you the ability to add contacts to the unverified policy
after this point, those contacts would be associated only with the policy and would not be ClaimContacts, and
ClaimCenter does not allow this.

To create a policy contact, use the following endpoint:

• POST /claim/v1/unverified-policies/policyId/contacts

When creating a policy contact, you must specify a contactSubtype. This is a typecode from the Contact typelist.
Based on the chosen value, there may be additional required fields. For example, a contact whose contactSubtype is
Person also requires a last name.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

130 Executing FNOL

The following example creates an unverified policy with a policy contact (and a claim for the unverified policy). Note
that the contact is created after the unverified policy and before the claim.

POST /composite/v1/composite

{
 "requests": [
 {
 "method": "post",
 "uri": "/claim/v1/unverified-policies",
 "body": {
 "data": {
 "attributes": {
 "policyNumber": "unverified-with-contact",
 "policyType": {
 "code": "PersonalAuto"
 }
 }
 }
 },
 "vars": [
 {
 "name": "policyId",
 "path": "$.data.attributes.id"
 }
]
 },
 {
 "method": "post",
 "uri": "/claim/v1/unverified-policies/${policyId}/contacts",
 "body": {
 "data": {
 "attributes": {
 "contactSubtype": "Person",
 "firstName": "Ray",
 "lastName": "Newton"
 }
 }
 }
 },
 {
 "method": "post",
 "uri": "/claim/v1/claims",
 "body": {
 "data": {
 "attributes": {
 "lossDate": "2021-03-04T07:00:00.000Z",
 "policyNumber": "unverified-with-contact"
 }
 }
 }
 }
]
}

Locations on an unverified policy
To create or modify a policy location, use the following endpoint:

• POST /claim/v1/unverified-policies/{policyId}/locations
• PATCH /claim/v1/unverified-policies/{policyId}/locations/{locationId}

There is no information required to create a location on an unverified policy. ClaimCenter provides default values for
all required fields.

The following example creates an unverified policy with a location.

POST /composite/v1/composite

{
 "requests": [
 {
 "method": "post",
 "uri": "/claim/v1/unverified-policies",
 "body": {
 "data": {
 "attributes": {
 "policyNumber": "unverified-with-location",
 "policyType": {
 "code": "PersonalAuto"
 }
 }

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Executing FNOL 131

 }
 },
 "vars": [
 {
 "name": "policyId",
 "path": "$.data.attributes.id"
 }
]
 },
 {
 "method": "post",
 "uri": "/claim/v1/unverified-policies/${policyId}/locations",
 "body": {
 "data": {
 "attributes": {
 }
 }
 },
 "vars": [
 {
 "name": "locationId",
 "path": "$.data.attributes.id"
 }
]
 },
 {
 "method": "post",
 "uri": "/claim/v1/claims",
 "body": {
 "data": {
 "attributes": {
 "lossDate": "2021-03-04T07:00:00.000Z",
 "policyNumber": "unverified-with-location"
 }
 }
 }
 }
]
}

Risk units on an unverified policy
A risk unit is a thing covered by the policy (other than the policyholder and any additional insureds). The type of risk
units on a policy vary based on the type of policy. For example:

• On a personal auto policy or commercial auto policy, risk units are typically vehicles.
• On a homeowner's policy, risk units are typically dwellings, other structures on the property (fences, sheds), or

items of value in the home (electronics, jewelry).

ClaimCenter policies make use of two types of risk units:

• Location-based risk units, for risk units that have a fixed location (such as a house)
• Vehicle risk units, for vehicles

To create a risk unit, use the following endpoints:

• POST /claim/v1/unverified-policies/{policyId}/location-based-risk-units
• POST /claim/v1/unverified-policies/{policyId}/vehicle-risk-units

To modify a risk unit, use the following endpoints:

• PATCH /claim/v1/unverified-policies/{policyId}/location-based-risk-units/
{locationBasedRiskUnitId}

• PATCH /claim/v1/unverified-policies/{policyId}/vehicle-risk-units/{vehicleRiskUnitId}

The information required to create a risk unit can vary with the risk unit type. For example:

• For vehicle risk units, no information is required.
• For location-based risk units, you must provide a location.

If a field is not required and not specified, ClaimCenter provides a default value.

The following example creates an unverified policy with a vehicle risk unit.

POST /composite/v1/composite

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

132 Executing FNOL

{
 "requests": [
 {
 "method": "post",
 "uri": "/claim/v1/unverified-policies",
 "body": {
 "data": {
 "attributes": {
 "policyNumber": "unverified-with-vehicle-risk-unit",
 "policyType": {
 "code": "PersonalAuto"
 }
 }
 }
 },
 "vars": [
 {
 "name": "policyId",
 "path": "$.data.attributes.id"
 }
]
 },
 {
 "method": "post",
 "uri": "/claim/v1/unverified-policies/${policyId}/vehicle-risk-units",
 "body": {
 "data": {
 "attributes": {
 }
 }
 }
 },
 {
 "method": "post",
 "uri": "/claim/v1/claims",
 "body": {
 "data": {
 "attributes": {
 "lossDate": "2021-03-04T07:00:00.000Z",
 "policyNumber": "unverified-with-vehicle-risk-unit"
 }
 }
 }
 }
]
}

Coverages on unverified policies
There are two types of coverages on a policy: policy-level coverages and risk unit coverages.

• A policy-level coverage is a coverage that typically covers the policyholder or other additional insureds listed on
the policy.

◦ For example, personal auto policies typically come with a "Liability - Bodily Injury and Property Damage"
coverage. This covers any damage to other people or other properties that is caused by the policyholder (or the
additional insureds) while driving a vehicle. It does not matter which vehicle the policyholder was driving. The
coverage applies to the policyholder.

• A risk unit coverage is a coverage that covers an associated risk unit.
◦ For example, every vehicle listed on a personal auto policy typically comes with a "Collision" coverage. This

covers damage done to the associated vehicle. Suppose there is a policy with two vehicles and only the first
vehicle has collision coverage. If the second vehicle is involved in a collision, the policyholder will not be able
to file a claim for damages done to the second vehicle.

Within the context of underwriting policies, a given type of coverage is either a policy-level coverage (and never gets
attached to a risk unit) or a risk unit coverage (and always gets attached to a risk unit). However, ClaimCenter does not
store information about whether a given type of coverage ought to be policy-level or risk unit level. ClaimCenter
typically gets policy information from the Policy Administration System, and it assumes coverages are attached to the
policy at the appropriate place.

When you create an unverified policy, it is possible to attach a coverage that is normally policy-level to a risk unit, or
to attach a coverage that is normally risk unit level to the policy. This is allowed both in the ClaimCenter application
and through the system APIs. However, you cannot make payments on claims with unverified policies. In order to
verify a policy, you must retrieve updated information from the Policy Administration System. So if an unverified

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Executing FNOL 133

policy has a coverage attached to the wrong location, an adjuster will need to address the error before payments on the
claim can be made.

Creating an unverified policy with a policy coverage

To create or modify a policy coverage, use the following endpoints:

• POST /claim/v1/unverified-policies/policyId/coverages
• PATCH /claim/v1/unverified-policies/policyId/coverages/{coverageId}

The minimum amount of information for a policy coverage is the coverage type. This is a code from the CoverageType
typelist. Coverage types are part of the ClaimCenter Line of Business Model, and only certain coverages can be
attached to a policy based on its policy type. For more information, see the Application Guide.

The following example creates an unverified policy with a policy coverage.

POST /composite/v1/composite

{
 "requests": [
 {
 "method": "post",
 "uri": "/claim/v1/unverified-policies",
 "body": {
 "data": {
 "attributes": {
 "policyNumber": "unverified-with-policy-coverage",
 "policyType": {
 "code": "PersonalAuto"
 }
 }
 }
 },
 "vars": [
 {
 "name": "policyId",
 "path": "$.data.attributes.id"
 }
]
 },
 {
 "method": "post",
 "uri": "/claim/v1/unverified-policies/${policyId}/coverages",
 "body": {
 "data": {
 "attributes": {
 "coverageType" : {
 "code": "PALiabilityCov"
 }
 }
 }
 }
 },
 {
 "method": "post",
 "uri": "/claim/v1/claims",
 "body": {
 "data": {
 "attributes": {
 "lossDate": "2021-03-04T07:00:00.000Z",
 "policyNumber": "unverified-with-policy-coverage"
 }
 }
 }
 }
]
}

Creating an unverified policy with a risk unit coverage

To create a risk unit coverage, use the following endpoints:

• POST /claim/v1/unverified-policies/{policyId}/location-based-risk-units/ location-based-risk-
units/{locationBasedRiskUnitId}/coverages

• POST /claim/v1/unverified-policies/{policyId}/vehicle-risk-units/{vehicleRiskUnitId}/
coverages

To modify a risk unit coverage, use the following endpoints:

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

134 Executing FNOL

• PATCH /claim/v1/unverified-policies/{policyId}/location-based-risk-units/
{locationBasedRiskUnitId}/{coverageId}

• PATCH /claim/v1/unverified-policies/{policyId}/vehicle-risk-units/{vehicleRiskUnitId}/
{coverageId}

The minimum amount of information for a risk unit coverage is the coverage type. This is a code from the
CoverageType typelist. Coverage types are part of the ClaimCenter Line of Business Model, and only certain
coverages can be attached to a risk unit based on the policy's policy type. For more information, see the Application
Guide.

The following example creates an unverified policy with a vehicle risk unit and a coverage for that risk unit.

POST /composite/v1/composite

{
 "requests": [
 {
 "method": "post",
 "uri": "/claim/v1/unverified-policies",
 "body": {
 "data": {
 "attributes": {
 "policyNumber": "unverified-with-risk-unit-coverage",
 "policyType": {
 "code": "PersonalAuto"
 }
 }
 }
 },
 "vars": [
 {
 "name": "policyId",
 "path": "$.data.attributes.id"
 }
]
 },
 {
 "method": "post",
 "uri": "/claim/v1/unverified-policies/${policyId}/vehicle-risk-units",
 "body": {
 "data": {
 "attributes": {
 }
 }
 },
 "vars": [
 {
 "name": "riskUnitId",
 "path": "$.data.attributes.id"
 }
]
 },

 {
 "method": "post",
 "uri": "/claim/v1/unverified-policies/${policyId}/vehicle-risk-units/${riskUnitId}/coverages",
 "body": {
 "data": {
 "attributes": {
 "coverageType" : {
 "code": "PACollisionCov"
 }
 }
 }
 }
 },
 {
 "method": "post",
 "uri": "/claim/v1/claims",
 "body": {
 "data": {
 "attributes": {
 "lossDate": "2021-03-04T07:00:00.000Z",
 "policyNumber": "unverified-with-risk-unit-coverage"
 }
 }
 }
 }
]
}

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Executing FNOL 135

PATCH an unverified policy
To modify information directly on the policy, use the following endpoint:

• PATCH /unverified-policies/{policyId}

You can theoretically PATCH an unverified policy in the same composite request that creates it. However, it is more
common to PATCH an unverified policy in a subsequent call.

The following example specifies a service tier of gold for an existing unverified policy with id cc:59.

PATCH claim/v1/unverified-policies/cc:59

{
 "data" : {
 "attributes": {
 "serviceTier": {
 "code": "gold"
 }
 }
 }
}

Retrieving information about an unverified policy
You can use the following endpoints to retrieve information about an unverified policy:

• GET claim/v1/unverified-policies/{policyId}
• GET claim/v1/unverified-policies/{policyId}/coverages
• GET claim/v1/unverified-policies/{policyId}/coverages/{coverageId}
• GET claim/v1/unverified-policies/{policyId}/location-based-risk-units
• GET claim/v1/unverified-policies/{policyId}/location-based-risk-units/
{locationBasedRiskUnitId}

• GET claim/v1/unverified-policies/{policyId}/location-based-risk-units/
{locationBasedRiskUnitId}/coverages

• GET claim/v1/unverified-policies/{policyId}/location-based-risk-units/
{locationBasedRiskUnitId}/coverages/{coverageId}

• GET claim/v1/unverified-policies/{policyId}/locations
• GET claim/v1/unverified-policies/{policyId}/locations/{locationId}
• GET claim/v1/unverified-policies/{policyId}/vehicle-risk-units
• GET claim/v1/unverified-policies/{policyId}/vehicle-risk-units/{vehicleRiskUnitId}
• GET claim/v1/unverified-policies/{policyId}/vehicle-risk-units/{vehicleRiskUnitId}/coverages
• GET claim/v1/unverified-policies/{policyId}/vehicle-risk-units/{vehicleRiskUnitId}/coverages/
{coverageId}

Submitting a draft claim
You can use the POST /claim/v1/claims/{claimId}/submit endpoint to submit a draft claim. If the call executes
successfully, then:

• The draft claim becomes an open claim.
• The claim is assigned an open claim number.
• Automated claim setup is executed on the claim. This includes executing business rules to:

◦ Segment the claim
◦ Assign the claim
◦ Create and assign activities for the claim

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

136 Executing FNOL

Minimum information to submit a draft claim

From an internal standpoint, the minimum amount of information to submit a draft claim is the same as to create a draft
claim:

• Policy number
• Loss date

However, ClaimCenter also includes a series of validation rules. Each rule can throw an error that is tied to a specific
level of claim maturity. The two lowest levels are LoadSave and NewLossCompletion. The /submit endpoint will not
succeed if the claim violates any rule at either of these levels.

For example, in the base configuration, there is a validation rule, "CLV04000 - ClaimContact Role Configuration", that
throws an error at the NewLossCompletion level if the reporter is null. If this validation rule is not removed or
modified, then a draft claim must have a specified reporter before it can be promoted to an open claim.

Draft claims that trigger errors

When you submit a draft claim, ClaimCenter generates an open claim number for the claim. If the submit action
generates no errors, the open claim number is assigned to the claim in place of the draft claim number.

However, it is possible for the submit action to throw either a validation error (because it is missing information
required for the LoadSave and NewLossCompletion levels) or an assignment error (because the assignment rules
cannot successfully assign the claim to a group and user). If either of these occurs, the claim remains in a draft state
and retains its draft claim number. The generated open claim number is discarded. The system APIs also return an error
message stating that the claim could not be submitted. This error message references the claim by its draft number.

Minimum criteria for submitting a claim with an unverified policy
You can create a draft claim with only a policy number and loss date. However, in the base configuration, a claim must
also have a reporter before it can be submitted.

The following composite request creates an unverified policy, a claim, and a ClaimContact who is then listed as the
reporter. It then submits the claim. Note that this requires five sub-requests:

1. Create the unverified policy.
2. Create the claim.
3. Create the ClaimContact.
4. Modify the claim to assign the role of reporter to the ClaimContact.
5. Submit the claim.

In the base configuration, this is the minimum amount of information needed to create and submit a claim with an
unverified policy.

POST /composite/v1/composite

{
 "requests": [
 {
 "method": "post",
 "uri": "/claim/v1/unverified-policies",
 "body": {
 "data": {
 "attributes": {
 "policyNumber": "unverified-minimum-submittable",
 "policyType": {
 "code": "PersonalAuto"
 }
 }
 }
 }
 },
 {
 "method": "post",
 "uri": "/claim/v1/claims",
 "body": {
 "data": {
 "attributes": {
 "lossDate": "2021-03-04T07:00:00.000Z",
 "policyNumber": "unverified-minimum-submittable"

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Executing FNOL 137

 }
 }
 },
 "vars": [
 {
 "name": "claimId",
 "path": "$.data.attributes.id"
 }
]
 },
 {
 "method": "post",
 "uri": "/claim/v1/claims/${claimId}/contacts",
 "body": {
 "data": {
 "attributes": {
 "contactSubtype": "Person",
 "firstName": "Ray",
 "lastName": "Newton"
 }
 }
 },
 "vars": [
 {
 "name": "contactId",
 "path": "$.data.attributes.id"
 }
]
 },
 {
 "method": "patch",
 "uri": "/claim/v1/claims/${claimId}",
 "body": {
 "data": {
 "attributes": {
 "reporter": {
 "id": "${contactId}"
 }
 }
 }
 }
 },
 {
 "method": "post",
 "uri": "/claim/v1/claims/${claimId}/submit"
 }
]
}

Tutorial: Submitting a draft claim
This tutorial assumes you have completed the following prerequisite tutorials:

• “Tutorial: Set up your Postman environment” on page 21
• “Tutorial: Creating a policy using the Testsupport API” on page 125
• “Tutorial: POSTing a typical draft claim for personal auto” on page 128

◦ That ID of the resulting claim is referred to below in this tutorial as TutorialClaimID.

In this tutorial, you will submit a draft claim for a personal auto policy.

1. Start ClaimCenter using the ci-test environment.
2. In Postman, start a new request by clicking the + to the right of the Launchpad tab.
3. Specify Basic Auth authorization using user aapplegate and password gw.
4. Enter the following call and click Send:

• POST http://localhost:8080/cc/rest/claim/v1/claims/{TutorialClaimID}/submit

Checking your work

1. View the open claim in ClaimCenter.
a. In the response payload, note the claim number of the new draft claim. (It is on or near line 20, and it likely

starts with "000-00-".)
b. Log on to ClaimCenter as aapplegate.
c. Click the Claim tab, enter the claim number in the Claim # menu item, and press Enter.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

138 Executing FNOL

ClaimCenter should navigates to the Summary screen for the claim. (If the claim is open, ClaimCenter takes you to the
Summary screen, not the New Claim Wizard.)

Canceling a draft claim
You can use the POST claim/v1/claims/{claimId}/cancel endpoint to cancel a draft claim. If the call executes
successfully, then the draft claim is discarded. All information about the draft claim is removed from the ClaimCenter
database.

You can cancel only draft claims. Once a claim has been submitted, it can be closed. But it can no longer be canceled.

Sample payload addendum
This section contains sample payloads referenced in previous topics that are too long to include within those topics.

Sample policy payload
{
 "data": {
 "attributes": {
 "effectiveDate": "2020-01-01T07:00:00.000Z",
 "expirationDate": "2031-01-01T07:00:00.000Z",
 "policyNumber": "FNOL-POLICY",
 "verifiedPolicy": true,
 "policyType": {
 "code": "PersonalAuto"
 },
 "status": {
 "code": "inforce"
 },
 "policyContacts": [
 {
 "contact": {
 "refid": "rayNewton"
 },
 "roles": [
 {
 "code": "insured"
 }
]
 }
],
 "policyLocations": [
 {
 "address": {
 "addressLine1": "287 Kensington Rd. #1A",
 "city": "South Pasadena",
 "postalCode": "91145",
 "state": {
 "code": "CA"
 }
 }
 }
],
 "policyCoverages": [
 {
 "coverageType": {
 "code": "PALiabilityCov"
 },
 "incidentLimit": {
 "amount": "30000.00",
 "currency": "usd"
 },
 "exposureLimit": {
 "amount": "15000.00",
 "currency": "usd"
 }
 }
],
 "vehicleRiskUnits": [
 {
 "RUNumber": 1,
 "vehicle": {
 "licensePlate": "1HGJ465",
 "make": "Toyota",
 "model": "Prius",
 "policySystemId": "pcveh:0001-1",
 "state": {
 "code": "CA"

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Executing FNOL 139

 },
 "vin": "1GV234TV347463345",
 "year": 2007
 },
 "coverages": [
 {
 "coverageType": {
 "code": "PACollisionCov"
 },
 "covTerms": [
 {
 "covTermPattern": {
 "code": "PACollDeductible"
 },
 "covTermSubtype": "FinancialCovTerm",
 "financialAmount": {
 "amount": "500.00",
 "currency": "usd"
 }
 }
],
 "incidentLimit": {
 "amount": "15000.00",
 "currency": "usd"
 }
 }
]
 }
]
 }
 },
 "included": {
 "Contact": [
 {
 "attributes": {
 "firstName": "Ray",
 "lastName": "Newton",
 "primaryAddress": {
 "addressLine1": "287 Kensington Rd. #1A",
 "city": "South Pasadena",
 "country": "US",
 "postalCode": "91145",
 "state": {
 "code": "CA"
 }
 },
 "subtype": {
 "code": "Person"
 },
 "policySystemId": "ab:0001-1"
 },
 "method": "post",
 "refid": "rayNewton",
 "uri": "/testsupport/v1/contacts"
 }
]
 }
}

Sample typical claim payload
{
 "data": {
 "attributes": {
 "lossDate": "2020-03-01T07:00:00.000Z",
 "policyNumber": "FNOL-POLICY",
 "lossCause": {
 "code": "vehcollision"
 },
 "mainContact": {
 "policySystemId": "ab:0001-1"
 },
 "reporter": {
 "policySystemId": "ab:0001-1"
 }
 }
 },
 "included": {
 "ClaimContact": [
 {
 "attributes": {
 "firstName": "Robert",
 "lastName": "Farley",
 "contactSubtype": "Person"
 },
 "method": "post",
 "refid": "robertFarley",

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

140 Executing FNOL

 "uri": "/claim/v1/claims/this/contacts"
 }
],
 "VehicleIncident": [
 {
 "attributes": {
 "collision": true,
 "damageDescription": "Minor collision",
 "driver": {
 "policySystemId": "ab:0001-1"
 },
 "lossParty": {
 "code": "insured"
 },
 "vehicle": {
 "policySystemId": "pcveh:0001-1"
 }
 },
 "method": "post",
 "uri": "/claim/v1/claims/this/vehicle-incidents"
 },
 {
 "attributes": {
 "collision": true,
 "damageDescription": "Minor collision",
 "driver": {
 "refid": "robertFarley"
 },
 "lossParty": {
 "code": "third_party"
 },
 "vehicle": {
 "licensePlate": "2PIX534",
 "make": "Honda",
 "model": "Civic",
 "state": {
 "code": "CA"
 },
 "vin": "3DT6YUQ3K9003LP19",
 "year": 2019
 }
 },
 "method": "post",
 "uri": "/claim/v1/claims/this/vehicle-incidents"
 }
]
 }
}

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Executing FNOL 141

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

142 Executing FNOL

chapter 13

Working with claims

This topic covers the different ways that a caller application can get information on existing claims, and additional
actions they can take on open claims.

For information on creating claims or working with draft claims, see “Executing FNOL” on page 117.

Querying for claims associated with you
Typically, the GET /claim/v1/claims endpoint does not return all claims in ClaimCenter. The endpoint is restricted
by the caller's resource access. In the base configuration, this means the following:

• For internal users, the endpoint returns only claims that would be on that user's Access Control List (ACL)
• For external users who are policyholders, the endpoint returns only claims related to policies the user holds.
• For external users who are vendors, the endpoint returns only claims with a service request where the vendor is the

service provider.
• For services, all claims are returned. (Services are not bound by resource access.)

For example, both Andy Applegate and Wendy Gompers are internal users defined in the sample data. Suppose that the
sample data has been loaded and each adjuster executes the following:

GET /claim/v1/claims?fields=id

The count and data sections of the response payload for Andy Applegate consists of the 5 open claims on his ACL:

{
 "count": 5,
 "data": [
 {
 "attributes": {
 "id": "cc:34"
 }
 },
 {
 "attributes": {
 "id": "cc:33"
 }
 },
 {
 "attributes": {
 "id": "demo_sample:20"
 }
 },
 {
 "attributes": {
 "id": "demo_sample:2"
 }
 },
 {
 "attributes": {

Working with claims 143

 "id": "demo_sample:1"
 }
 }
],
...

The count and data sections of response payload for Wendy Gompers consists of the 6 open claims on her ACL:

{
 "count": 6,
 "data": [
 {
 "attributes": {
 "id": "trucking:7"
 }
 },
 {
 "attributes": {
 "id": "trucking:8"
 }
 },
 {
 "attributes": {
 "id": "demo_sample:30002"
 }
 },
 {
 "attributes": {
 "id": "demo_sample:30001"
 }
 },
 {
 "attributes": {
 "id": "gl:1"
 }
 },
 {
 "attributes": {
 "id": "trucking:6"
 }
 }
],
...

You can view this output for yourself in Postman by doing the following:

1. Open a request tab. From the Authorization tab, set the TYPE drop-down list to Basic Auth. For the Username and
Password, specify aapplegate and gw.

2. Execute GET /claim/v1/claims.
3. Open a second request tab. From the Authorization tab, set the TYPE drop-down list to Basic Auth. For the

Username and Password, specify wgompers and gw.
4. Execute GET /claim/v1/claims.
5. Compare the two response payloads.

For more information on resource access, see the Cloud API Authentication Guide.

Closed claims

By default, the GET /claim/v1/claims endpoint returns only open claims. You can query for open and closed claims
by adding the following query parameter:

?filter=state:in:open,closed

Draft claims

Draft claims are claims that have been saved to the database, but the claim does not yet have enough information for it
to be assigned to an adjuster or vendor. Therefore, for some callers, the GET /claim/v1/claims endpoint does not
return draft claims.

Querying for a claim by claim ID
The GET /claim/v1/claims/{claimId} endpoint returns information on the given claim, assuming the caller's
resource access permits the caller to view the claim.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

144 Working with claims

For example, Andy Applegate owns the claim with ID cc:33. Betty Baker belongs to the same group as Andy
Applegate, and therefore she has resource access permission to view claims assigned to Andy. Amy Baxter is a clerical
user who works in a different group. She does not have resource access permission to view claim cc:33.

Suppose that each of these users triggers the following call:

GET /claim/v1/claims/cc:33?fields=claimNumber

The response for Andy Applegate is:

{
 "data": {
 "attributes": {
 "claimNumber": "235-53-425891"
 }
 }
}

The response for Betty Baker is:

{
 "data": {
 "attributes": {
 "claimNumber": "235-53-425891"
 }
 }
}

The response for Amy Baxter is:

{
 "status": 404,
 "errorCode": "gw.api.rest.exceptions.NotFoundException",
 "userMessage": "No resource was found at path /claim/v1/claims/cc:33"
}

Resource access is a component of the system API authentication and authorization framework. For more information
on resource access, see the Cloud API Authentication Guide.

Querying for claims regardless of association
In some situations, a caller application may need to query for one or more claims that are not associated with the caller
and would not appear in the results of GET /claims. This can be done with a claim search using the POST /
claim/v1/search/claims endpoint. This endpoint returns a collection of ClaimSearchView resources. A
ClaimSearchView is a resource that has summary information about a claim.

Note that a caller can have access to a claim's ClaimSerchView but not have access to the claim itself. In this case, the
claim's ClaimSearchView would appear in the results of a POST /claim/v1/search/claims , and the caller would be
able to access the summary information. But, any attempt to view the claim through GET /claims/{claimId} would
fail.

Request payload for a claim search
The request object for a POST /claim/v1/search/claims must include a body. The body must specify the search
parameters using the following syntax:

{
 "data": {
 "attributes": {
 "claimNumber": "stringValue",
 "firstName": "stringValue",
 "lastName": "stringValue",
 "nameSearchType": {
 "code": "ClaimSearchNameSearchTypeCode"
 },
 "policyNumber": "stringValue"
 }
 }
}

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Working with claims 145

You must provide at least one field other than nameSearchType. You can provide more than one.

For example, the following payload will query for all claims associated with policy number 54-123456:

{
 "data": {
 "attributes": {
 "policyNumber": "54-123456"
 }
 }
}

The following payload will query for all claims where there is a claimant who has a first name of "Ray" and a last
name of "Newton":

{
 "data": {
 "attributes": {
 "firstName": "Ray",
 "lastName": "Newton"
 }
 }
}

Searching by name

When the payload includes either the firstName or lastName field, the default behavior is to search for claims where
there is a claimant with that first or last name.

You can also use the nameSearchType parameter to execute searches where the named person is either the insured, an
additional insured, or has any role on the claim. To do this, provide one of the following codes for the
ClaimSearchNameSearchTypeCode:

• addinsured (additional insured)
• any (any role on the claim, including the roles beyond additional insured, claimant, and insured)
• claimant (this is the default behavior)
• insured

For example, the following payload will query for all claims where the insured has a first name of "Ray" and a last
name of "Newton":

{
 "data": {
 "attributes": {
 "firstName": "Ray",
 "lastName": "Newton",
 "nameSearchType": {
 "code": "insured"
 }
 }
 }
}

The following payload will query for all claims where there is a ClaimContact with a first name of "Ray" and a last
name of "Newton", regardless of the ClaimContact's role on the claim:

{
 "data": {
 "attributes": {
 "firstName": "Ray",
 "lastName": "Newton",
 "nameSearchType": {
 "code": "any"
 }
 }
 }
}

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

146 Working with claims

Providing no search parameters

The system APIs do not require you to provide any query parameters, but ClaimCenter will not execute a claim search
with no query parameters. If you attempt to execute a claim search without query parameters, either from the user
interface or through a system API, ClaimCenter returns the following error message:

Please specify Claim #, Policy #, any Contact field, Assigned To Group, Assigned To User,
Created By, Cat #, VIN or License Plate

Note that this message is intended primarily for user interface claim searches, which is why it makes reference to fields
not available to the /claim/v1/search/claims endpoint, such as Assigned To Group, Assigned To User, and Created
By.

Response payload for a claim search
The /claim/v1/claims and /claim/v1/claims/{claimId} endpoints return a claim or a collection of claims. The
claim/v1/search/claims endpoint returns a collection of ClaimSearchViews. Consequently, the three endpoints
return payloads with slightly different structures.

The following table identifies the primary differences.

Information Claim payload example ClaimSearchView payload example

Claim owner
"assignedUser": {
 "displayName": "Andy Applegate",
 "id": "demo_sample:1"
}

"adjusterName": "Andy Applegate"

Claim ID
"id": "cc:33", "claimId": "cc:33"

Insured
"insured": {
 "displayName": "Bill Kinman ",
 "id": "cc:33",
 "uri": "/claim/v1/claims/cc:33/
 contacts/cc:101"
}

"insuredName": "Bill Kinman"

Claimants
"included": {
 "ClaimContact": [
 {
 "attributes": {
 ...
 "id": "cc:101",
 "roles": [
 {
 "relatedTo": {
 "id": "cc:47",
 "type": "Exposure"
 },
 "role": {
 "code": "claimant"
 }
 },
 ...

"claimants": [
 "Bill Kinman"
],

You can use query parameters to refine the response payload to exclude default fields and include non-default fields.
For more information, see “Refining response payloads” on page 47.

Retrieving policy information
During the initial POST of a draft claim, ClaimCenter copies information about the relevant policy from the Policy
Administration System into ClaimCenter. This information is a snapshot of the policy as it existed on the claim's loss
date.

The Policy Administration System is considered the System of Record for policy information. Consequently, for
verified policies, you cannot edit policy information in ClaimCenter through the system APIs. (The user interface does

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Working with claims 147

allow you to edit policy information, though this causes the policy to become unverified. For more information on
unverified policies, refer to the Application Guide.)

The system APIs include several endpoints that let you view policy information.

Summary of the policy endpoints
The information returned by the following endpoints comes from the ClaimCenter snapshot of the policy. It does not
come directly from the Policy Administration System.

The policy itself

The following endpoint returns information that is directly on the policy resource, such as effective date, expiration
date, policy number and policy type:

• /claims/{claimId}/policy

Risk units

A risk unit is a thing covered by the policy (other than the policyholder and any additional insureds). The type of risk
units on a policy vary based on the type of policy. For example:

• On a personal auto policy or commercial auto policy, risk units are typically vehicles.
• On a homeowner's policy, risk units are typically dwellings, other structures on the property (fences, sheds), or

items of value in the home (electronics, jewelry).

The following endpoints return information about the risk units on the policy:

• /claims/{claimId}/policy/location-based-risk-units
• /claims/{claimId}/policy/location-based-risk-units/{locationBasedRiskUnitId}
• /claims/{claimId}/policy/vehicle-risk-units
• /claims/{claimId}/policy/vehicle-risk-units/{vehicleRiskUnitId}

Coverages

There are two types of coverages on a policy: policy-level coverages and risk unit coverages.

• A policy-level coverage is a coverage that typically covers the policyholder or other additional insureds listed on
the policy.

◦ For example, personal auto policies typically come with a "Liability - Bodily Injury and Property Damage"
coverage. This covers any damage to other people or other properties that is caused by the policyholder (or the
additional insureds) while driving a vehicle. It does not matter which vehicle the policyholder was driving. The
coverage applies to the policyholder.

• A risk unit coverage is a coverage that covers an associated risk unit.
◦ For example, every vehicle listed on a personal auto policy typically comes with a "Collision" coverage. This

covers damage done to the associated vehicle. Suppose there is a policy with two vehicles and only the first
vehicle has collision coverage. If the second vehicle is involved in a collision, the policyholder will not be able
to file a claim for damages done to the second vehicle.

The following endpoints return information about the policy-level coverages on the policy:

• /claims/{claimId}/policy/coverages
• /claims/{claimId}/policy/coverages/{coverageId}

The following endpoints return information about the risk units on the policy. This includes the risk unit coverages
attached to each risk unit:

• /claims/{claimId}/policy/location-based-risk-units
• /claims/{claimId}/policy/location-based-risk-units/{locationBasedRiskUnitId}
• /claims/{claimId}/policy/vehicle-risk-units
• /claims/{claimId}/policy/vehicle-risk-units/{vehicleRiskUnitId}

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

148 Working with claims

Locations

A location is a physical place listed on a policy. The ways in which locations are used vary based on the type of policy.
For example:

• On a personal auto policy, a location can be used to identify where a vehicle is garaged.
• On a homeowner's policy, a location can be used to identify where the home is located.

The following endpoints return information about the locations on the policy:

• /claims/{claimId}/policy/locations
• /claims/{claimId}/policy/locations/{locationId}

Endorsements

An endorsement is a physical document detailing some aspect of the policy. Occasionally, an endorsement can become
relevant to claims processing. Endorsements are also referred to as forms.

For example, suppose a home owner elects to get a homeowner's policy for a home that is in a flood zone. The insurer
attaches an endorsement to the policy that excludes any damage caused by flooding. Later, the home owner files a
claim for damage caused by a flood. When determining if payment will be made on the claim, the adjuster needs to see
if the policy included a flood damage exclusion endorsement.

The following endpoints return information about the endorsements on the policy:

• /claims/{claimId}/policy/endorsements
• /claims/{claimId}/policy/endorsements/{endorsementId}

Assigning claims
When a claim completes the FNOL process (either through the user interface or through the /submit endpoint), it is
assigned to a group and a user in that group. The assigned user has the primary responsible for managing the claim.

When you submit a claim through the system APIs, ClaimCenter automatically executes the claim assignment rules to
initially assign the claim to a group and user. You can use the POST /claims/{claimId}/assign endpoint to reassign
the claim as needed.

Note: The functionality for assigning claims is a subset of the functionality for assigning activities. All
assignment options that are applicable to both activities and claims have the same behavior.

Assignment options

A claim can be assigned through the system APIs in the following ways:

• To a specific group and user in that group
• To a specific group only (and then ClaimCenter uses assignment rules to select a user in that group)
• By re-running the claim assignment rules

◦ This can be appropriate if you have modified the claim since the last time assignment rules were run and the
modification might affect who the claim would be assigned to.

The root resources for the /claims/{claimId}/assign endpoints is ClaimAssignee. This resource specifies
assignment criteria. The schema has the following fields:

Field Type Description

autoAssign Boolean Whether to assign the claim using assignment rules

groupId string The ID of the group to assign the claim to

userId string The ID of the user to assign the claim to

The ClaimAssignee resource cannot be empty. It must specify a single logical assignment option (group and user,
group only, or automatic assignment). For more information on how assignment rules execute assignment, see the
Rules Guide.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Working with claims 149

Assignment example - Assigning to a specific group (and user)

The following assigns claim cc:34 to group demo_sample:31 (Auto1 - TeamA) and user demo_sample:2 (Sue Smith).

POST /claim/v1/claims/cc:34/assign

{
 "data": {
 "attributes" : {
 "groupId" : "demo_sample:31",
 "userId" : "demo_sample:2"
 }
 }
}

The following assigns claim cc:34 to group demo_sample:31 (Auto1 - TeamA). Because no user has been specified,
ClaimCenter will execute assignment rules to assign the claim to a user in group demo-sample:31.

POST /claim/v1/claims/cc:34/assign

{
 "data": {
 "attributes" : {
 "groupId" : "demo_sample:31"
 }
 }
}

Note that there is currently no endpoint that returns groups or group IDs. To assign claims to a specific group, the caller
application must determine the group ID using some method other than a groups system API.

Assignment example - Using automated assignment

The following assigns claim cc:34 using automated assignment rules.

POST /claim/v1/claims/cc:34/assign

{
 "data": {
 "attributes": {
 "autoAssign" : true
 }
 }
}

Validating claims

ClaimCenter validation levels
During a claim's lifecycle, a claim passes through one or more levels of maturity. Within ClaimCenter, these are called
validation levels. The base configuration comes with the following levels:

• Load and save - The claim has enough information to be saved to the database.
• New loss completion - The claim has enough information to be assigned to an adjuster.
• Valid for ISO - The claim has enough information to be filed with ISO. (ISO is a national database used in the

United States to verify that the same loss is not being filed with multiple insurers.)
• Send to external (systems) - The claim has enough information to send information about it to external systems

within the insurer, such as a Policy Administration System that may be trying to assess policy renewal rates.
• Ability to pay - The claim has enough information such that payments can be written for it.

A claim's validation level is determined and enforced by a set of claim validation rules. Whenever a change is made to
a claim, the validation rules determine if the claim can be advanced to a later stage of validation. The validation rules
also prevent a claim from moving backwards to a lower level of validation. For more information on validation rules,
see the Rules Guide.

Note: In the base configuration, the "load and save" level applies only to claims that are being imported through
the ClaimCenter SOAP-based ClaimAPI API. Draft claims submitted through the system APIs do not need to

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

150 Working with claims

pass any level. In order for a draft claim to be promoted to an open claim, the draft claim must pass both the
"load and save" level and the "new loss completion" level. For more information, see “Executing FNOL” on
page 117.

Validating a claim through the system APIs
The Claim API includes a POST /claim/{claimId}/validate endpoint. This endpoint can be used to:

• Determine the claim's current validation level
• Perform validation on the claim for a specific validation level. (This returns information that identifies the

conditions that must be true for the claim to advance to the specified level.)

Checking a claim's validation level can be useful in the following situations:

• You want to determine whether or not the claim has enough information to be assigned to an adjuster. You can use
the /validate endpoint to determine if the claim is at or beyond the "new loss completion" level.

◦ If the claim is below the "new loss completion" level, the payload identifies the conditions needed to reach "new
loss completion".

• You want to execute a payment for a claim. You can use the /validate endpoint to determine if the claim is at the
"ability to pay" level.

◦ If the claim is below the "ability to pay" level, the payload identifies the conditions needed to reach "ability to
pay".

Example of a claim at the "load save" level

Suppose you execute a POST /claim/{claimId}/validate for claim cc:706 and this is the response:

{
 "data": {
 "attributes": {
 "hasErrors": true,
 "validationIssues": [
 {
 "field": "contacts",
 "id": "cc:706",
 "message": "The role Reporter is required on Claim 999-99-999705.",
 "severity": {
 "code": "error",
 "name": "Error"
 },
 "type": "Claim",
 "url": "/claim/v1/claims/cc:706",
 "validationLevel": {
 "code": "newloss",
 "name": "New loss completion"
 }
 },
 {
 "field": "lossLocation",
 "id": "cc:706",
 "message": "The claim's loss location must not be null",
 "severity": {
 "code": "error",
 "name": "Error"
 },
 "type": "Claim",
 "url": "/claim/v1/claims/cc:706",
 "validationLevel": {
 "code": "payment",
 "name": "Ability to pay"
 }
 }],
 "validationLevelReached": {
 "code": "loadsave",
 "name": "Load and save"
 }
 }
 }
}

From this payload, you can determine the following:

• The claim is at the "load and save" level. (validationLevelReached.code is loadsave).

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Working with claims 151

• To move to the "new loss completion" level, the reporter must be specified. (This comes from the first
validationIssues message.)

• To move to the "ability to pay" level, the loss location must be non-null. (This comes from the second
validationIssues message.)

◦ Although it is not explicitly stated, the requirements for all previous levels must also be met. (In other words, to
reach "ability to pay", the loss location must be non-null and the reporter must be specified.)

Example of a claim at the "ability to pay" level

Suppose you execute a POST /claim/{claimId}/validate for claim demo_sample:31 and this is the response:

{
 "data": {
 "attributes": {
 "hasErrors": false,
 "validationLevelReached": {
 "code": "payment",
 "name": "Ability to pay"
 }
 }
 }
}

From this payload, you can determine that the claim is at "ability to pay". The claim satisfies all validation rules. (The
hasErrors value is false.)

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

152 Working with claims

chapter 14

Working with ClaimContacts

This topic provides a high-level overview of ClaimContacts, discussing both what they are and how to work with them
through the system APIs.

For a more detailed discussion of the business functionality of ClaimContacts, refer to the Application Guide.

Overview of ClaimContacts in ClaimCenter
The following section provides an overview of ClaimContact behavior in ClaimCenter.

Note that, in ClaimCenter, ClaimContact information is stored across multiple entities, including Contact,
ClaimContact, and ClaimContactRole. The system APIs capture this information in a single resource named
ClaimContact. This documentation uses the term "ClaimContact" to refer to a ClaimContact resource in the system
APIs, or its corresponding information in the ClaimCenter Contact, ClaimContact, and ClaimContactRole entities.

What is a ClaimContact?

A ClaimContact is a person or organization who has a relationship with a claim. This includes people and
organizations who:

• Are covered by the relevant policy
• Suffered a covered loss
• Provided information relevant to the claim
• Provided a service to address the loss

For example, suppose that Ray Newton has a personal auto policy. He informs the insurer that, while driving his
Toyota, he hit Robert Farley's Honda and damaged both cars. Wilma Weeks witnessed the collision. Robert Farley's
Honda was repaired at Joe's Auto Body Shop. This claim has the following ClaimContacts:

• Ray Newton, who is covered by the personal auto policy and who suffered a loss.
• Robert Farley, who also suffered the loss.
• Wilma Weeks, who provided information relevant to the claim.
• Joe's Body Shop, who provided service to address the loss.

What is a ClaimContact related to?

Claims typically have child objects. This can include:

• A policy, which contains a copy of information from the policy that is relevant to the claim.
• One or more incidents, which represent anything that was damaged, stolen, or otherwise representative of the loss

(such as a vehicle, a property, or an injured person).
Working with ClaimContacts 153

• One or more exposures, which track a potential payment for one claimant from one coverage.
• One or more service requests, which are requests to outside vendors to provide service that addresses the loss.

Every ClaimContact is related to the claim itself. A ClaimContact can also be related to one or more specific child
objects.

For example, the claim described above might have the following child objects:

• The personal auto policy
◦ Ray Newton is related to this.

• A vehicle incident for Ray's damaged Toyota.
◦ Ray Newton is related to this.

• An exposure to pay Ray Newton from the policy's collision damage coverage.
◦ Ray Newton is related to this.

• A vehicle incident for Robert's damaged Honda.
◦ Robert Farley is related to this.

• An exposure to pay Robert Farley from the policy's third-party property damage coverage.
◦ Robert Farley is related to this.

• A service request to repair Robert's Honda.
◦ Joe's Body's Shop is related to this.

What is the nature of the relationship?

Every ClaimContact must have one or more roles with each object the ClaimContact is related to. A ClaimContact role
defines the nature of a relationship between a ClaimContact and the claim.

For example, the claim described above might have these ClaimContacts with the following roles:

• The claim itself
◦ Ray Newton is the insured, the reporter, and a claimant.
◦ Robert Farley is a claimant.
◦ Wilma Weeks is a witness.

• The vehicle incident for Ray's Toyota.
◦ Ray Newton is the driver.

• The vehicle incident for Robert's Honda.
◦ Robert Farley is the driver.

• The exposure to pay Ray Newton from the policy's collision coverage.
◦ Ray Newton is the claimant.

• The exposure to pay Robert Farley from the policy's third-party property damage coverage.
◦ Robert Farley is the claimant.

• The service request to repair Robert's Honda.
◦ Joe's Body's Shop is the service vendor.

Overview of ClaimContacts in the system APIs
The following section provides an overview of ClaimContact behavior as it exists in the system APIs.

ClaimContact roles

Every ClaimContact has a roles array. This is a read-only list of all the roles the ClaimContact has.

Every member of the roles array includes the following properties:

• relatedTo - the type and ID of the object that the ClaimContact is related to
• role - the role the ClaimContact has on that object

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

154 Working with ClaimContacts

• active - a Boolean identifying whether the ClaimContact actively holds the role on the claim.

The active field is used to identify ClaimContacts who previously held a role on the claim but are no longer actively
involved in the claim. For example, suppose an injured person is treated by one doctor, but then the case is reassigned
to a second doctor. Both doctors could be ClaimContacts on the claim, but active would be set to true only for the
second doctor.

You can modify the roles a ClaimContact has, but this is not done by modifying the roles array. The way in which it is
done depends on whether the role is reserved or not.

Reserved roles

A reserved role is a role that cannot be set on a ClaimContact explicitly. Instead, the role must be set implicitly through
a field, array, or action on another object.

For example, reporter is a reserved role. You cannot add this role directly to a ClaimContact. However, you can set a
Claim's reporter field to a given ClaimContact. This implicitly adds the reporter role to that ClaimContact. This also
removes the reporter role from any other ClaimContact that previous had it.

The reserved roles are defined in the ReservedContactRoles.yaml file in the integration/contactroles/v1 directory.
In general, the reserved roles are either:

• Roles for which there can be at most one ClaimContact with the role. (For example, reporter is reserved. A claim
can have at most one reporter.)

• Roles that are set through an array on a non-ClaimContact object. (For example, witness is reserved. A claim can
have several witnesses. These witnesses are defined on the Claim resource's witnesses array.)

For more information on assigning a reserved role to a ClaimContact, see “Setting reserved roles” on page 156.

Non-reserved roles

A non-reserved role is a role that can be set on a ClaimContact explicitly. Every role that is not listed in the
ReservedContactRoles.yaml file is a non-reserved role. For example, alternate contact is a non-reserved role. A claim
can have any number of alternate contacts, and this type of ClaimContact is not managed by an array on Claim.

For more information on assigning a non-reserved role to a ClaimContact, see “Setting non-reserved roles” on page
157.

Identifiers

When specifying a ClaimContact in a payload, there are several different identifiers you can use.

• id - The ClaimContact's system API ID. This is equal to the ClaimContact's Public ID in ClaimCenter.
• policySystemId - An identifier in the Policy Administration System that uniquely identifies the contact.
• refid - When the ClaimContact is being created in a given payload, other parts of the payload can reference it

using an arbitrary "reference id".

For more information on the different options for identifying a ClaimContact, see “Identifying the ClaimContact” on
page 159.

Contrasting ClaimContacts and "contacts"

The name of the resource that captures contact information is ClaimContact. This documentation refers to contacts
related to claims as ClaimContacts.

Be aware that there are places where the system APIs use the term "contacts" to refer to ClaimContacts:

• For endpoints that have ClaimContact as the root resource, the endpoint path refers to the resources as a "contact".
For example:

◦ GET /claim/v1/claims/{claimId}/contacts
◦ PATCH /claim/v1/claims/{claimId}/contacts/{contactId}

• When using the include query parameter to include related ClaimContacts, the resources are referred to as
"contacts". For example:

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Working with ClaimContacts 155

◦ GET /claim/v1/claims?include=contacts

ClaimContact endpoints

You can use the following endpoints to interact with ClaimContacts directly:

Operation Endpoint Description

GET /claims/{claimId}/contacts Retrieve the ClaimContacts for a given claim

POST /claims/{claimId}/contacts Create a new ClaimContact on the given claim

GET /claims/{claimId}/contacts/{contactId} Retrieve information about the given ClaimContact

PATCH /claims/{claimId}/contacts/{contactId} Update information on the given ClaimContact

DELETE /claims/{claimId}/contacts/{contactId} Delete the given ClaimContact

GET /claims/{claimId}/contact-role-owners Retrieve a list of objects on the given claim that can
have ClaimContacts associated with them

For reserved roles, you can also modify a ClaimContact indirectly by modifying the object that controls the role. For
example, when you execute a PATCH /claims/{claimId} and set or modify the Claim's reporter field to a given
ClaimContact, this assigns the reporter role to that ClaimContact.

The /claims/{claimId}/contact-role-owners endpoint returns all objects on the claim that can have
ClaimContacts associated with them. This includes:

• The claim itself
• The policy
• Any existing incidents
• Any existing exposures
• Any existing service requests
• Any existing negotiations or matters

◦ A negotiation is a history of the offers and counter-offers related to one disputed aspect of the loss.
◦ A matter is a collection of information pertaining to a lawsuit or potential lawsuit.

Be aware that the /claims/{claimId}/contact-role-owners endpoint returns the objects that are able to have
associated ClaimContacts. These objects may or may not have ClaimContacts already associated with them. If there are
ClaimContacts associated with them, the ClaimContacts are not included in the response

Modifying ClaimContact roles
The ClaimContact resource has two role-related array properties:

• roles - A read-only array of all roles held by the ClaimContact
• editableRoles - An editable array of non-reserved roles held by the ClaimContact

Both properties use the ContactRole schema.

You can modify the roles a ClaimContact has, but this is never done by modifying the roles array. Instead, you either
modify a field or array on a related object, or you modify the editableRoles array. Which approach to use is
determined by whether the role is reserved or not.

Setting reserved roles
A reserved role is a role that cannot be set on a ClaimContact explicitly. Instead, the role must be set by:

• Setting a field on another object
• Modifying an array on another object
• Executing an action on another object

The reserved roles are defined in the ReservedContactRoles.yaml file in the integration/contactroles/v1 directory.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

156 Working with ClaimContacts

To assign a reserved role to a ClaimContact, you must identify the field, array, or action that implicitly sets the role.

Reserved roles that are set from a field

For example, the reporter role is set from the Claim's reporter field. To add the reporter role to a ClaimContact,
modify the Claim's reporter field so that it references the ClaimContact.

Suppose that there is a claim with ID cc:610 , and there is a ClaimContact with ID cc:1306. The following is an
example of adding the reporter role to that ClaimContact:

PATCH http://localhost:8080/cc/rest/claim/v1/claims/cc:610

{
 "data": {
 "attributes": {
 "reporter": {
 "id": "cc:1306"
 }
 }
 }
}

Reserved roles that are set from an array

As another example, the witness role is set from the Claim's witnesses array. To add the witness role to a
ClaimContact, add the ClaimContact the witnesses array.

Suppose that there is a claim with ID cc:610 , and there is a ClaimContact with ID cc:1306. The claim has no
witnesses. The following is an example of adding the witness role to ClaimContact cc:1306.

PATCH http://localhost:8080/cc/rest/claim/v1/claims/cc:610

{
 "data": {
 "attributes": {
 "witnesses": [
 {
 "contact": {
 "id": "cc:1306"
 }
 }
]
 }
 }
}

Keep in mind that, within the system APIs, PATCHing an array does not add new members to the existing members. It
replaces the existing members with the new members. If you want to add members to an array, you must first
determine the existing members, and then specify an array with those members and the ones you wish to add. For more
information, see “PATCHes” on page 73.

Reserved roles that are set through actions

In some situations, a reserved role is set when an action is executed on a resource other than the ClaimContact itself.
For example, when a service request is created, the ServiceRequestInstruction can specify a ClaimContact as the
CustomerContact. This ClaimContact is given the reserved role servicerequestparticipant.

Setting non-reserved roles
A non-reserved role is a role that can be set on a ClaimContact explicitly. Every role that is not listed in the
ReservedContactRoles.yaml file is a non-reserved role.

To assign a non-reserved role to a ClaimContact, you must modify the ClaimContact's editableRoles array.

JSON syntax for the editableRoles array

When POSTing or PATCHing a ClaimContact, every member of the editableRoles array must include three pieces of
information:

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Working with ClaimContacts 157

• The role's code
• The type of object on which the ClaimContact has this role
• The ID of the object on which the ClaimContact has this role

The syntax used to specify this is:

"editableroles": [
 {
 "role": {
 "code": "<roleCode>"
 },
 "relatedTo": {
 "type": "<parentObjectType>",
 "id": "<parentObjectId>"
 }
 },
 ... <additionalRoles>

For example, the following PATCHes Claim cc:610 so that ClaimContact cc:777 has the alternate contact role (whose
code is altcontact) on the claim itself.

PATCH http://localhost:8080/cc/rest/claim/v1/claims/cc:610/contacts/cc:777

{
 "data": {
 "attributes": {
 "editableRoles": [
 {
 "role": {
 "code": "altcontact"
 },
 "relatedTo": {
 "type": "Claim",
 "id": "cc:610"
 }
 }
]
 }
 }
}

Similarly, this example shows how to PATCH Claim cc:610 so that ClaimContact cc:208 has the owner role (whose
code is incidentowner) on the vehicle incident whose ID is cc:102. (In other words, ClaimContact cc:208 is the owner
of the vehicle specified in vehicle incident cc:102.)

PATCH http://localhost:8080/cc/rest/claim/v1/claims/cc:610/contacts/cc:208

{
 "data": {
 "attributes": {
 "editableRoles": [
 {
 "role": {
 "code": "incidentowner"
 },
 "relatedTo": {
 "type": "vehicleIncident",
 "id": "cc:102"
 }
 }
]
 }
 }
}

PATCHing editableRoles scenarios

Keep in mind that, within the system APIs, PATCHing an array does not add new members to the existing members. It
replaces the existing members with the new members. If you want to add members to an array, you must first
determine the existing members, and then specify an array with those members and the ones you wish to add. For more
information, see “PATCHes” on page 73.

When PATCHing editableRoles, the following table details the possible request payloads and they way the system
APIs will respond.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

158 Working with ClaimContacts

If the request payload contains... ...then...

No editableRoles array The non-reserved roles on the ClaimContact remain unchanged.

An editableRoles array with one or more non-
reserved roles

The existing non-resolved roles are replaced by the non-reserved roles
specified in the payload.

An empty editableRoles array All existing non-reserved roles are removed. (However, if this would result
in the ClaimContact no longer having any roles, the system API returns an
error.)

An editableRoles array with one or more reserved
roles

The system API returns an error.

A roles array The system API returns an error.

Identifying the ClaimContact
There are several ways you can add ClaimContact information to a claim. You can:

• Create a new ClaimContact and specify its role
• Specify a role for a contact that is on the policy in the Policy Administration System
• Specify a role for a ClaimContact that is already on the claim

Each of these approaches uses a different property to identify the ClaimContact.

Creating a new ClaimContact and specifying its role
You can create a new ClaimContact and specify its role in the same payload using request inclusion. When using this
approach, you identify the ClaimContact by refid. For more information on this approach, see “Request inclusion” on
page 80.

The following example is the payload for a PATCH to an existing claim with id cc:402. This PATCH creates a new
ClaimContact and sets the claim's reporter to that ClaimContact. Note that the value used for refid, "newContact", is
arbitrary. Any value could be used so long as the same value is used for the reporter's refid in the data section and the
refid in the included ClaimContact section.

PATCH /claim/v1/claim/cc:402

{
 "data": {
 "attributes": {
 "reporter": {
 "refid": "newContact"
 }
 }
 },
 "included": {
 "ClaimContact": [
 {
 "refid": "newContact",
 "attributes": {
 "contactSubtype": "Person",
 "firstName": "Carol",
 "lastName": "Daniels"
 },
 "method": "post",
 "uri": "/claim/v1/claims/cc:402/contacts"
 }
]
 }
}

Specifying a role for a ClaimContact that is already on the claim
When a ClaimContact is created in ClaimCenter, it is assigned an id. This value is the ClaimContact's Public ID in
ClaimCenter.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Working with ClaimContacts 159

ClaimContact roles can be specified using the id field. This is useful when the caller application is constructing the
payload for a PATCH to an existing claim, the ClaimContact already exists on the claim, and the caller application
knows the value of the ClaimContact's id.

The following example is the payload for a PATCH to an existing claim. This PATCH sets the Claim's reporter to the
ClaimContact whose id is cc:202.

{
 "data": {
 "attributes": {
 "reporter": {
 "id": "cc:202"
 }
 }
 }
}

Specifying a role for a contact that is on the policy
When a draft claim is initially POSTed to ClaimCenter, information on the policy is copied from the Policy
Administration System to ClaimCenter. This typically includes contacts listed on the policy.

Policy system IDs

One of the policy contact attributes that is copied to ClaimCenter is the contact's policy system ID. Policy system ID is
a value that uniquely identifies a given type of object on the policy. For example, on a given policy, every contact's
policy system ID must be used by only one contact.

The value that is used as the policy system ID is determined by the integration code that copies the policy information
over to ClaimCenter. This code is written during implementation and will be different for each insurer and each Policy
Administration System. A policy system ID is not required to be unique across the entire Policy Administration
System. But, it is required to be unique across all instances of the given type of object on a given policy.

Specifying roles by policy system ID

In the system APIs, the name of the policy system ID field is policySystemId. Specifying roles through
policySystemId is useful in the following circumstances:

• The caller application is constructing the payload for the initial POST /claims and wants to include an existing
ClaimContact and its role in the payload. At this point, the policy information (including policy contacts) have not
yet been copied to ClaimCenter. Therefore, the relevant contact does not yet have a ClaimCenter ID.

• The caller application is constructing the payload for a PATCH to an existing draft or open claim. The application
knows the policy system ID from a previous call to the Policy Administration System, and it does not want to
execute a separate GET to retrieve the ClaimCenter ID. Therefore, it identifies the ClaimContact by policy system
ID.

Note: All resource field names are case-sensitive. Unlike refid and id, which use lower-case i's,
policySystemId uses an upper-case I.

The following example is the payload for a PATCH to an existing claim. This PATCH sets the Claim's reporter to the
ClaimContact whose policy system ID is ab:0001-1.

{
 "data": {
 "attributes": {
 "reporter": {
 "policySystemId": "ab:0001-1"
 }
 }
 }
}

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

160 Working with ClaimContacts

ClaimContact role constraints
Role constraints

In ClaimCenter, a role constraint is an logical expression that prevent users from assigning roles to ClaimContacts in a
manner that does not make business sense.

There are two types of role constraints:

• Entity role constraint - This identifies which type of objects can make use of the role, and how many
ClaimContacts can be associated with that object using that role (exactly one, at least one, at most one, or
unlimited).

◦ For example, this constraint could stipulate that the role of driver can be held by ClaimContacts associated with
a vehicle incident, and that there can be at most one driver on a given vehicle incident.

◦ This type of constraint can be thought of as both a "which type of object" constraint and a "how many"
constraint.

• Contact role type constraint - This identifies the subtype for which a given role is allowed.
◦ For example, this constraint could stipulate that the role of primary doctor can be held by ClaimContacts with

an associated contact whose subtype is Doctor, but not ClaimContacts with an associated contact whose subtype
is Attorney.

◦ This type of constraint can be thought of as a "which subtype" constraint.

In ClaimCenter, ClaimContact role constraints are configured in entityroleconstraints-config.xml. For more
information, refer to the Configuration Guide.

Role constraint endpoints

You can use the following endpoints to retrieve information about role constraints.

Operation Endpoint Description

GET /role-constraints Retrieve a list of all contact role constraints for the given
instance of ClaimCenter

GET /role-constraints/{contactRoleId} Retrieve information for the given contact role. Note
that contactRoleId is the contact role's code, such as
reporter.

These are metadata endpoints. They return information about the configuration of the given instance of ClaimCenter,
not about any of its business resources.

Role constraint example: Doctor

This is a portion of the payload when GET /role-constraints/doctor is executed on the base configuration:

{
 "data": {
 "schemaConstraints": [
 {
 "constraints": [
 {
 "constraintType": "ZeroToMore"
 }
],
 "schema": "Claim"
 },
 {
 "constraints": [
 {
 "constraintType": "ZeroToMore"
 }
],
 "schema": "Exposure"
 }
],
 "subtype": "Doctor"
 },

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Working with ClaimContacts 161

From this payload, you can determine the following about doctor:

• It can be used as a role for a ClaimContact that is associated with a claim.
◦ There can be any number of doctors on an claim, including 0.

• It can be used as a role for a ClaimContact that is associated with an exposure.
◦ There can be any number of doctors on an exposure, including 0.

• The role of doctor can only be used on ClaimContacts whose associated contact has a subtype of Doctor (or a child
subtype of Doctor).

Role constraint example: Reporter

This is a portion of the payload when GET /role-constraints/reporter is executed on the base configuration:

{
 "data": {
 "attributes": {
 "schemaConstraints": [
 {
 "constraints": [
 {
 "constraintType": "Exclusive"
 },
 {
 "constraintType": "Required"
 }
],
 "schema": "Claim"
 },
 {
 "constraints": [
 {
 "constraintType": "ZeroToMore"
 }
],
 "schema": "Exposure"
 }
]

From this payload, you can determine the following about reporter:

• It can be used as a role for a ClaimContact that is associated with a claim.
◦ The role is "exclusive". (There can be at most one ClaimContact on a Claim with this role.)
◦ The role is "required". (There must be at least one ClaimContact on a Claim with this role.)
◦ Taken together, these two constraints mean there must be exactly one reporter on a Claim.

• It can be used as a role for a ClaimContact that is associated with an Exposure.
◦ There can be any number of reporters on an exposure, including 0.

• There is no subtype restriction. Therefore, the role of reporter can be used with any ClaimContact, regardless of the
subtype of its associated contact.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

162 Working with ClaimContacts

chapter 15

Working with incidents

This topic provides a high-level overview of incidents, discussing both what they are and how to work with them
through the system APIs.

For a more detailed discussion of the business functionality of incidents, refer to the Application Guide. For a more
detailed discussion of the configuration of incidents, refer to the Configuration Guide.

Overview of incidents in ClaimCenter
The following section provides an overview of incident behavior in ClaimCenter.

What is an incident?

An incident is a collection of information about an item that was lost or damaged, such as:

• A vehicle
• A property (such as a house or a fence)
• A person suffering one or more injuries

For example, a vehicle incident can store the following information:

• Where was the point of collision?
• Who was the driver?
• What is the severity of the damage?
• Were the airbags deployed?
• Is the vehicle so damaged that it is considered a "total loss"?

Incident subtypes

Incidents are subtyped. The following is a portion of the incident hierarchy.

• Injury Incident - An injury suffered by a claimant
• Property Incident - A property (such as a house, fence, vehicle, or expenses incurred from lose of use)

◦ Fixed Property Incident - A fixed property, such as a house, shed, or fence
▪ Dwelling Incident - A fixed property use for dwelling, such as a house

◦ Living Expenses Incident - Expenses incurred from the lose of use of a dwelling
◦ Mobile Property Incident - A mobile property, such as baggage or a vehicle

▪ Vehicle Incident - A vehicle
Working with incidents 163

Incidents and policy types

Every claim is attached to a policy with a specific policy type, such as PersonalAuto or HOPHomeowners. Every
incident type is indirectly associated with one or more of these policy types. Incidents of a given type can be created
only on claims with a matching policy type.

For example, vehicle incidents are associated with four policy types:

• BusinessAuto
• Businessowners
• PersonalAuto
• PersonalTravel

You can create vehicle incidents on a claim whose policy type is one of these types. You cannot create vehicle incidents
on a claim whose policy type is not one of these types.

The association between incident type and policy type occurs in the Line of Business typelists. For more information
on the Line of Business typelists, see the Configuration Guide.

Incidents and ClaimContacts

Incidents can have ClaimContacts associated with them. When a ClaimContact is associated with an incident, the
ClaimContact also has a role defining the relationship.

For example, with a vehicle incident, a ClaimContact could be:

• An owner
• A driver
• A passenger

For more information on ClaimContacts, see “Working with ClaimContacts” on page 153.

Incidents and exposures

Every exposure is associated with an incident. You cannot create an exposure without an incident. For more
information on exposures, see “Working with exposures” on page 171.

Overview of incidents in the system APIs
The system APIs support the following incident resources:

• Dwelling incident
• Fixed property incident
• Injury incident
• Living expense incident
• Vehicle incident

For each incident type, there are typically five endpoints as described in the following table:

Operation Endpoint For the given claim...
GET /claims/{claimId}/incidentType Query for all incidents of incidentType

POST /claims/{claimId}/incidentType Create a new incident whose type is
incidentType

GET /claims/{claimId}/incidentType/{incidentId} Query for the given incident

PATCH /claims/{claimId}/incidentType/{incidentId} Update the given incident

DELETE /claims/{claimId}/incidentType/{incidentId} Delete the given incident

For example, the following endpoints interact with vehicle incidents:

• GET /claims/{claimId}/vehicle-incidents

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

164 Working with incidents

• POST /claims/{claimId}/vehicle-incidents
• GET /claims/{claimId}/vehicle-incidents/{incidentId}
• PATCH /claims/{claimId}/vehicle-incidents/{incidentId}
• DELETE /claims/{claimId}/vehicle-incidents/{incidentId}

Primary child objects

Most types of incidents include an inlined "primary" child object that stores information that is inherent to the damaged
thing from before it was damaged. For example:

• Dwelling incidents and fixed property incidents have a location object.
◦ This stores information inherent to the location, such as address.

• Injury incidents have an injuredPerson object.
◦ This stores information inherent to the injured person, such as firstName and lastName.

• Vehicle incidents have a vehicle object.
◦ This stores information inherent to the vehicle, such as make, model, and licenseplate.

Information about the damage (such as the damage description or severity) are stored on the incident, but not as part of
this child object. For example, vehicle incidents have an airbagsdeployed field. This field is directly on the vehicle
incident itself, not on the vehicle child object.

Incidents and risk units

There are two resources that can have "primary" child objects:

• Incidents, which are things that are lost or damaged (whether or not they were covered on the policy).
• Risk units, which are things covered on the policy associated with the claim (whether or not they have been lost or

damaged).

A "primary" child object could be associated with only a risk unit, only an incident, or both a risk unit and an incident.
Consider the following examples with vehicles and personal auto policies:

• A vehicle owned by the policyholder that was not damaged.
◦ This appears on the ClaimCenter copy of the policy as part of a vehicle risk unit.
◦ But because it was not damaged, there is no vehicle incident for this vehicle.

• A vehicle owned by a third party that was damaged.
◦ This does not appear on the ClaimCenter copy of the policy. (It may be covered on the third party's policy, but it

is not covered on the policyholder's policy.) For this vehicle, there is no vehicle risk unit.
◦ But because it was damaged, there is a vehicle incident for this vehicle.

• A vehicle owned by the policyholder that was damaged.
◦ This appears on the ClaimCenter copy of the policy as part of a vehicle risk unit.
◦ This also appears as part of a vehicle incident because it was damaged.

Incompatible incident types

You cannot create an incident whose type is incompatible with the policy type. For example, you cannot create a
dwelling incident on a claim associated with a personal auto policy. If you attempt to do so, the system APIs respond
with an error message similar to the following:

{
 "status": 404,
 "errorCode": "gw.api.rest.exceptions.NotFoundException",
 "userMessage": "No resource was found at path /claim/v1/claims/cc:34/dwelling-incidents"
}

For a given policy type, some insurers may have a business requirement that involves creating incidents that are
incompatible with that policy type in the base configuration. For example, an insurer may have a business requirement
to create fixed property incidents for inland marine policies, even though, in the base configuration, fixed property
incidents are incompatible with inland marine policies. To implement this business requirement, the insurer must

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Working with incidents 165

configure the ClaimCenter LOB typelists to make the incident type compatible with the policy type. For more
information, see the Configuration Guide.

Creating incidents
In the base configuration, there are no required fields for creating any type of incident. All fields are optional.

The following sections provide additional information and examples of the various types of incidents you can create
through the system APIs.

Dwelling incidents
A dwelling incident is an object that captures loss information about a place where people live.

In the base configuration, dwelling incidents can be used with policies of the following type:

• HOPHomeowners

A dwelling incident typically includes a primary child object called location, with fields that describe inherent
qualities of the dwelling's location, such as address. The dwelling incident also contains additional information
specific to the loss, such as damagedAreaSize and severity. You do not have to specify location when you create a
dwelling incident. If you do want to specify location, you can either:

• Specify an existing location on the policy by providing its policySystemId.
• Specify an existing location on the claim by providing its ClaimCenter id.
• Create a new location by providing its attributes inline.

Unlike some other child objects, a location cannot be created as a referenced resource in the included section and
then specified by refid. A new location must be created as an inlined resources.

Example of creating a typical dwelling incident

In this example, the dwelling incident's location is included, and it is specified by policySystemId.

POST /claims/{claimId}/dwelling-incidents

{
 "data": {
 "attributes": {
 "description": "water from heavy rains leaked through the roof damaging walls and floor.",
 "location" : {
 "policySystemId" : "pcdwl:0001-1"
 } ,
 "yearsInHome" : 7
 }
 }
}

Fixed property incidents
A fixed property incident is an object that captures loss information about a fixed piece of property (such as a building)
or a permanent structure (such as a fence or a fountain).

In the base configuration, fixed property incidents can be used for a large range of policy types. This includes:

• Business auto
• Businessowners
• Commercial package
• Commercial property
• Personal auto

This list is not exhaustive. For a complete list of policy types that are compatible with fixed property incidents, refer to
the Incident typelist in Studio.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

166 Working with incidents

A fixed property incident typically includes a primary child object called location, with fields that describe inherent
qualities of the property's location, such as address. The fixed property incident also contains additional information
specific to the loss, such as lossparty and severity. You do not have to specify location when you create a fixed
property incident. If you do want to specify location, you can either:

• Specify an existing location on the policy by providing its policySystemId.
• Specify an existing location on the claim by providing its ClaimCenter id.
• Create a new location by providing its attributes inline.

Unlike some other child objects, a location cannot be created as a referenced resource in the included section and
then specified by refid. A new location must be created as an inlined resources.

Example of creating a typical fixed property incident

In this example, the dwelling incident's location is included, and it is created as an inlined resource.

POST /claims/{claimId}/fixed-property-incidents

{
 "data": {
 "attributes": {
 "location": {
 "address": {
 "addressLine1": "1313 Monroe Lane",
 "city": "Pomona",
 "country": "US",
 "state": {
 "code": "CA"
 }
 },
 "primaryLocation": false
 },
 "severity" : {
 "code" : "major-prop"
 }
 }
 }
}

Injury incidents
An injury incident is an object that captures loss information about a single injury that a claimant suffered.

In the base configuration, injury incidents can be used for a large range of policy types. This includes:

• Business auto
• Businessowners
• Commercial package
• General liability
• Personal auto

This list is not exhaustive. For a complete list of policy types that are compatible with fixed property incidents, refer to
the Incident typelist in Studio.

An injury incident typically includes a primary child object called injuredPerson, with fields that describe inherent
qualities of the person, such as firstName and lastName. The injury incident also contains additional information
specific to the injury, such as ambulenceused, primaryDoctor, and treatmentType. You do not have to specify
injuredPerson when creating an injury incident. If you do want to specify injuredPerson, you can either:

• Specify an existing ClaimContact on the policy by providing its policySystemId.
• Specify an existing ClaimContact on the claim by providing its ClaimCenter id.
• Create a new ClaimContact in the included section and reference that ClaimContact by refid.

Example of creating a typical injury incident

In this example, the injury incident's injuredPerson is provided, and it is specified by ClaimCenter id.

POST /claims/{claimId}/injury-incidents

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Working with incidents 167

{
 "data": {
 "attributes": {
 "bodyParts": [
 {
 "primaryBodyPart": {
 "code": "head"
 }
 }
],
 "description": "Potential vision loss",
 "detailedInjuryType": {
 "code": "58"
 },
 "generalInjuryType": {
 "code": "specific"
 },
 "injuredPerson": {
 "id": "cc:102"
 },
 "lossParty": {
 "code": "third_party"
 },
 "lostWages": true,
 "severity": {
 "code": "major-injury"
 },
 "treatmentType": {
 "code": "hospital"
 }
 }
 }
}

Living expenses incidents
A living expenses incident is an object that captures loss information about expenses incurred as a result of the loss of
use of a property. (For example, staying in a hotel while a damaged home is repaired.)

In the base configuration, living expenses incidents can be used with policies of the following type:

• HOPHomeowners

Unlike other types of incidents, a living expense incident does not make use of a primary child object.

Example of creating a typical living expense incident

In this example, a living expense incident is created. There is no primary child object to reference or create.

POST /claims/{claimId}/living-expenses-incidents

{
 "data": {
 "attributes": {
 "description": "7-day hotel stay during flood damage repair",
 "lossParty" : {
 "code" : "insured"
 },
 "startDate" : "2020-08-31T07:00:00.000Z"
 }
 }
}

Vehicle incidents
A vehicle incident is an object that captures loss information about a vehicle.

In the base configuration, vehicle incidents can be used with policies of the following type:

• Business auto
• Businessowners
• Personal auto
• Personal travel

A vehicle incident typically includes a primary child object called vehicle, with fields that describe inherent qualities
of the vehicle, such as make, model, and licenseplate. The vehicle incident also contains additional information

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

168 Working with incidents

specific to the loss, such as airbagsdeployed, collisionpoint, and driver. You do not have to specify vehicle
when creating a vehicle incident. If you do want to specify vehicle, you can either:

• Specify an existing vehicle on the policy by providing its policySystemId.
• Specify an existing vehicle risk unit on the claim by providing its ClaimCenter id.
• Create a new vehicle by providing its attributes inline.

Unlike some other child objects, a vehicle cannot be created as a referenced resource in the included section and
then specified by refid. A new vehicle must be created as an inlined resources.

Example of creating a typical vehicle incident

In this example, the vehicle incident's vehicle is provided, and it is created as an inlined resource.

POST /claims/{claimId}/vehicle-incidents

{
 "data": {
 "attributes": {
 "collisionPoint": {
 "code": "front"
 },
 "damageDescription": "Damage to bumper and front panels",
 "driver": {
 "id": "cc:102"
 },
 "severity": {
 "code": "moderate-auto"
 },
 "vehicle": {
 "licensePlate": "7FDG745",
 "make": "Mercury",
 "model": "Sable",
 "state": {
 "code": "CA",
 "name": "California"
 },
 "vin": "6GYF54637HD645370",
 "year": 1993
 }
 }
 }
}

Summary of incident types
The following chart summarizes the types of incidents, whether the schema includes a primary child object, and how
that child object can be specified.

Incident Primary child object Specify by
policySystemId?

Specify by
ClaimCenter id?

Create in included
section and specify by
refid?

Create inline?

Dwelling location yes yes no yes

Fixed Property location yes yes no yes

Injury injuredPerson yes yes yes no

Living Expense (none) (not applicable) (not applicable) (not applicable) (not applicable)

Vehicle vehicle yes yes no yes

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Working with incidents 169

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

170 Working with incidents

chapter 16

Working with exposures

This topic provides a high-level overview of exposures, discussing both what they are and how to work with them
through the system APIs.

For a more detailed discussion of the business functionality of exposures, see the Application Guide. For a more
detailed discussion of the configuration of exposures, see the Configuration Guide.

Overview of exposures in ClaimCenter
The following section provides an overview of exposure behavior in ClaimCenter.

What is an exposure?

An exposure is an object associated with a claim which is used to track a potential payment or a set of related potential
payments. Every exposure is linked to one coverage (where the money is "coming from") and one claimant (where the
money is "going to").

For example, suppose that Ray Newton has a personal auto policy. He informs the insurer that, while driving his
Toyota, he hit Robert Farley's Honda and damaged both cars. Robert Farley also suffered a neck injury. The associated
claim would have three exposures to track these potential payments:

Claimant Coverage

A potential payment to... Ray Newton ...from the policy's... collision coverage ...to pay for repairs to Ray's
car.

A potential payment to... Robert Farley ...from the policy's... third-party property damage
coverage

...to pay for repairs to
Robert's car.

A potential payment to... Robert Farley ...from the policy's... third-party bodily damage coverage ...to pay for Robert's
medical bills to treat his
neck injury.

Some exposures result in a single payment. This is likely to be true for the first and second exposure in the previous
example. Typically, repairs to a vehicle can be covered in a single payment. Other exposures manage a set of related
payments. This could be true for the third exposure in the previous example. Medical treatment might occur over an
extended period of time, and multiple payments may be needed, one for each treatment.

Exposures and coverages

Every exposure is directly linked to a coverage type. A coverage type is a type of loss specified on a policy. For
example, for personal auto policies, PACollisionCov and PALiabilityCov are two coverage types. PACollisionCov

Working with exposures 171

covers damage to a vehicle owned by the insured. PALiabilityCov covers damages to vehicles owned by a third party
where the damage was caused by the insured.

Every exposure is indirectly linked to an exposure type. An exposure type is a set of information to gather for an
exposure. For example, VehicleDamage is an exposure type. It consists of information to gather about a damaged
vehicle, such as where on the vehicle is the damage, who was the driver, and were the airbags deployed.

Two exposures can be linked to the same exposure type, even if the coverages are different. For example,
PACollisionCov and PALiabilityCov are different coverages, but they can both involve damaged vehicles. The same
set of information needs to be gathered about a damaged vehicle, regardless of which coverage is involved. Therefore,
the two coverages are mapped to a single exposure type - the VehicleDamage exposure type. This exposure type is
used to determine the information to gather during the claims process.

Some coverages link to multiple exposure types. Therefore, ClaimCenter does not link coverage types directly to
exposure types. Instead, ClaimCenter links them through coverage subtypes. A coverage subtype is a value that links a
coverage type to an exposure type. For example:

• PACollisionCov is a coverage subtype that links the PACollisionCov coverage to the VehicleDamage exposure
type. (In this case, the coverage type and coverage subtype have the same name.)

• PALiabilityCov_vd is a coverage subtype that links the PALiabilityCov coverage to the VehicleDamage
exposure type.

When you create an exposure, you must specify both its coverage and coverage subtype.

Exposures and reserve lines

When an exposure is created, ClaimCenter also creates a reserve line for the exposure. A reserve line is an amount of
money set aside for expected payments related to a given exposure. Insurers are often legally required to create reserve
lines to ensure that they maintain financial solvency.

Reserve lines can be created:

• Automatically by business rules
• Manually by adjusters

When a payment is made from an exposure, the money comes from this reserve line.

Exposures and validation levels

Just as is the case with claims, during an exposure's lifecycle, an exposure passes through one or more levels of
maturity. Within ClaimCenter, these are called validation levels. The base configuration comes with the following
levels, which are common to both claims and exposures:

• Load and save - The claim/exposure has enough information to be saved to the database.
• New loss completion - The claim/exposure has enough information to be assigned to an adjuster.
• Valid for ISO - The claim/exposure has enough information to be filed with ISO. (ISO is a national database used

in the United States to verify that the same loss is not being filed with multiple insurers.)
• Send to external (systems) - The claim/exposure has enough information to send information about it to external

systems within the insurer, such as a Policy Administration System that may be trying to assess policy renewal
rates.

• Ability to pay - The claim/exposure has enough information such that payments can be written for it.

Note: In the base configuration, the "load and save" level applies only to claims and exposures that are being
imported through the ClaimCenter SOAP-based ClaimAPI API. Draft exposures submitted through the system
APIs do not need to pass any level. In order for a draft claim to be promoted to an open claim, the draft claim
and all of its exposures must pass both the "load and save" level and the "new loss completion" level. For more
information, see “Executing FNOL” on page 117.

A exposure's validation level is determined and enforced by a set of exposure validation rules. Whenever a change is
made to an exposure, the validation rules determine if the exposure can be advanced to a later stage of validation. The
validation rules also prevent an exposure from moving backwards to a lower level of validation. For more information
on validation rules, see the Rules Guide.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

172 Working with exposures

A claim and its exposures are not necessarily always at the same validation level. For example, suppose there is a claim
with two exposures. It is possible for the claim to be at "send to external" while one of the exposures is at "new loss
completion" and other is at "ability to pay".

In order to make a payment, both the claim and the exposure from which the payment is coming must be at "ability to
pay". If a claim has multiple exposures, and the claim and one of the exposures are at "ability to pay", you can make
payments from that one exposure, even though the other exposures are not yet at "ability to pay".

Exposures and ClaimContacts

Every exposure has at least one ClaimContact - the claimant. Exposures can have additional ClaimContacts associated
with them.

For more information on ClaimContacts, see “Working with ClaimContacts” on page 153.

Exposures and incidents

Every exposure is associated with an incident. An incident is a collection of information that typically represents an
item that was lost or damaged, such as:

• A vehicle
• A property (such as a house or a fence)
• A person suffering one or more injuries

You cannot create an exposure without an incident. For more information on incidents, see “Working with incidents”
on page 163.

Creating exposures
The POST /claims/{claimId}/exposures endpoint can be used to create new exposures.

Minimum creation criteria
In order for an exposure to be assignable, the exposure must have the following:

• A coverage and coverage subtype
• A claimant
• An incident

The following JSON skeleton summarizes these components as they appear in a POST /exposures request payload.

{
 "data": {
 "attributes": {
 "primaryCoverage": {
 "code": "..."
 },
 "coverageSubtype": {
 "code": "..."
 },
 "claimant": {
 "id" / "refid" / "policySystemId" : "..."
 },
 "...Incident": {
 "id" / "refid" : "..."
 }
 }
 },
 "included": {
 "...Incident": ...
 "ClaimContact": ...
 }
}

Note the following:

• The coverage and coverage subtype are identified by typecodes from the CoverageType and CoverageSubtype
typelists.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Working with exposures 173

• The claimant can be referenced by any of the following:
◦ id, if the claimant already exists on the claim
◦ refid, if the claimant is being created in the same payload as the exposure
◦ policySystemId, if the claimant is listed on the policy

• The exposure must reference an incident. The incident type varies based on the coverage.
• The incident can be referenced by any of the following:

◦ id, if the incident already exists on the claim
◦ refid, if the incident is being created in the same payload as the exposure

Building an exposure payload
To build an exposure payload, you must:

1. Identify the coverage type
2. Identify the coverage subtype
3. Create or identify the claimant
4. Create or identify the incident

Note that each item in the previous list does not necessarily map to a single block of code. When it is time to create the
exposure, the caller application may already have the required information. Also, the caller application may be able to
query ClaimCenter for multiple pieces of information in a single call.

Example creation of an exposure payload

The following sections provide an example of creating the payload for a new exposure. This exposure will be for claim
235-53-373906 in the sample data, which is assigned to Betty Baker. The ID for this claim is demo_sample:8037. The
claim's policy has two vehicles: a Honda Civic and a Ford Explorer. The new exposure will be for the Honda Civic
using the collision coverage. The claimant is Allen Robertson, an additional insured on the policy.

All of the calls assume the instance of ClaimCenter is on the local machine.

Step 1: Identify the coverage type
If the caller application does not know the coverage type, it can use the GET /claims/{claimId}/policy endpoint to
determine the coverages attached to the Honda Civic.

Request to determine the coverage type

GET http://localhost:8080/cc/rest/claim/v1/claims/demo_sample:8037/policy/vehicle-risk-units?fields=*all

Response payload (snippet)

"RUNumber": 1,
 "coverages": [
 {
 ...
 "coverageType": {
 "code": "PACollisionCov",
 "name": "Collision"
 }
 ...
 }
],
 "id": "cc:9",
 "vehicle": {
 ...
 "id": "demo_sample:4",
 "make": "Honda",
 "model": "Civic"
 ...

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

174 Working with exposures

Exposure request payload (first part)

Based on the previous query, the first part of the POST /exposures request payload looks like this:

{
 "data": {
 "attributes": {
 "primaryCoverage": {
 "code": "PACollisionCov"
 },
 ...

Step 2: Identify the coverage subtype
The set of ClaimCenter coverage types and coverage subtypes change infrequently. To reduce the number of calls, you
may want to store the possible coverage types and coverage subtypes locally with the caller application.

Either during development or at the time of exposure creation, the caller application can determine the coverage
subtypes for a given coverage by executing the Common API's GET /typelists endpoint. To limit the response to
only the coverage subtypes for a given coverage type, the call can filter the CoverageSubtype typelist using the
exposure's CoverageType (such as PACollisionCov).

For more information on the Common API's GET /typelists endpoint, see “The /typelists endpoints” on page 31.

Request to determine the coverage subtype

GET http://localhost:8080/cc/rest/common/v1/typelists/CoverageSubtype
 ?typekeyFilter=category:cn:CoverageType.PACollisionCov

Response payload (snippet)

"description": "Subtype of coverage, filtered by CoverageType",
"name": "CoverageSubtype",
"typeKeys": [
 {
 "code": "PACollisionCov",
 "description": "Collision",
 "name": "Collision",
 "priority": -1
 }
]

Exposure request payload (first two parts)

Based on the previous query, the first and second part of the POST /exposures request payload looks like this:

{
 "data": {
 "attributes": {
 "primaryCoverage": {
 "code": "PACollisionCov"
 },
 "coverageSubtype": {
 "code": "PACollisionCov"
 },
 ...

Step 3: Create or identify the claimant
If the claimant exists on the policy, the payload can identify the claimant by its policySystemId. If necessary, the
caller application can query the Policy Administration System for the policySystemId.

If the claimant does not already exist, the caller application can create a new ClaimContact in the POST /exposures
request payload and then reference that ClaimContact using a refid. This technique is referred to as request inclusion.
For more information, see “Request inclusion” on page 80.

If the claimant exists in ClaimCenter, the payload can identify the claimant by its id. If necessary, the caller application
can query ClaimCenter for the id.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Working with exposures 175

Note: If the claimant already exists in ClaimCenter, always reference the existing ClaimContact and use the id
field. Do not create an additional ClaimContact through the use of the refid field. Creating the same logical
ClaimContact twice results in duplicate data. This can complicate the processing of the claim.

In this example, the claimant has already been copied over to ClaimCenter. Therefore, the payload will identify the
claimant by ClaimCenter id.

Request to determine the claimant ID

GET http://localhost:8080/cc/rest/claim/v1/claims/demo_sample:8037/contacts

Response payload (snippet)

{
 "attributes": {
 ...
 "displayName": "Allen Robertson",
 "id": "cc:32",
 ...
 },

Exposure request payload (first three parts)

Based on the previous query, the first three parts of the POST /exposures request payload looks like this:

{
 "data": {
 "attributes": {
 "primaryCoverage": {
 "code": "PACollisionCov"
 },
 "coverageSubtype": {
 "code": "PACollisionCov"
 },
 "claimant": {
 "id": "cc:32"
 },
 ...

Step 4: Create or identify the incident
An incident is a collection of information that typically represents an item that was lost or damaged. Incidents may
reference objects on a policy. (For example, a vehicle incident can reference a vehicle on the policy.) But, incidents
never appear on policies. Incidents exist solely in ClaimCenter.

If the incident does not already exist, the caller application can create a new incident in the POST /exposures request
payload and then reference that incident using a refid. This technique is referred to as request inclusion. For more
information, see “Request inclusion” on page 80. Depending on the incident type, the new incident can reference a
child object (a location, injured person, or vehicle). This child object could be on the policy, in ClaimCenter, or also
created in the POST /exposures request payload.

If the incident already exists in ClaimCenter, the caller application can reference it by its id.

Note: If the incident already exists in ClaimCenter, always reference the existing incident and use the id field.
Do not create an additional incident through the use of the refid field. Creating the same logical incident twice
results in duplicate data. This can complicate the processing of the claim.

In this example, the incident does not exist and must be created. But, it will reference a vehicle that is already on the
policy. The ID for this vehicle was already retrieved in the first step when the coverage type was identified. The ID is
demo_sample:4. There is no need for an additional request to retrieve additional vehicle information.

Exposure request payload (complete)

The complete POST /exposures request payload looks like this:

{
 "data": {

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

176 Working with exposures

 "attributes": {
 "primaryCoverage": {
 "code": "PACollisionCov"
 },
 "coverageSubtype": {
 "code": "PACollisionCov"
 },
 "claimant": {
 "id": "cc:32"
 },
 "vehicleIncident": {
 "refid": "newVehicleIncident"
 }
 }
 },
 "included": {
 "VehicleIncident": [
 {
 "attributes": {
 "vehicle": {
 "id": "demo_sample:4"
 }
 },
 "refid": "newVehicleIncident",
 "method": "post",
 "uri": "/claim/v1/claims/demo_sample:8037/vehicle-incidents"
 }
]
 }
}

Querying for and modifying exposures
You can query for exposures using:

• GET /claims/{claimId}/exposures
• GET /claims/{claimId}/exposures/{exposureId}

You can modify an exposure using:

• PATCH /claims/{claimId}/exposures/{exposureId}

Assigning exposures
Every exposure is assigned to a group and a user in that group. The assigned user has the primary responsible for
managing the exposure.

Most exposures are assigned to the same user and group that owns the claim. However, exposures occasionally require
special expertise that require assignment to a different user and group than that of the claim. For example, suppose
there is a personal auto claim that includes three exposures: two exposures for damaged vehicles and one exposure for
medical payments related to a fatal injury. The claim and the vehicle exposures are routine and can all be assigned to
the same group and user. But the injury exposure is likely to involve a significant payment or litigation. This exposure
is assigned to a group and user that specialize in fatalities.

When you create an exposure through the system APIs, ClaimCenter automatically executes the exposure assignment
rules to initially assign the exposure to a group and user. You can use the POST /claims/{claimId}/exposures/
{exposureId}/assign endpoint to reassign the exposure as needed.

Note: The functionality for assigning exposures is a subset of the functionality for assigning activities. All
assignment options that are applicable to both activities and exposures have the same behavior.

Assignment options

An exposure can be assigned through the system APIs in the following ways:

• To a specific group and user in that group
• To a specific group only (and then ClaimCenter uses assignment rules to select a user in that group)
• To the claim owner
• By re-running the exposure assignment rules

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Working with exposures 177

◦ This can be appropriate if you have modified the exposure since the last time assignment rules were run and the
modification might affect who the exposure would be assigned to.

The root resources for the /exposures/{exposureId}/assign endpoints is ExposureAssignee. This resource
specifies assignment criteria. The schema has the following fields:

Field Type Description

autoAssign Boolean Whether to assign the exposure using assignment rules

claimOwner Boolean Whether to assign the exposure to the claim owner

groupId string The ID of the group to assign the exposure to

userId string The ID of the user to assign the exposure to

The ExposureAssignee resource cannot be empty. It must specify a single logical assignment option (group and user,
group only, claim owner, or automatic assignment).

For more information on how assignment rules execute assignment, see the Rules Guide.

Assignment example - Assigning to a specific group (and user)

The following assigns exposure cc:48 (on claim cc:34) to group demo_sample:31 (Auto1 - TeamA) and user
demo_sample:2 (Sue Smith).

POST /claim/v1/claims/cc:34/exposures/cc:48/assign

{
 "data": {
 "attributes" : {
 "groupId" : "demo_sample:31",
 "userId" : "demo_sample:2"
 }
 }
}

The following assigns exposure cc:48 (on claim cc:34) to group demo_sample:31 (Auto1 - TeamA). Because no user
has been specified, ClaimCenter will execute assignment rules to assign the exposure to a user in group demo-sample:
31.

POST /claim/v1/claims/cc:34/exposures/cc:48/assign

{
 "data": {
 "attributes" : {
 "groupId" : "demo_sample:31"
 }
 }
}

Note that there is currently no endpoint that returns groups or group IDs. To assign exposures to a specific group, the
caller application must determine the group ID using some method other than a groups system API.

Assignment example - Assigning to the claim owner

The following assigns exposure cc:48 (from claim cc:34) to the group and user that owns the parent claim.

POST /claim/v1/claims/cc:34/exposures/cc:48/assign

{
 "data": {
 "attributes" : {
 "claimOwner" : true
 }
 }
}

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

178 Working with exposures

Assignment example - Using automated assignment

The following assigns exposure cc:48 (from claim cc:34) using automated assignment rules.

POST /claim/v1/claims/cc:34/exposures/cc:48/assign

{
 "data": {
 "attributes": {
 "autoAssign" : true
 }
 }
}

Additional exposure endpoints
The system APIs provide additional endpoints to interact with exposures.

Deleting draft exposures
During the FNOL process, the claim passes through two states: draft and open.

• A draft claim is a claim that has been saved to the ClaimCenter database, but there is not yet enough information
for the claim to enter the adjudication process. Draft claims are not assigned to any user.

• An open claim is a claim that has been saved to the ClaimCenter database with enough information to enter the
adjudication process. Once a claim becomes open, it is assigned to an adjuster.

A draft exposure is an exposure on a draft claim. While a claim is in a draft state, you can delete any exposures created
on the claim using the DELETE /claims/{claimId}/exposures/{exposureId} endpoint.

Executing a POST /claims/{claimId}/submit on a draft claim promotes the claim and all of its exposures to open
status. Once a claim has been submitted, you can no longer delete its exposures.

Validating exposures
Similar to claim validation, the POST /claim/{claimId}/exposures/{exposureId}/validate endpoint returns the
validation level for the given exposure. It can also be used to determine what conditions must be met for the exposure
to advance to a given validation level.

Checking an exposure's validation level can be useful in the following situations:

• You want to determine whether or not the exposure has enough information to be assigned to an adjuster. You can
use the /validate endpoint to determine if the exposure is at or beyond the "new loss completion" level. If the
exposure is below the "new loss completion" level, the payload identifies the conditions needed to reach "new loss
completion".

• You want to execute a payment for an exposure. You can use the /validate endpoint to determine if the exposure
is at the "ability to pay" level. If the exposure is below the "ability to pay" level, the payload identifies the
conditions needed to reach "ability to pay".

For more information on validation through system APIs, see “Validating claims” on page 150.

Closing exposures
During an exposure's life cycle, the exposure's status typically moves from draft to open to closed. An exposure is
closed to indicate that no further payments are expected to be made from the exposure.

In the base configuration, ClaimCenter automatically closes an exposure when a "final payment" is made from the
exposure's reserve line. (A "final payment" is a payment whose payment type is final, as opposed to a payment whose
type is partial.)

You can also close exposures through the system APIs at any time. Broadly speaking, once an exposure is closed,
payments can no longer be made from that exposure. However, there are exceptions to this rule. For more information,
see the Application Guide.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Working with exposures 179

To close an exposure, use the POST /claim/{claimId}/exposures/{exposureId}/close endpoint.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

180 Working with exposures

chapter 17

Working with service requests

A claim can have one or more service requests. This topic provides a high-level overview of service requests,
discussing both what they are and how to work with them through the system APIs.

For a more detailed discussion of the business functionality of service requests, refer to the Application Guide. For a
more detailed discussion of the configuration of service requests, refer to the Configuration Guide.

Overview of service requests in ClaimCenter
The following section provides an overview of service request behavior in ClaimCenter.

What is a service request?

A service is an action performed by a vendor to address a loss associated with a claim. For example:

• For a damaged car, services could include towing, auto body repair, and replacement car rental.
• For a damaged house, services could include plumbing and roof repair.
• For an injury, services could include conducting an examination, taking an x-ray, or performing surgery.

A service request is a collection of services managed by ClaimCenter for a given claim. Services are grouped into
service requests because a single vendor often provides multiple services. When this occurs, it is easier to have the
group of service requests associated with a single instruction, a single set of invoices, and a single payment for the
related services. The service request provides this grouping.

Components of a service request

A service request includes the following information:

• The vendor (also referred to as the "specialist")
• A service instruction, which specifies:

◦ The customer
◦ The location where the service is being performed
◦ The set of services being performed

• The relevant exposure and incident

Service request kinds
Every service request has a service request kind. A service request kind is a business flow that describes the steps to be
used to quote, process, and invoice the services. ClaimCenter uses the following service request kinds:

Working with service requests 181

• Quote Only - This kind of service request requires only a quote from the vendor.
◦ This kind is appropriate when an insurer wishes to compare quotes from multiple vendors before deciding who

to assign the work to. (This kind of service request can be promoted to Quote and Service.)
◦ In the user interface, this kind of service request is labeled "Quote".

• Quote and Service - This kind of service request involves a quote, which is followed by the vendor providing the
service and sending invoices for the service.

◦ This kind is appropriate when you want the vendor to provide a quote, but you expect to use the assigned
vendor regardless of the quote.

◦ In the user interface, this kind of service request is labeled "Quote and Perform Service".
• Service Only - This kind of service request involves the vendor providing the service (without preparing a quote)

and sending invoices for the service.
◦ This kind is appropriate when you want the vendor to provide a service and you do not need a quote. This is

often used for "flat fee" services, such as car rentals, whose prices do not vary from claim to claim.
◦ In the user interface, this kind of service request is labeled "Perform Service".

• Unmanaged - This kind of service request is appropriate when you want the vendor to provide a service and you
wish to have minimal processing in ClaimCenter. There are no associated quotes. The service request can be
invoiced and paid immediately.

◦ This kind of service request is for services that are to be performed as quickly as possible, such the repair to a
cracked windshield for an "Auto - First and Final" claim.

◦ In the user interface, this kind of service request is labeled "Service".

Service type compatibility

Every service is not necessarily compatible with all service request kinds. For example, in the base configuration:

• An "auto appraisal" service can be attached only to a Quote Only service request.
• An "auto towing" service can be attached only to a Quote and Service, Service Only, or Unmanaged service

request.

Service type compatibility is configured in the vendorservicedetails.xml file. This file is accessible through Studio.

The service request lifecycle
The lifecycle of a service request involves several stages. The current stage is listed in the service request's Progress
field. In some cases, a service request advances to the next stage because of activity completed by ClaimCenter or a
ClaimCenter user. In other cases, a service request advances to the next stage because of activity completed by the
vendor.

The following diagram identifies the stages in the lifecycle. Each rectangle is a stage. Thick green arrows lead to stages
that are typically reached because of ClaimCenter activity. Thin brown arrows lead to stages that are typically reached
because of vendor activity.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

182 Working with service requests

A service request that is fully executed goes through the following stages:

1. Draft
• The service request has been created in ClaimCenter but not yet submitted to the vendor.

2. Requested
• The service request has been submitted to the vendor, but not yet accepted.

3. In Progress
• The vendor has accepted the service request and started the work.
• For a Quote Only service request, the "work" consists of generating a quote.
• For a Quote and Service service request, the "work" consists of generating a quote and then, once the quote is

approved, providing the services.
• For all other service request kinds, the "work" consists of directly providing the services.

4. Work Complete
• The work (the quote or the set of services) is complete.
• At this point, the vendor may or may not have submitted invoices for the work.
• At this point, the invoices may or may not have been paid.

There are additional stages that a service request could reach:

• Declined
◦ A service request can reach this stage if the vendor decides to not accept a service request. For example, this

could happen if the service request is for a rental car and the vendor has no available cars.
◦ A service request can reach this stage if the vendor accepts a service request, but then later states they cannot

complete it. For example, this could happen if the vendor experiences an unexpected reduction in available
mechanics.

• Canceled
◦ A service request can reach this stage when the insurer decides the service request is no longer needed. For

example, the insured could decide to buy a new car instead of fixing the damaged car.
• Vendor Waiting

◦ A service request can reach this stage when the vendor cannot take action on the service without further input
from ClaimCenter. For example, the vendor could have submitted a quote that requires approval from an
adjuster.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Working with service requests 183

Invoices for service request
For all service requests whose kind is Quote and Service, Service Only, or Unmanaged, once the work is complete, the
vendor typically submits one or more invoices. These invoices are attached to the service request. They are paid using
money from one of the claim's reserve lines. Depending on the nature of the service request, they may also require
adjuster approval.

Straight-through invoice processing

Straight-through invoice processing is a configurable ClaimCenter behavior in which invoices that meet certain criteria
are automatically approved and paid. Straight-through invoice processing is frequently used with Unmanaged service
requests, as these service requests are designed to involve minimal processing.

Overview of service requests in the system APIs

Service request APIs and vendor portals
In previous releases of ClaimCenter, service requests were primarily managed by two systems: ClaimCenter and a
vendor portal. The vendor portal is an application used by a vendor to manage information about service requests from
ClaimCenter. In this paradigm:

ClaimCenter is responsible for actions such as:

• Creating the service request
• Submitting the service request to the vendor
• Paying the vendor.

The vendor is responsible for actions such as:

• Accepting the service request
• Quoting the service request
• Submitting invoices for the service request

Cloud API provides a wider range of options for processing service requests. The service request APIs can be used by
a vendor portal. But they can also be used by:

• An alternate front-end application for adjusters who specialize in service requests
• A service that submits or pays for vendor invoices in bulk
• A vendor management system that manages service requests for multiple vendors

Thus, the service request functionality exposed by Cloud API is not limited to only the functionality that would be used
by vendor portals. Rather, it exposes the service request functionality needed to manage the entire service request
process.

Lifecycle management

Cloud API provides a number of endpoints to manage the lifecycle of a service request. This includes both endpoints
for actions taken by the insurer (such as submitting a service request) and endpoints for actions taken by the vendor
(such as accepting a service request).

As of this release, there are endpoints to advance a service request to most stages in the lifecycle. However, there are
currently no endpoints to move a service request to the "Vendor Waiting" status.

Required service request data model
ClaimCenter includes two service requests data models: the "legacy model" and the Core Service Request data model.
Each instance of ClaimCenter can use only one of these models. In the base configuration, the Core Service Request
data model is enabled by default. In general, Guidewire recommends insurers use the Core Service Request data model.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

184 Working with service requests

Note: In order to use the service request system APIs in Cloud API, the Core Service Requests data model must
be enabled. Guidewire recommends that insurers who are going into production on this version of ClaimCenter
use the Core Service Requests data model. Some insurers may be upgrading from a previous release that
offered only the legacy model. If an upgrading customer wishes to use the service request APIs, the insurer
must modify their configuration to use the Core Service Requests data model. For more information, refer to
the Upgrade Guide.

Service request numbers
In addition to a public ID, every service request is assigned a "service request number". By default, this number is
included in the response payload for most service request actions (in the serviceRequestNumber field). Unlike public
IDs, service request numbers are shown in the user interface. During testing, you can use the service request number to
match a service request as seen in a system API response with the corresponding service request in the user interface.

Support for each service request kind
If an insurer wants to go into production with this release and requires the ability to create quotes or pay invoices
through an integration point, then the insurer must write their own integration points. For more information on service
request functionality that may be available in future release, check with your Guidewire account manager or your
project manager.

Quote Only and Quote and Service service requests

The following table lists the stages that a Quote Only or Quote and Service service request can advance to through the
system APIs. It identifies which system API action advances the service request to the next stage, and the value of the
service's Next Action column in the ClaimCenter Services list.

System API endpoint Moves Progress to... Services list's Next Action is...

POST /service-requests Draft "Submit request"

POST /{serviceRequestId}/submit Requested "Agree to provide quote"

POST /{serviceRequestId}/accept In Progress "Add quote"

As of this release, there are no endpoints to create quotes or pay invoices. However, users can create quotes, pay
invoices, and take other actions that advance the service request to completion, through the user interface.

Service Only service requests

The following table lists the stages that a Service Only service request can advance to through the system APIs. It
identifies which system API action advances the service request to the next stage, and the value of the service's Next
Action column in the ClaimCenter Services list.

System API endpoint Moves Progress to... Services list's Next Action is...

POST /service-requests Draft "Submit request"

POST /{serviceRequestId}/submit Requested "Agree to perform service"

POST /{serviceRequestId}/accept In Progress "Finish the work"

POST /{serviceRequestId}/complete-
work

Work Complete "Add invoice"

POST /{serviceRequestId}/invoices Work Complete "Pay invoice"

As of this release, there are no endpoints to pay invoices. However, invoices can be paid through the user interface.

Unmanaged service requests

The following table lists the stages that an Unmanaged service request can advance to through the system APIs. It
identifies which system API action advances the service request to the next stage, and the value of the service's Next
Action column in the ClaimCenter Services list.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Working with service requests 185

System API endpoint Moves Progress to... Services list's Next Action is...

POST /service-requests Work Complete "Add invoice"

POST /{serviceRequestId}/invoices Work Complete "Pay invoice"

As of this release, there are no endpoints to pay invoices. Unmanaged service requests are expected to make use of
straight-through invoice processing to automatically approve and pay invoices. However, if required, invoices can be
paid through the user interface.

Querying for service requests
The following Claim API endpoints can be used to request information about service requests:

Endpoint Response

GET /service-requests All service requests
By default, the payload in the response includes the ID of each service request and
each claim the service request belongs to.

GET /claims/{claimId}/service-
requests

All service requests for the specified claim

GET /claims/{claimId}/service-
requests/{serviceRequestId}

The specified service request.
Note that in order to get information about a specific service request, you must
access the service request through its parent claim.

Creating service requests
To create a service request, use the following endpoint:

• POST /claims/{claimId}/service-requests

Once a service request has been created, its Progress field is set to Draft.

Minimum creation criteria
At a minimum, a service request must specify:

• The service request kind, such as Service Only or Unmanaged (in the kind field)
• The vendor (in the specialist field)
• A service instruction (in the instruction field), which at a minimum must contain:

◦ The customer (in the customer field)
◦ The location where the service is being performed (in the serviceAddress field)
◦ The set of services being performed (in the services array)

• A requested quote completion date, if the service request is Quote Only or Quote and Service
• A requested service completion date, if the service request is Service Only

Additional details on each required field

A service request must specify the service request kind. This is specified in the kind field, and it must be set to a
typecode from the ServiceRequestKind typelist, such as:

• quoteonly
• quoteandservice
• serviceonly
• unmanaged

A service request must specify the vendor. This is specified in the specialist field.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

186 Working with service requests

• You can specify an existing ClaimContact by listing the id field and setting it to the ClaimContact ID.
• You can create a new ClaimContact by listing the refid field and specifying a new ClaimContact in the included

section.

A service request must include a service instruction. This is specified in the instruction field. At a minimum, a
service instruction must have a customer, a location where the service is being performed, and a set of services.

The customer is specified in the customer field. This must be a reference to an existing or new ClaimContact. You can
specify the ClaimContact:

• By id (if it already exists in ClaimCenter)
• By policySystemId (if it exists in the Policy Administration System)
• By refid (if it does not yet exist and is being created in the POST's included section.)

The location where the service is being performed is specified in the serviceAddress field. You can specify the
address:

• By id (if it already exists in ClaimCenter)
• Inline (if it does not already exist in ClaimCenter)

The set of services being performed is specified in the services array. Each entry in this array specifies the service's
code. The codes come from the vendorservicetree.xml file, which you can access through Studio. Each service must
be a leaf-level service in the service tree. Also, each service must be compatible with the service request kind. Service
compatibility is defined in the vendorservicedetails.xml file, which you can also access through Studio.

If the service request's kind is quoteonly or quoteandservice, you must also specify a requested quote completion
date in the requestedQuoteCompletionDate.

If the service request's kind is serviceonly, you must also specify a requested service completion date in the
requestedServiceCompletionDate.

Sample Service Only service request

The following payload shows an example of a minimal Service Only service request for claim 235-53-365889 in the
sample data (whose ID is cc:33). The service request will be performed by Joe's Auto Body Shop (ClaimContact cc:16)
at 1313 Mockingbird Lane in Arcadia, California, for Robert Farley (ClaimContact cc:13). There is one service to be
performed: Salvage (autoothersalvage). The service is requested to be completed by March 3, 2021.

POST http://localhost:8080/cc/rest/claim/v1/claims/demo_sample:20/service-requests

{
 "data": {
 "attributes": {
 "kind": {
 "code": "serviceonly"
 },
 "specialist": {
 "id": "cc:16"
 },
 "instruction": {
 "customer": {
 "id": "cc:13"
 },
 "serviceAddress": {
 "addressLine1": "1313 Mockingbird Lane",
 "city": "Arcadia",
 "country": "US",
 "postalCode": "91006",
 "state": {
 "code": "CA",
 "name": "California"
 }
 },
 "services": [
 {
 "code": "autoothersalvage"
 }
]
 },
 "requestedServiceCompletionDate": "2021-03-19"
 }
 }
}

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Working with service requests 187

Sample Unmanaged service request

The following payload shows an example of a minimal Unmanaged service request for claim 235-53-365889 in the
sample data (whose ID is cc:33). The service request will be performed by Joe's Auto Body Shop (ClaimContact cc:16)
at 1313 Mockingbird Lane in Arcadia, California, for Robert Farley (ClaimContact cc:13). There is one service to be
performed: Towing (autoothertowing).

POST http://localhost:8080/cc/rest/claim/v1/claims/demo_sample:20/service-requests

{
 "data": {
 "attributes": {
 "kind": {
 "code": "unmanaged"
 },
 "specialist": {
 "id": "cc:16"
 },
 "instruction": {
 "customer": {
 "id": "cc:13"
 },
 "serviceAddress": {
 "addressLine1": "1313 Mockingbird Lane",
 "city": "Arcadia",
 "country": "US",
 "postalCode": "91006",
 "state": {
 "code": "CA",
 "name": "California"
 }
 },
 "services": [
 {
 "code": "autoothertowing"
 }
]
 }
 }
 }
}

Modifying existing service requests
Use the following endpoints to modify a service request without advancing it through its lifecycle.

PATCHing service requests
To PATCH a service request, use:

• PATCH /claims/{claimId}/service-requests/{serviceRequestId}

You cannot PATCH any field in the base configuration, as all of them can be set during creation only. But, if your
instance includes extension fields on ServiceRequest or a related entity, you could use this endpoint to update those
fields.

Specifying the reason for change

In ClaimCenter, the ServiceRequest entity has a History array which contains a set of ServiceRequestChange
instances. The ServiceRequestChange entity has a Description field, which is used to capture the reason for the
change.

Whenever a service request is modified through a PATCH, the Description field is set using the following display
key:

Rest.Claim.V1.ServiceRequest.PropertiesChanged = Service request values changed\: {0}

The {0} placeholder is populated with a list of the schema properties that have been changed. You can configure the
value of the Description field by modifying this display key.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

188 Working with service requests

Assigning service requests to users
Every service request is assigned to a group and a user in that group. This user has the primary responsible for
managing the service request.

When you create a service request through the system APIs, ClaimCenter automatically executes the service request
assignment rules to initially assign the service request to a group and user. You can use the POST /claims/
{claimId}/service-requests/{serviceRequestId}/assign endpoint to reassign the service request as needed.

Note: The functionality for assigning service requests is a subset of the functionality for assigning activities.
All assignment options that are applicable to both activities and service requests have the same behavior.

Assignment options

A service request can be assigned through the system APIs in the following ways:

• To a specific group and user in that group
• To a specific group only (and then ClaimCenter uses assignment rules to select a user in that group)
• To the claim owner
• By re-running the service request assignment rules

◦ This can be appropriate if you have modified the service request since the last time assignment rules were run
and the modification might affect who the service request would be assigned to.

The root resource for the /{serviceRequestId}/assign endpoint is ServiceRequestAssignee. This resource
specifies assignment criteria. The ServiceRequestAssignee schema has the following fields:

Field Type Description

autoAssign Boolean Whether to assign the service request using assignment rules

claimOwner Boolean Whether to assign the service request to the claim owner

groupId string The ID of the group to assign the service request to

userId string The ID of the user to assign the service request to

The Assignee resource cannot be empty. It must specify a single assignment option (group and user, group only, claim
owner, or automatic assignment).

For more information on how assignment rules execute assignment, see the Rules Guide.

Assignment example - Assigning to a specific group (and user)

The following assigns service request cc:102 (from claim demo_sample:20) to group demo_sample:31 (Auto1 -
TeamA) and user demo_sample:2 (Sue Smith).

POST /claim/v1/claims/demo_sample:20/service-requests/cc:102/assign

{
 "data": {
 "attributes" : {
 "groupId" : "demo_sample:31",
 "userId" : "demo_sample:2"
 }
 }
}

The following assigns service request cc:102 (from claim demo_sample:20) to group demo_sample:31 (Auto1 -
TeamA). Because no user has been specified, ClaimCenter will execute assignment rules to assign the service request
to a user in group demo-sample:31.

POST /claim/v1/claims/demo_sample:20/service-requests/cc:102/assign

{
 "data": {
 "attributes" : {
 "groupId": "demo_sample:31"
 }

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Working with service requests 189

 }
}

Note that there is currently no endpoint that returns groups or group IDs. To assign service requests to a specific group,
the caller application must determine the group ID using some method other than a groups system API.

Assignment example - Assigning to the claim owner

The following assigns service request cc:102 (from claim demo_sample:20) to the group and user that owns the parent
claim (demo_sample:20).

POST /claim/v1/claims/demo_sample:20/service-requests/cc:102/assign

{
 "data": {
 "attributes" : {
 "claimOwner" : true
 }
 }
}

Assignment example - Using automated assignment

The following assigns service request cc:102 (from claim demo_sample:20) using automated assignment rules.

POST /claim/v1/claims/demo_sample:20/service-requests/cc:102/assign

{
 "data": {
 "attributes": {
 "autoAssign" : true
 }
 }
}

Advancing a service request in its lifecycle
Summary of the service request lifecycle

The following diagram identifies the lifecycle of a service request and the endpoints used to advance the service
request to each stage.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

190 Working with service requests

Note: As of this release, there are no system API endpoints to advance a service request to the Vendor Waiting
stage.

Be aware that you can create and submit a service request in a composite request. But you cannot advance a service
request to any other stage in its life cycle (such as in progress, declined, or canceled).

The ServiceRequestOperationContext resource

The endpoints that advance a service request to the next stage in the lifecycle use a
ServiceRequestOperationContext resource. This resource contains fields that map to the ServiceRequest entity in
ClaimCenter. In most cases, when using a service request lifecycle endpoint, there is a single field you must specify,
such as the reason field, which must be specified when declining or canceling a service request. Required fields are
specified in the following sections.

If an insurer has extended the behavior of the service request workflow in ClaimCenter, the insurer may also need to
extend the ServiceRequestOperationContext resource so that values can be provided by system APIs as needed. For
more information on extended system API resources, see “Extending system API resources” on page 217.

Submitting, accepting, and declining service requests

Submitting service requests

Service requests that are Quote Only, Quote and Service, or Service Only must be submitted to a vendor. (Unmanaged
service requests are automatically marked as submitted to the specified vendor.)

To indicate that a service request has been submitted to the vendor, use:

• POST /claims/{claimId}/service-requests/{serviceRequestId}/submit

When submitting a service request, there is no additional required information. The response can have no body.

The following submits service request cc:9:

POST /claim/v1/claims/demo_sample:20/service-requests/cc:9/submit

<no request body>

When a Draft service request has been submitted, its Progress field is set to Requested.

Accepting service requests

Once a service requests that is Quote Only, Quote and Service, or Service Only is submitted to a vendor, it can be
accepted by the vendor. This means the vendor has agreed to take on the service request. (Unmanaged service requests
are automatically accepted by the specified vendor.)

To indicate a vendor has accepted a service request, use:

• POST /claims/{claimId}/service-requests/{serviceRequestId}/accept

When accepting a submitted service request, you must specify an expectedCompletionDate.

The following accepts service request cc:9:

POST /claim/v1/claims/demo_sample:20/service-requests/cc:9/accept

{
 "data": {
 "attributes": {
 "expectedCompletionDate" : "2021-03-22"
 }
 }
}

When a Requested service request has been accepted, its Progress field is set to In Progress.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Working with service requests 191

Declining service requests

After a service requests that is Quote Only, Quote and Service, or Service Only has been submitted to a vendor, it can
be declined by the vendor. This means the vendor is not going to take on the service request.

To indicate a vendor has declined a service request, use:

• POST /claims/{claimId}/service-requests/{serviceRequestId}/decline

When declining a submitted service request, you must specify a reason for the decline.

The following declines service request cc:9:

POST /claim/v1/claims/demo_sample:20/service-requests/cc:9/decline

{
 "data": {
 "attributes": {
 "reason" : "All mechanics are booked through the end of the month."
 }
 }
}

When a Requested service request has been declined, its Progress field is set to Declined.

Completing and canceling service requests

Completing service requests

Once a service requests has been accepted by the vendor, you can specify that the work is completed.

To indicate that work on a service request is complete, use:

• POST /claims/{claimId}/service-requests/{serviceRequestId}/complete-work

When indicating work is completed on a service request, there is no additional required information. The response can
have no body.

The following indicates the work is complete for service request cc:9:

POST /claim/v1/claims/demo_sample:20/service-requests/cc:9/work-complete

<no request body>

When an In Progress service request has been completed, its Progress field is set to Work Complete.

Canceling service requests (at the vendor's request)

Even after a service request has been accepted, it can be canceled by the vendor.

To indicate that work on a service request is canceled at the vendor's request, use:

• POST /claims/{claimId}/service-requests/{serviceRequestId}/cancel

When canceling an accepted service request, you must specify a reason for the cancellation.

The following cancels service request cc:9 at the vendor's request:

POST /claim/v1/claims/demo_sample:20/service-requests/cc:9/cancel

{
 "data": {
 "attributes": {
 "reason" : "Vendor realized they cannot service this type of auto."
 }
 }
}

When an In Progress service request has been canceled by the vendor, its Progress field is set to Declined. This is the
same state a service request is set to if the service request is initial declined rather than accepted.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

192 Working with service requests

Canceling service requests (at the insurer's request)

Even after a service request has been accepted, it can be canceled by the insurer.

To indicate that work on a service request is canceled at the insurer's request, use:

• POST /claims/{claimId}/service-requests/{serviceRequestId}/internal-cancel

When canceling an accepted service request, you must specify a reason for the cancellation.

The following cancels service request cc:9 at the insurer's request:

POST /claim/v1/claims/demo_sample:20/service-requests/cc:9/internal-cancel

{
 "data": {
 "attributes": {
 "reason" : "Claimant has decided not to request service."
 }
 }
}

When an In Progress service request has been canceled by the insurer, its Progress field is set to Canceled.

Service request invoices
Once a service request that is Quote and Perform Service, Service Only, or Unmanaged reaches the Work Complete
stage, invoices can be created for the service request.

An invoice consists of:

• A description
• An optional reference number
• One or more line items. Each line item consists of:

◦ A monetary amount (an amount and currency)
◦ A category
◦ An optional description

Note that there are mechanisms for suspending further work on both accepted service requests and service request
invoices. But the verb used for each mechanism is different.

• To stop further work on an accepted service request, you cancel it (or internal-cancel it).
• To stop further work on an invoice, you withdraw it.

Note: You cannot create or update the child objects of a service request (such as service request invoices) in a
composite request.

Querying for invoices
The following Claim API endpoints can be used to request information about service request invoices:

Endpoint Response

GET /claims/{claimId}/service-requests/
{serviceRequestId}/invoices

All invoices for the specified service request

GET /claims/{claimId}/servicerequests/
{serviceRequestId}/invoices/{invoiceId}

The specified invoice. Note that in order to get information about a specific
invoice, you must access the invoice from its parent claim and service
request.

Creating invoices for service requests
To create an invoice for a service request, use:

• POST /claims/{claimId}/service-requests/{serviceRequestId}/invoices

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Working with service requests 193

Minimum creation criteria

An invoice must have the following information:

• A description
• A set of one of more line items. Each line item must specify:

◦ A monetary amount (with amount and currency values)
◦ A category (a code from the ServiceRequestStatementLineItemCategory typelist)

The following creates an invoice for service request cc:9. The invoice contains two line items: a $150 USD charge for
labor, and a $50 USD charge for parts. It also includes an optional reference number for the invoice, and optional
descriptions for each line item.

POST /claim/v1/claims/demo_sample:20/service-requests/cc:9/invoices

{
 "data": {
 "attributes": {
 "description": "Invoice submitted using system APIs",
 "referenceNumber": "771-DX5667",
 "lineItems": [
 {
 "amount": {
 "amount": "150.00",
 "currency": "usd"
 },
 "category": {
 "code": "labor"
 },
 "description": "Invoiced labor"
 },
 {
 "amount": {
 "amount": "50.00",
 "currency": "usd"
 },
 "category": {
 "code": "parts"
 },
 "description": "Invoiced parts"
 }
]
 }
 }
}

Withdrawing service request invoices
To withdraw an invoice, use:

• POST /claims/{claimId}/service-requests/{serviceRequestId}/invoices/{invoice-id}/withdraw

When withdrawing an invoice, you must specify a reason. This can be set to any string value.

When you withdraw an invoice, the invoice is flagged as withdrawn in the user interface.

The following withdraws invoice cc:06 for service request cc:9.

POST /claim/v1/claims/demo_sample:20/service-requests/cc:9/invoices/cc:6/withdraw

{
 "data": {
 "attributes": {
 "reason": "Invoice submitted in error"
 }
 }
}

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

194 Working with service requests

chapter 18

Working with activities

An activity is an action related to the processing of a claim that a user must attend to or be aware of. Activities are
ultimately assigned to a group and a user in that group. This user has the primary responsible for closing the activity.

Activities are typically created by users or by automatic ClaimCenter processes, and they are typically closed by users.
But, activities can be both created and closed by system API calls.

For a complete description of the functionality of activities in ClaimCenter, see the Application Guide.

Note: Activities exist in all InsuranceSuite applications. To ensure that activities behave in a common way
across all applications, some activity endpoints, such as the endpoints for querying for or assigning activities,
are declared in the Common API. Activities can also belong to claims, which do not exist in all InsuranceSuite
applications. This means that other activity endpoints, such as the endpoint for creating an activity for a claim,
are declared in the Claim API. This topic always identifies the API in which each endpoint is declared.

Querying for activities
Activities cannot exist on their own. They must be attached to a parent object. In ClaimCenter, activities can be
attached only to claims (directly or indirectly).

You can use the following endpoints to GET activities.

Endpoint Returns

/common/v1/activities All activities

/common/v1/activities/{activityId} The activity with the given ID

/claim/v1/claims/{claimId}/activities All activities associated with the given claim

Creating activities
Activities must be created from an existing claim using the following endpoint:

• POST claim/v1/claims/{claimId}/activities

Activity patterns

Activities are created from activity patterns. An activity pattern is a set of default values for fields in the activity (such
as description, subject, and priority). Every activity pattern has a code, such as contact_insured or legal_review.

Working with activities 195

When creating an activity through the system APIs, the only required field is activityPattern, which must specify
the activity pattern's code. Because the activity pattern typically contains all the necessary default values, the activity
pattern is often the only field the caller application needs to specify.

You can retrieve a list of activity patterns using the following:

• GET /claim/v1/claims/{claimId}/activity-patterns

You can optionally specify values for the following fields, each of which overrides the value coming from the activity
pattern:

Field Datatype Description Default

description String The activity description Typically comes from the activity
pattern

dueDate datetime The date by which the activity is expected to
be completed

Typically calculated based on
values in the activity pattern

escalationDate datetime The date on which the activity will be
escalated if it has not yet been completed

Typically calculated based on
values in the activity pattern

externallyOwned Boolean Whether the activity is to be assigned to an
external group or external user

Typically comes from the activity
pattern

importance Typekey
(ImportanceLevel)

The activity importance (as reflected on the
user's calendar)

Typically comes from the activity
pattern

mandatory Boolean Whether the activity must be completed
(true) or can be skipped (false)

Typically comes from the activity
pattern

priority Typekey (Priority) The activity's priority Typically comes from the activity
pattern

recurring Boolean Whether the activity repeats. If true,
completing the activity creates a new one.

Typically comes from the activity
pattern

subject String The activity subject Typically comes from the activity
pattern

Examples of creating activities

The following is an example of creating a contact_insured activity for claim cc:102. The activity defaults to all
values in the contact_insured activity pattern.

POST /claim/v1/claims/cc:102/activities

{
 "data": {
 "attributes": {
 "activityPattern": "contact_insured"
 }
 }
}

The following is an example of creating a legal_review activity for claim cc:102. In this case, two activity pattern
values are overridden: the activity is mandatory (it cannot be skipped) and the priority is urgent.

POST /claim/v1/claims/cc:102/activities

{
 "data": {
 "attributes": {
 "activityPattern": "legal_review",
 "mandatory": true,
 "priority": {
 "code": "urgent"
 }
 }
 }
}

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

196 Working with activities

Assigning activities
Ultimately, every activity is assigned to a group and a user in that group. This user has the primary responsible for
closing the activity.

Activities can be temporarily assigned to queues. A queue is a repository belonging to a group which contains activities
assigned to the group but not yet to any user in that group. Users in the group can then take ownership of activities
manually as desired.

When you create an activity through the system APIs, ClaimCenter automatically executes the activity assignment
rules to initially assign the activity to a group and user. You can use the /{activityId}/assign endpoint to reassign
the activity as needed.

Assignment options
An activity can be assigned through the system APIs in the following ways:

• To a specific group and user in that group
• To a specific group only (and then ClaimCenter uses assignment rules to select a user in that group)
• To a specific group and queue
• To the claim owner
• By re-running the activity assignment rules

◦ This can be appropriate if you have modified the activity since the last time assignment rules were run and the
modification might affect who the activity would be assigned to.

The root resource for the /{activityId}/assign endpoint is Assignee. This resource specifies assignment criteria.
The Assignee schema has the following fields:

Field Type Description

autoAssign Boolean Whether to assign the activity using assignment rules

claimOwner Boolean Whether to assign the activity to the claim owner

groupId string The ID of the group to assign the activity to

queueId string The ID of the queue to assign the activity to

userId string The ID of the user to assign the activity to

The Assignee resource must specify an assignment option. It cannot be empty.

Assignment examples
When assigning activities to users, the user must be active and must have the "own activity" system permission.

Assigning to a specific group (and user)

The following payload assigns activity xc:1 to group demo_sample:31 and user demo_sample:1.

POST /common/v1/activities/xc:1/assign

{
 "data": {
 "attributes" : {
 "groupId" : "demo_sample:31",
 "userId" : "demo_sample:1"
 }
 }
}

The following payload assigns activity xc:1 to group demo-sample:31. Because no user has been specified,
ClaimCenter will execute assignment rules to assign the activity to a user in group demo-sample:31.

POST /common/v1/activities/xc:1/assign

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Working with activities 197

{
 "data": {
 "attributes" : {
 "groupId": "demo_sample:31"
 }
 }
}

Note that there is currently no endpoint that returns groups or group IDs. To assign activities to a specific group, the
caller application must determine the group ID using some method other than a groups system API.

Assigning to a specific queue

The following payload assigns activity xc:1 to queue cc:32. Every queue is associated with a single group, so the
activity will also be assigned to that group. Users in that group who have access to this queue can then manually take
ownership of the activity.

POST /common/v1/activities/xc:1/assign

{
 "data": {
 "attributes" : {
 "queueId": "cc:32"
 }
 }
}

Note that there is currently no endpoint that returns queues or queue IDs. To assign activities to a queue, the caller
application must determine the queue ID using some method other than a queues system API.

Assigning to the claim owner

The following payload assigns activity xc:1 to the group and user that owns the claim that the activity is associated
with.

POST /common/v1/activities/xc:1/assign

{
 "data": {
 "attributes" : {
 "claimOwner" : true
 }
 }
}

Using automated assignment

The following payload assigns activity xc:1 using automated assignment rules.

POST /common/v1/activities/xc:1/assign

{
 "data": {
 "attributes": {
 "autoAssign" : true
 }
 }
}

For more information on assignment rules, see the Rules Guide.

Retrieving recommended assignees
When ClaimCenter users are assigning activities manually, the user interface includes a drop-down list of
"recommended assignees". Typically, this list includes:

• The option to use assignment rules
• The option to assign the activity to the user who owns the activity's claim
• Users in the group the activity is currently assigned to.
• Any queues belonging to the group the activity is currently assigned to.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

198 Working with activities

The contents of this drop-down list are generated by an application-specific SuggestedAssigneeBuilder class. You
can access the same contents by executing a GET with one of the following /assignee endpoints:

Endpoint Returns

/common/v1/activity/{activityId}/assignee The list of suggested assignees for this activity

/claim/v1/claims/{claimId}/activity-assignees The list of suggested assignees for activities on this claim

The following is a portion of an example response from the Common API's /assignee endpoint.

GET /common/v1/activities/cc:301/assignees

{
 "count": 16,
 "data": [
 {
 "attributes": {
 "autoAssign": true,
 "name": "Use automated assignment"
 }
 },
 {
 "attributes": {
 "claimOwner": true,
 "name": "Claim/Exposure Owner"
 }
 },
 {
 "attributes": {
 "groupId": "demo_sample:31",
 "name": "Sue Smith (Auto1 - TeamA)",
 "userId": "demo_sample:2"
 }
 },
 {
 "attributes": {
 "groupId": "demo_sample:31",
 "name": "Andy Applegate (Auto1 - TeamA)",
 "userId": "demo_sample:1"
 }
 },
 ...
 {
 "attributes": {
 "name": "FNOL - Acme Insurance",
 "queueId": "default_data:1"
 }
 }
],
 ...

Closing activities
A general activity is closed either by completing it or skipping it. In order to be closed, the activity must be opened and
assigned to a user. (Approval activities, which are discussed later in this topic, are closed in a different way.)

When closing an activity, there are two options for the request payload:

• An empty payload
• A payload with an included note. (This option is used when you want to create a note while you close the activity.

The payload has no data section, but it does have an included section.)

All endpoints for closing activities are in the Common API.

Completing an activity

Completing an activity indicates that the corresponding action has been taken or the assignee is aware of the
corresponding issue.

The following payload completes activity xc:1.

POST /common/v1/activities/xc:1/complete

<no request payload>

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Working with activities 199

The following payload completes activity xc:1 and creates a note.

POST /common/v1/activities/xc:1/complete

{
 "included": {
 "Note": [
 {
 "attributes": {
 "body": "This activity was completed through a system API call."
 },
 "method": "post",
 "uri": "/common/v1/activities/xc:1/notes"
 }
]
 }
}

Skipping an activity

Skipping an activity indicates that there is no longer a need to take the corresponding action. Activities have a
mandatory Boolean field. If this is set to true, the activity cannot be skipped.

The following payload skips activity xc:1.

POST /common/v1/activities/xc:1/skip

<no request payload>

The following payload skips activity xc:1 and creates a note.

POST /common/v1/activities/xc:1/skip

{
 "included": {
 "Note": [
 {
 "attributes": {
 "body": "This activity was skipped by a system API call."
 },
 "method": "post",
 "uri": "/common/v1/activities/xc:1/notes"
 }
]
 }
}

Approving an approval activity

Approval activities are associated with actions that require approval from a user with sufficient authority, such as a
manager. Approval activities are closed either by approving or rejecting the activity. This either allows or prevents the
associated action.

Only approval activities can be closed by being approved or rejected. General activities must be closed by being
completed or skipped.

Approval activities often involve financial activities, such as sending money to an insured or a third party. As an added
layer of protection, caller applications may want to use checksums with calls to the /approve endpoint to ensure that
no changes were made to the activity between the time it was retrieved and the time it is to be approved. For more
information on checksums, see “Lost updates and checksums” on page 99.

When approving an activity, the options for the request payload are:

• An empty payload
• A payload with an approval rationale. (This is a string value that describes why the activity was approved or

rejected.)
• A payload with an included note.
• A payload with an approval rationale and an included note.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

200 Working with activities

The following payload approves activity xc:2.

POST /common/v1/activities/xc:2/approve

<no request payload>

The following payload approves activity xc:2 with an approval rationale.

POST /common/v1/activities/xc:2/approve

{
 "data":
 {
 "attributes": {
 "approvalRationale": "Higher reserve approved because claimant is gold-tier customer."
 }
 }
}

The following payload approves activity xc:2 with an approval rationale and a note.

POST /common/v1/activities/xc:2/approve

{
 "data":
 {
 "attributes": {
 "approvalRationale": " Higher reserve approved because claimant is gold-tier customer"
 }
 },
 "included": {
 "Note": [
 {
 "attributes": {
 "body": "This activity was approved through a system API call."
 },
 "method": "post",
 "uri": "/common/v1/activities/xc:2/notes"
 }
]
 }
}

There are currently no Cloud API endpoints that reject approval activities.

Additional activity functionality
The Common API contains these additional activity endpoints.

PATCHing activities

• PATCH /activities/{activityId}

Working with activity notes

• GET /activities/{activityId}/notes
• POST /activities/{activityId}/notes

For more information on notes, see “Working with notes” on page 209.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Working with activities 201

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

202 Working with activities

chapter 19

Working with documents

In ClaimCenter, a document is a file (such as a PDF, Word document, or digital photograph) which contains
information relevant to a claim. Typically, a document is an electronic file, though some insurers may also maintain
documents as physical files. Examples of documents could include reports filed by police offices, assessments of
damage from home inspectors, or correspondences with the insured.

For a complete description of the functionality of documents in ClaimCenter, see the Application Guide.

Note: Documents exist in all InsuranceSuite applications. To ensure that documents behave in a common way
across all applications, some document endpoints, such as the endpoints for querying for document metadata or
contents, are declared in the Common API. Documents can also belong to claims, which do not exist in all
InsuranceSuite applications. This means that other document endpoints, such as the endpoint for creating a
document for a claim, are declared in the Claim API. This topic always identifies the API in which each
endpoint is declared.

Overview of documents
Document owners

Documents cannot exist on their own. They must be attached to a parent object. From a system API perspective,
ClaimCenter documents are always attached to claims.

Document metadata and content

The ClaimCenter data model includes a Document entity. Instances of Document contain only document metadata, such
as the author, MIME type, and status (draft, final, and so on).

Document contents are stored in and managed by a Document Management System. ClaimCenter is almost always
integrated with a Document Management System so that users can upload documents and view and edit document
contents.

Note: The base configuration includes code to mimic Document Management System integration. This code is
suitable for demonstration purposes, but it lacks the full range of features found in a Document Management
System, such as versioning.

Documents can exist in ClaimCenter with metadata but no contents. For example, this may be appropriate when a
document is a physical piece of paper retained by the insurer. The insurer may want to track the existence of the
document and metadata about the document, even though the contents are not in the Document Management System.

Documents cannot exist in ClaimCenter with contents but no metadata.
Working with documents 203

Querying for document information

Querying for document metadata
You can use the following endpoints to GET document metadata.

Endpoint Returns

/common/v1/documents/{documentId} Metadata for the given document

/claim/v1/claims/{claimId}/documents Metadata for documents on the given claim

/claim/v1/claims/{claimId}/documents/{documentId} Metadata for the given document

The following is a portion of an example response from the Common API's /documents/{documentId} endpoint.

GET /common/v1/documents/xc:101

{
 "data": {
 "attributes": {
 "author": "Sue Smith",
 "dateModified": "2020-12-07T23:40:23.534Z",
 "docUID": "2020/11/7/235-53-425892/Legal Ownership of Property",
 "id": "xc:101",
 "inbound": false,
 "mimeType": "text/plain",
 "name": "Legal Ownership of Property",
 "obsolete": false,
 "section": {
 "code": "legal",
 "name": "Legal"
 },
 "status": {
 "code": "final",
 "name": "Final"
 },
 "type": {
 "code": "other",
 "name": "Other"
 }
 },
 ...

Querying for document content
You can use the following to GET document contents. However, these contents are base64 encoded and therefore are
not human-readable until they are decoded.

• /common/v1/documents/{documentId}/content
• /claim/v1/claims/{claimId}/documents/{documentId}/content

The following is a portion of an example response from the Common API's /documents/{documentId}/content
endpoint.

GET /common/v1/documents/xc:101/content

{
 "data": {
 "attributes": {
 "contents": "REVWIEJVSUxEDQoNCklmIHRoZXJlIGlzIG9ubHkgYSB2aXN1YWxp
emVkIHByb2R1Y3QNCiAgQU5EIHRoZSAiRW5hYmxlZCBmb3IgUmVzdCBBUEkiIGZpZWxkIGlzIGlua
XRpYWxseSBzZXQgdG8gRW5hYmxlZA0KICBBTkQgeW91IGNoYW5nZSB0aGUgZmllbGQgdG8gRGlzYW
JsZWQNCiAgVEhFTiB0aGUgcHJvZHVjdCBpcyBpbW1lZGlhdGVseSB1bmF2YWlsYWJsZSB0byB0aGU
gc3lzdGVtIEFQSXMNCg0KSWYgdGhlcmUgaXMgYSB2aXN1YWxpemVkIHByb2R1Y3QgYW5kIGEgZmlu
YWxpemVkIHByb2R1Y3QNCiAgQU5EIHRoZSAiRW5hYmxlZCBmb3IgUmVzdCBBUEkiIGZpZWxkIGlzI
GluaXRpYWxseSBzZXQgdG8gRW5hYmxlZA0KICBBTkQgeW91IGNoYW5nZSB0aGUgZmllbGQgdG8gRG
lzYWJsZWQNCiAgVEhFTiB0aGUgZmluYWxpemVkIHByb2R1Y3QgaXMgaW1tZWRpYXRlbHkgYXZhaWx
hYmxlIHRvIHRoZSBzeXN0ZW0gQVBJcw0KDQpDVVNUT01FUiBCVUlMRA0KDQpJZiB0aGVyZSBpcyBv
bmx5IGEgdmlzdWFsaXplZCBwcm9kdWN0DQogIEFORCB0aGUgIkVuYWJsZWQgZm9yIFJlc3QgQVBJI
iBmaWVsZCBpcyBpbml0aWFsbHkgc2V0IHRvIEVuYWJsZWQNCiAgQU5EIHlvdSBjaGFuZ2UgdGhlIG
ZpZWxkIHRvIERpc2FibGVkDQogIFRIRU4gdGhlIHByb2R1Y3QgaXMgaW1tZWRpYXRlbHkgdW5hdmF
pbGFibGUgdG8gdGhlIHN5c3RlbSBBUElzDQooSSBhc3N1bWUgdGhpcyBpcyB0aGUgc2FtZSBhcyAN
Cg0KSWYgdGhlcmUgaXMgYSB2aXN1YWxpemVkIHByb2R1Y3QgYW5kIGEgZmluYWxpemVkIHByb2R1Y
3QNCiAgQU5EIHRoZSAiRW5hYmxlZCBmb3IgUmVzdCBBUEkiIGZpZWxkIGlzIGluaXRpYWxseSBzZX

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

204 Working with documents

QgdG8gRW5hYmxlZA0KICBBTkQgeW91IGNoYW5nZSB0aGUgZmllbGQgdG8gRGlzYWJsZWQNCiAgVEh
FTiB0aGUgZmluYWxpemVkIHByb2R1Y3QgaXMgaW1tZWRpYXRlbHkgYXZhaWxhYmxlIHRvIHRoZSBz
eXN0ZW0gQVBJcw==",
 "responseMimeType": "text/plain"
 },
 ...

POSTing documents
You can use the following to POST documents.

• /claim/v1/claims/{claimId}/documents

FormData objects

For most Cloud API resource, the request object is constructed as a body with a single string of JSON text. However,
this format is not sufficiently robust for documents. When working with documents, the caller application must send
two sets of data: the document metadata and the document contents. This is accomplished using FormData objects.

FormData is an industry-standard interface that construct an object as a set of key/value pairs. When a caller
application is constructing a POST /documents call, the request object must be a FormData object with the following
keys:

• metadata, whose value is a JSON string identifying the document metadata
• content, whose value is the contents of the document (and whose format varies based on the document type)

Two approaches to POSTing documents

There are two ways that a caller application can create a document:

1. POST both the document metadata and content to ClaimCenter using a /documents endpoint. In this approach:
• ClaimCenter adds the document to the Document Management System through its own integration point.
• The integration point is responsible for storing values created by the Document Management System in the

document metadata (such as the document's DocUID).
2. Add the document to the Document Management System directly, and then POST the document metadata to

ClaimCenter. In this approach:
• The POST /documents call must provide any required information that comes from the Document

Management System in the metadata (such as the document's DocUID).

Minimum creation criteria

When POSTing a document:

• The metadata JSON must include the following fields:
◦ name
◦ status (a typecode from the DocumentStatusType typelist)
◦ type (a typecode from the DocumentType typelist)

• The content value is not required. For example, it may be appropriate to omit content when the document is a
physical piece of paper that does not exist in the Document Management System, or when the caller application has
added the document to the Document Management System directly.

Examples of POSTing documents

The following is an example of POSTing a "Property Assessment Report.pdf" file for claim cc:102 through
ClaimCenter.

POST /claim/v1/claims/cc:102/documents

Metadata:
{
 "data": {
 "attributes": {
 "name": "Property Assessment Report",

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Working with documents 205

 "status": {
 "code": "draft"
 },
 "type": {
 "code": "letter_received"
 }
 }
 }
}

Contents:
<contents of "Property Assessment Report.pdf" file>

POSTing documents using Postman
About this task

From Postman, you can POST documents using FormData objects. When doing so, both the metadata and content must
be stored in separate files referenced by the Postman call.

Note: Every POST /documents endpoint supports the ability to receive the metadata as either a string or a file.
However, there is a known issue with Postman which prevents the sending of metadata as a string. When using
Postman, the metadata can be sent only as file. This is described in the following procedure. (Client
applications other than Postman may support both string and file.)

Procedure

1. Identify the files needed for the FormData object. This includes:
• A text file that contains the metadata JSON.
• The document file that has the content.

2. In Postman, start a new request by clicking the + to the right of the Launchpad tab.
3. Under the Untitled Request label, select POST.
4. In the Enter request URL field, enter the URL for the server and the endpoint.

• For example, to POST a document to a claim on an instance of ClaimCenter on your machine, enter: http://
localhost:8080/cc/rest/claim/v1/claims/{claimId}/documents

5. On the Authorization tab, specify authorization information as appropriate.
6. Specify the request payload.

a) In the first row of tabs (the one that starts with Params), click Body.
b) In the row of radio buttons, select form-data.
c) On the first line, for KEY, enter: metadata
d) Click outside of the metadata cell. Then, mouse over the right side of the cell. A drop-down list appears.

Change the value from Text to File.
e) For VALUE, click the Select Files button and navigate to the file containing the JSON-formatted metadata.
f) On the second line, for KEY, enter: content
g) Click outside of the content cell. Then, mouse over the right side of the cell. A drop-down list appears.

Change the value from Text to File.
h) For VALUE, click the Select Files button and navigate to the file containing the document content.

7. Click Send. The response payload appears below the request payload.

PATCHing documents
You can use the following to PATCH documents.

• /common/v1/documents/{documentId}
• /claim/v1/claims/{claimId}/documents/{documentId}

Every document has a status. Once a document's status is set to "final", it can no longer be edited, either from the
ClaimCenter user interface or through the system APIs.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

206 Working with documents

Logically speaking, a PATCH call can modify only the metadata of a document, only the content of a document, or
both.

PATCHing document metadata

Every PATCH /{documentId} call must include a metadata key/value pair, even if you want to modify only the
content.

• If you want to modify the metadata, specify the fields to modify in the JSON referenced by the metadata key.
• If you do not want to modify the metadata, have the metadata key reference a payload with no attribute values, as

shown below:

{
 "data": {
 "attributes": {
 }
 }
}

PATCHing document content

A PATCH /{documentId} call is not required to include a content key/value pair. If no content is specified, the
PATCH will update the document metadata only.

PATCHes to content are destructive, not additive. If you specify content, the new content replaces the previous
content entirely.

Examples of PATCHing documents

The following is an example of PATCHing only the metadata for document xc:101. In this example, the document
status is changed to final.

PATCH /common/v1/documents/xc:101

Metadata:
{
 "data": {
 "attributes": {
 "status": {
 "code": "final"
 }
 }
 }
}

(No contents included with the API call)

The following is an example of PATCHing only the contents for document xc:101. Presumably, the contents of
"Property Assessment Report.pdf" are different than the current contents of document xc:101.

PATCH /common/v1/documents/xc:101

Metadata:
{
 "data": {
 "attributes": {
 }
 }
}

Contents:
<contents of "Property Assessment Report.pdf" file>

The following is an example of PATCHing both the metadata for document xc:101 and the content.

PATCH /common/v1/documents/xc:101

Metadata:
{
 "data": {
 "attributes": {
 "status": {
 "code": "final"
 }

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Working with documents 207

 }
 }
}

Contents:
<contents of "Property Assessment Report.pdf" file>

DELETEing documents
You can use the following to DELETE documents.

• /common/v1/documents/{documentId}
• /claim/v1/claims/{claimId}/documents/{documentId}

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

208 Working with documents

chapter 20

Working with notes

A note is a free-form record of the actions or thinking of a user or process. Notes are typically used to capture
information that cannot be easily captured in some other way on some other business object. Notes are typically
created by users, but they can be created by batch processes or other system behavior within ClaimCenter. They can
also be created by caller applications using system APIs.

Through Cloud API, a note can be attached to a claim. It can also optionally be attached to an exposure, a
ClaimContact, or a service request on that claim. Notes can also be attached to activities.

For a complete description of the functionality of notes in ClaimCenter, see the Application Guide.

Note: Notes exist in all InsuranceSuite applications. To ensure that notes behave in a common way across all
applications, some note endpoints, such as the endpoint for querying for a note with a given ID, are declared in
the Common API. Notes can also belong to claims, which do not exist in all InsuranceSuite applications. This
means that other note endpoints, such as the endpoint for querying for notes related to a given claim, are
declared in the Claim API. This topic always identifies the API in which each endpoint is declared.

Querying for notes
You can use the following endpoints to GET notes.

Endpoint Returns

/common/v1/notes/{noteId} The note with the given ID (see below)

/claim/v1/claims/{claimId}/notes All notes associated with the given claim

/common/v1/activities/{activityId}/notes All notes associated with the given activity

The /common/v1/notes/{noteId} endpoint can be used to retrieve any note in ClaimCenter. This includes notes that
are attached to a parent object other than a claim.

Creating claim notes
Notes must be created from an existing claim or activity using one of the following endpoints:

• POST claim/v1/claims/{claimId}/notes
• POST common/v1/activities/{activityId}/notes

The only field required for a note is body, which stores the note's text. You can optionally specify these fields:

Working with notes 209

Field Datatype Description Default

confidential Boolean Whether the note is confidential false

relatedTo Inline object For notes attached to claims, this is either the parent claim, or
the child object (the ClaimContact, exposure, or service
request), if any, that the note is related to

The parent claim

securityType Typekey (NoteSecurityType) The note's security type NULL

subject string The note's subject NULL

topic Typekey (NoteTopicType) The note's topic type general

Minimal notes

The following is an example of creating a minimal note for claim cc:102.

POST /claim/v1/claims/cc:102/notes

{
 "data": {
 "attributes": {
 "body": "The insured's last name, Cahill, is pronounced 'KAH-hill', not 'KAY-hill'."
 }
 }
}

Notes with additional details

The following is an example of creating a detailed note for claim cc:102.

POST /claim/v1/claims/cc:102/notes

{
 "data": {
 "attributes": {
 "body": "The insured's last name, Cahill, is pronounced 'KAH-hill', not 'KAY-hill'." ,
 "confidential": false,
 "securityType": {
 "code": "public"
 },
 "subject": "Pronunciation note",
 "topic": {
 "code": "general"
 }
 }
 }
}

Notes attached to child objects

By default, every note is attached only to the parent claim. You can attach a note to one of the claim's child objects
using the relatedTo field. This field has the following syntax:

"relatedTo": {
 "id": "<childObjectId>",
 "type": "<childObjectType>"

For example, the following creates a note on claim cc:102 for the exposure with id cc:48:

POST /claim/v1/claims/cc:102/notes

{
 "data": {
 "attributes": {
 "body": "The claimant's last name, Cahill, is pronounced 'KAH-hill', not 'KAY-hill'.",
 "relatedTo": {
 "id": "cc:48",
 "type": "Exposure"
 }
 }
 }
}

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

210 Working with notes

Notes for an activity

The following is an example of creating a note for activity xc:22.

POST /common/v1/activities/xc:22/notes

{
 "data": {
 "attributes": {
 "body": "This activity was completed during a telephone call with the insured on 11/17."
 }
 }
}

Additional notes functionality
The Common API contains these additional notes endpoints.

PATCHing notes

• PATCH common/v1/notes/{noteId}

DELETEing notes

• DELETE common/v1/notes/{noteId}

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Working with notes 211

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

212 Working with notes

chapter 21

Working with users

With the Admin API, authorized callers can create, update, and retrieve system user data through the /admin/v1/
users endpoints.

Querying for users
Authorized callers can query for a user through the /admin/v1/users/{userId} endpoint. Calls to this endpoint
return a User resource:

{
 "data": {
 "attributes": {
 "active": true,
 "displayName": "Andy Applegate",
 "employeeNumber": "1000001",
 "externalUser": false,
 "firstName": "Andy",
 "id": "demo_sample:1",
 "lastName": "Applegate",
 "username": "aapplegate",
 "vacationStatus": {
 "code": "atwork",
 "name": "At work"
 },
 "workPhone": {
 "displayName": "213-555-8164",
 "number": "2135558164"
 }
 },
 "checksum": "0",
 "links": {
 "self": {
 "href": "/admin/v1/users/demo_sample:1",
 "methods": [
 "get",
 "patch"
]
 }
 }
 }
}

In order to expose the GET /admin/v1/users/{userId} endpoint, the GET /admin/v1/users collection must also be
exposed. However, the latter endpoint is not filterable or sortable, and can possibly return many pages. In light of this
limitation, querying the users collection for a specific user can require an unknown number of calls. Thus Guidewire
recommends that callers do not use the /admin/v1/users collection to find a specific user.

Working with users 213

Creating users
Authorized callers can create users. To create a user, callers can submit a POST request to the /admin/v1/users
endpoint.

At minimum, the request body must contain a value for the username field:

{
 "data": {
 "attributes": {
 "firstName": "Alfred",
 "lastName": "Martin",
 "username": "amartin"
 }
 }
}

The call returns a User resource for the new user:

{
 "data": {
 "attributes": {
 "active": true,
 "displayName": "Alfred Martin",
 "externalUser": false,
 "firstName": "Alfred",
 "id": "cc:203",
 "lastName": "Martin",
 "username": "amartin",
 "vacationStatus": {
 "code": "atwork",
 "name": "At work"
 }
 },
 . . .
 }
}

Updating users
Authorized callers can update users. To update a user, callers can submit a PATCH request to the /admin/v1/users/
{userId} endpoint.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

214 Working with users

part 3

Configuring the Cloud API

The system APIs in InsuranceSuite Cloud API have a set of default behaviors in the base configuration. However,
through configuration, their behaviors can be modified.

The following topics discuss how insurers can configure system API behavior. This includes:

• Extending system API resources
• Obfuscating personally identifiable information (PII)

Configuring the Cloud API 215

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

216 Configuring the Cloud API

chapter 22

Extending system API resources

System API resources are defined by a set of schemas. In the base configuration, system API resources expose a subset
of ClaimCenter entities and associated fields through a set of properties. To expose additional entity fields, including
your own customizations, you can extend the schemas for the resource.

A resource is structured by three types of schemas. A schema definition defines the data structure of a resource,
comprising property names and value types. A mapper maps the schema definition to a ClaimCenter entity and its
fields. An updater enables resource data to be written to ClaimCenter, and is only needed for resources that must
support write operations.

The basic workflow for extending a system API resource entails the following:

• Extend the schema definition
• Extend the mapper
• Extend the updater (for POST or PATCH operations only)

For an end-to-end walk-through, see “Tutorial: Create a resource extension” on page 225.

Schema organization
The system APIs are defined by a large collection of Swagger and JSON Schema files that are located in the Project/
configuration/config/Integration directory of Guidewire Studio. That directory includes the following relevant
subdirectories:

• apis contains Swagger files that define the system APIs and their associated endpoints.
• schemas contains schema definitions of the resource types associated with system API endpoints.
• mappings contains mappers that map schema definitions to ClaimCenter entities.
• updaters contains updaters that make resource data writeable to ClaimCenter.

To give a concrete example:

• Within apis, the Swagger file for the Common API includes a definition for the /common/v1/activities/
{activityId} endpoint, the root resource of which is Activity. This endpoint supports GET and PATCH
operations.

• Within schemas, the Activity schema definition delineates the properties and associated data types for the Activity
resource. The schema definition is required to define the resource.

• Within mappings, the Activity mapper maps the Activity schema definition with the Activity entity in ClaimCenter.
The mapper is required to enable GET operations for the resource.

• Within updaters, the Activity updater declares Activity resource properties that can be written to Activity entity
fields in ClaimCenter. The updater is required to enable POST or PATCH operations for the resource.

Extending system API resources 217

Extension directories

The apis, schemas, mappings, and updaters directories each contain two subdirectories, gw and ext. The gw subdirectory
holds the base configuration files, and users must not alter these. The ext subdirectory contains the extensions
facilities. When extending an API, you will work with files in the ext subdirectories.

Note: While you must not alter the files in gw subdirectories, you might find it helpful to review those files to
gain a deeper understanding of how the API schemas are structured.

Swagger specification syntax

All of the schema files conform to the Swagger 2 specification. For syntax details, refer to the spec at https://
swagger.io/specification/v2/.

The Swagger specification files in the schemas, mappings, and updaters subdirectories are in JSON format, using JSON
Schema syntax. For details on JSON Schema syntax, refer to the spec at http://json-schema.org/.

Additionally, you can find guidance on how Guidewire uses JSON Schema syntax in the Integration Guide. This
documentation includes information on fully qualified names, which are used for file naming and include references.

Extending schema definitions
By extending a schema definition, you can add properties to a resource that are not otherwise present in the base
schema definition. This process involves adding a schema definition extension to a schema extension file.

Schema extension files

In Studio, schema extension files are located in Integration > schemas > ext > <API name> directories, with the file
naming pattern of <API name>_ext-<VERSION>.schema.json.

For example, the schema extension file for the Common API is located at Integration > schemas > ext > common.v1 >
common_ext-1.0.schema.json. The base file has the following content:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "x-gw-combine": [
 "gw.content.cc.common.v1.common_content-1.0",
 "ext.framework.v1.framework_ext-1.0"
],
 "definitions": {}
}

• $schema: References the JSON Schema namespace declaration
• x-gw-combine: References an array of schema files that can be extended. These files are referenced as fully

qualified names that are relative paths within the schemas directory.
• definitions: Contains the schema definition extensions. In this case, the value is an empty object, because no

extensions have been created yet.

Schema definition extension syntax
A schema definition extension adheres to the following syntactic conventions:

• The extension for the target resource is defined by a JSON object contained in the definitions field of the schema
extension file

• The name of the extension must match that of the schema definition for the target resource
• The extension must have a properties attribute to contain the extended properties
• Each extended property has the _Ext suffix appended to its name
• Each extended property contains a value type declaration

The following example shows a schema definition extension for the Activity resource in the Common API. The
extension adds the shortSubject_Ext property to the resource, and defines the property value type as a string:

{
 . . .

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

218 Extending system API resources

https://swagger.io/specification/v2/
https://swagger.io/specification/v2/
http://json-schema.org/

 "definitions": {
 "Activity": {
 "properties": {
 "shortSubject_Ext": {
 "type": "string"
 }
 }
 }
 }
}

• Activity: The name of the schema definition for the resource that is being extended
• shortSubject_Ext: The name of the property extension
• type: A declaration of the property value type

Property names

Guidewire recommends that you render property names in mixed case, with the first letter being lowercase, and that
you append _Ext to the property name. This namespacing is important to avoid upgrade conflicts if a property with the
same name is added to the core product in the future. The _Ext suffix is required even when adding properties from a
base entity.

For example, if a ClaimCenter entity field name is ShortSubject, then the name of the extended resource property
would be shortSubject_Ext.

Property value types

Each property extended by the schema definition must include a declaration of the property value type, and that type
must align with the field type of the associated ClaimCenter entity. These types fall into the following general
categories:

• Scalars
• Objects
• Arrays

Furthermore, property value types can be defined with one of the following attributes:

• type: Takes a string that indicates the property value type. Use this attribute for scalars and array value types.
• $ref: Takes a URI reference to a definition elsewhere in the schema. Use this attribute for object value types.

Scalars

You can declare a property value type for a scalar by adding a type attribute to the resource property and assigning it a
JSON Schema primitive type of either boolean, integer, number, or string. If the scalar is a date or datetime type,
then you would also add a format attribute and give it a value of either date or date-time, respectively.

Table 1: ClaimCenter scalar types with associated JSON primitive types

ClaimCenter scalar type JSON primitive type

bit boolean

dateonly string in date format

datetime string in date-time format

decimal number

integer integer

longint integer

longtext string

mediumtext string

money number

percentage number

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Extending system API resources 219

ClaimCenter scalar type JSON primitive type
shorttext string

text string

varchar string

The following example depicts base resource properties that support ClaimCenter datetime, bit, and varchar value
types:

{
 . . .
 "definitions": {
 "Activity": {
 "properties": {
 "closeDate": {
 "type": "string",
 "format": "date-time"
 },
 "mandatory": {
 "type": "boolean"
 },
 "shortSubject": {
 "type": "string"
 }
 }
 }
 }
}

Objects

You can declare a property value type for an object by assigning it a URI reference to an inline resource schema.
Typically, objects are formatted through the SimpleReference schema. For further details on inline resources, see the
Cloud API Business Flows Guide.

In the following example, assignedByUser_Ext is a property extension whose value type is object. That value type is
declared through a URI reference to the SimpleReference schema:

{
 . . .
 "definitions": {
 "Activity": {
 "properties": {
 "assignedByUser_Ext": {
 "$ref": "#/definitions/SimpleReference"
 }
 }
 }
 }
}

In the schemas generally, property value types that align with ClaimCenter typekeys are formatted as objects. To
declare a property value type for a typekey, assign it a URI reference to the TypeKeyReference schema. It is also
necessary to explicitly associate the typekey with its ClaimCenter typelist through the x-gw-extensions.typelist
attribute.

The example below shows an assignmentStatus_Ext property extension. Its value type is a typekey that is associated
with the AssignmentStatus typelist:

{
 . . .
 "definitions": {
 "Activity": {
 "properties": {
 "assignmentStatus_Ext": {
 "$ref": "#/definitions/TypeKeyReference",
 "x-gw-extensions": {
 "typelist": "AssignmentStatus"
 }
 }
 }
 }
 }
}

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

220 Extending system API resources

Arrays

You can declare a property value type for an array by adding a type attribute to the resource property and assigning it
the value of array. It is also necessary to indicate the value type of the array members, which can be done by adding
an items.type attribute for scalars or a URI reference for objects.

The following property declaration is for an array of strings:

{
 . . .
 "definitions": {
 "Activity": {
 "properties": {
 "exceptionSubtypes_Ext": {
 "type": "array",
 "items": {
 "type": string"
 }
 }
 }
 }
 }
}

The following property declaration, for the data property of the RelatedCollections resource, uses a URI reference
to set the array member type as an object that conforms to the SimpleReference schema:

{
 . . .
 "definitions": {
 "RelatedCollection": {
 "properties": {
 . . .
 "data": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/SimpleReference"
 }
 }
 }
 }
 }
}

Virtual properties

Many ClaimCenter entity fields are virtual properties that derive their value through a Gosu method. The value
returned from the method is typically dynamic, such as a concatenation of other fields, or a pointer to a specific
member of an array (such as the member added most recently). In the ClaimCenter Data Dictionary, the field entry for
virtual property lists the return type of the method that underlies the field. That type will be either a scalar, object,
typekey, or array, as described previously. After identifying the return type, you can then follow the specific formatting
guidance as described above.

Foreign keys

ClaimCenter entity fields are frequently based on foreign keys to other entities or typelists. To declare a property value
type for a foreign key, you must first identify the terminating value type of the foreign key reference in the originating
source. That type will be either a scalar, object, typekey, array, or virtual property, as described previously. You can
then follow the specific formatting guidance for the type.

For example, the ClaimContact entity has a foreign key to the Contact entity, which has a

DisplayName

property that is a string type. The chained name of this property is ClaimContact.Contact.DisplayName. The schema
definition for this property is as follows:

"ClaimContact": {
 "type": "object",
 "x-gw-extensions": {
 "discriminatorProperty": "contactSubtype"
 },
 "properties": {

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Extending system API resources 221

 . . .
 "displayName": {
 "type": "string",
 "readOnly": true
 },
 . . .
 }
}

Extending mappers
By extending a mapper, you can associate the schema definition extension of the target resource with the backing data
source, a ClaimCenter entity. This step is necessary in order to expose your resource extensions to ClaimCenter
through the API. To extend a mapper, you must configure a mapper extension in a mapper extension file.

Mapper extension files

In Studio, mapper extension files are located in Integration > mappings > ext > <API name> directories, with the file
naming pattern of <API name>_ext-<VERSION>.mapping.json .

For example, the mapper extension file for the Common API is located at Integration > mappings > ext > common.v1
> common_ext-1.0.mapping.json . That file has the following content:

{
 "schemaName": "ext.common.v1.common_ext-1.0",`
 "combine": [
 "gw.content.cc.common.v1.common_content-1.0",
 "ext.framework.v1.framework_ext-1.0"

],
 "mappers": {}
}

• schemaName: References the base name of the schema extension file
• combine: References an array of schema files that are being extended. These files are referenced as fully qualified

names that are relative paths within the mappings directory.
• mappers: Contains the mapper extensions

Mapper extension syntax
A mapper extension adheres to the following syntactic conventions:

• The extension is defined by a JSON object contained in the mappers field of the mapper extension file
• The name of the mapper extension matches that of the schema definition extension for the resource that is being

extended
• The extension must have a schemaDefinition attribute that associates the mapper extension with the schema

definition extension
• The extension must have a root attribute that associates the schema definition extension with a ClaimCenter entity
• The extension must have a properties attribute to contain the extended properties
• The name of each extended property must match that found in the associated schema definition extension
• Each extended property must have a path attribute pointing to a ClaimCenter entity field
• If the extended property value type is an object, then it must also have a mapper attribute that holds a relevant URI

reference

The following listing shows a mapper extension for the Activity schema in the Common API. The extension maps an
extended shortSubject_Ext resource property to the ClaimCenter Activity.ShortSubject entity field:

{
 . . .
 "mappers": {
 "Activity": {
 "schemaDefinition": "Activity",
 "root": "entity.Activity",
 "properties": {
 "shortSubject_Ext": {
 "path": "Activity.ShortSubject"

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

222 Extending system API resources

 }
 }
 }
 }
}

• Activity: The name of the mapper
• schemaDefinition: A mapping to the Activity schema definition
• root: A mapping of the Activity schema definition to the Activity entity in ClaimCenter
• shortSubject_Ext: A property name, as defined in the schema definition
• path: A path that associates the extended property with the Activity.ShortSubject entity field. Values can be

chained. For example, the path for the display name of a claim contact is ClaimContact.Contact.DisplayName.

If a property value type is defined by a URI reference in the schema definition extension, then the extended property
must also include a mapper attribute. The syntax for this value is #/mappers/ followed by the schema name. For
example, if the property value type in the schema definition extension is "$ref": "#/definitions/
SimpleReference", then the mapper attribute value would be "mapper": "#/mappers/SimpleReference".

The following listing shows an extended activityClass_Ext resource property that maps to the ClaimCenter
Activity.ActivityClass entity field, which is backed by a typekey. The schema definition extension declares the
property value type as "$ref": "#/definitions/TypeKeyReference". Therefore, it is necessary to include the
mapper attribute:

{
 . . .
 "mappers": {
 "Activity": {
 "schemaDefinition": "Activity",
 "root": "entity.Activity",
 "properties": {
 "activityClass_Ext": {
 "path": "Activity.ActivityClass",
 "mapper": "#/mappers/TypeKeyReference"
 }
 }
 }
 }
}

Extending updaters
When extending a resource that will support POST or PATCH operations, you must also configure a matching updater
extension in an updater extension file. This is necessary in order to make the extended properties writeable to
ClaimCenter.

Updater extension files

In Studio, updater extension files are located in Integration > updaters > ext > <API name> directories, with the file
naming pattern of <API name>_ext-<VERSION>.updater.json.

For example, the updater extension file for the Common API is located at Integration > updaters > ext > common.v1
> common_ext-1.0.updater.json. That file has the following content:

{
 "schemaName": "ext.common.v1.common_ext-1.0",
 "combine": [
 "gw.content.cc.common.v1.common_content-1.0",
 "ext.framework.v1.framework_ext-1.0"
],
 "updaters": { }
}

• schemaName: References the base name of the extension file
• combine: References an array of schema files that are being extended. These files are referenced as fully qualified

names that are relative paths within the updaters directory.
• updaters: Contains the updater extensions

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Extending system API resources 223

Updater extension syntax
An updater extension adheres to the following syntactic conventions:

• The extension is defined by a JSON object contained in the updaters field of the updater extension file
• The name of the updater extension matches that of the schema definition extension for the resource that is being

extended
• The extension must have a schemaDefinition attribute that associates the updater extension with the schema

definition extension
• The extension must have a root attribute that associates the schema definition extension with a ClaimCenter entity
• The extension must have a properties attribute to contain the extended properties
• The name of each extended property must match that found in the associated schema definition extension
• Each extended property must have a path attribute pointing to a ClaimCenter entity field
• If the extended property value type supports a typekey, then it must also have a valueResolver.typeName attribute

that holds a TypeKeyValueResolver URI reference

The following listing shows an updater extension for the Activity schema in the Common API. The extension
associates an extended shortSubject_Ext resource property with the ClaimCenter Activity.ShortSubject entity
field:

{
 . . .
 "updaters": {
 "Activity": {
 "schemaDefinition": "Activity",
 "root": "entity.Activity",
 "properties": {
 "shortSubject_Ext": {
 "path": "Activity.ShortSubject"
 }
 }
 }
 }
}

• Activity: The name of the updater
• schemaDefinition: A mapping to the Activity schema definition
• root: A mapping of the Activity schema definition to the Activity entity in ClaimCenter
• shortSubject_Ext: A property name, as defined in the schema definition
• path: A path that associates the extended property with the Activity.ShortSubject entity field. Values can be

chained. For example, the path for the display name of a claim contact is ClaimContact.Contact.DisplayName.

If the property value type of the extended property in the schema definition extension is TypeKeyReference, then in
the updater extension that property must include a valueResolver attribute that sets typeName to
TypeKeyValueResolver:

{
 . . .
 "updaters": {
 "Activity": {
 "schemaDefinition": "Activity",
 "root": "entity.Activity",
 "properties": {
 "activityClass_Ext": {
 "path": "Activity.ActivityClass",
 "valueResolver": {
 "typeName": "TypeKeyValueResolver"
 }
 }
 }
 }
 }
}

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

224 Extending system API resources

Tutorial: Create a resource extension
In this tutorial, you can walk through the entire process for creating a system API resource extension. Through creating
the resource extension, you will create resource extensions supporting a variety of property types while executing the
following tasks:

• Extend a schema definition
• Extend a mapper
• Extend an updater
• Verify the extended resource

Tools

Over the course of this exercise, you will be using Studio, Swagger UI, and Postman. This tutorial assumes that you are
already familiar with working in Studio. For further information on Swagger UI, or on setting up Postman, see the
Cloud API Business Flows Guide.

Scenario

You have been asked to create a resource extension for the Activity resource in the Common API. That resource is
based on the ClaimCenter Activity entity. You are going to extend resource properties to support the following entity
fields:

Entity field name Resource property name Value type Support POST and
PATCH?

ActivityClass activityClass_Ext typekey to ActivityClass typelist

CreateTime createTime_Ext datetime

CreateUser createUser_Ext foreign key to User entity

ShortSubject shortSubject_Ext varchar (10) yes

IsAutogenerated_Ext (user-created field
extension)

isAutogenerated_Ext bit yes

Notice that the last entry is a custom entity field extension. You will begin by creating that field in Studio. You will
then configure the resource, mapping, and updater extensions to make these properties available through the system
API. Lastly, you will verify the resource extension in Swagger UI and Postman.

Create an entity field extension

In order to make a custom entity extension accessible through a system API, that extension first. You can create a
custom entity extension by doing the following:

1. In Studio, open the Activity entity for editing. You can find that file at Project > configuration > config >
Extensions > Entity > Activity.etx.

2. Click +, and then select column.
3. In the new column, enter the following name and value pairs:
4. In the name field, enter IsAutogenerated_Ext
5. In the type field, enter bit
6. In the nullok field, enter true
7. Save the file.
8. To integrate your changes, start the development server in debug mode by selecing Run > Debug ‘Server’.
9. To verify your work, regenerate the Data Dictionary for ClaimCenter, and then confirm the presence of this

extension in the dictionary.

Extend a schema definition

1. In Studio, open the schema extension file associated with the Common API.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Extending system API resources 225

This file is located at Integration > schemas > ext > common > v1 > common_ext-1.0.schema.json.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "x-gw-combine": [
 "gw.content.cc.common.v1.common_content-1.0",
 "ext.framework.v1.framework_ext-1.0"
],
 "definitions": {}
 }
}

2. In the definitions field, create a schema definition extension for Activity, and add to this a properties
attribute.

{
 . . .
 "definitions": {
 "Activity": {
 "properties": {}
 }
 }
}

3. Within the properties attribute, create fields for each of the resource properties to be extended, as outlined in
the “Scenario” section previously.

{
 . . .
 "definitions": {
 "Activity": {
 "properties": {
 "activityClass_Ext": {},
 "createTime_Ext": {},
 "createUser_Ext": {},
 "shortSubject_Ext": {},
 "isAutogenerated_Ext": {}
 }
 }
 }
}

For guidance on property naming conventions, see the “Property names” section of “Schema definition extension
syntax” on page 218.

4. Within the activityClass_Ext property field, add a property value type for typekey.
The typekey type is defined in the schema by a URI reference. To set the property value type, enter a $ref
attribute and assign it a value of #/definitions/TypeKeyReference.

Additionally, the typekey must be associated with a typelist. To set the typelist, add a x-gw-extensions attribute
to the property, and then assign the appropriate typelist to the typelist field. In this example, the typelist is
ActivityClass.

The following code block depicts the completed property field:

{
 . . .
 "definitions": {
 "Activity": {
 "properties": {
 "activityClass_Ext": {
 "$ref": "#/definitions/TypeKeyReference",
 "x-gw-extensions": {
 "typelist": "ActivityClass"
 }
 },
 . . . }
 }
 }
}

5. In the createTime_Ext property field, add a property value type for datetime.
To set the property value type, enter a type attribute and assign it a value of string. Next, add a format attribute
and assign it a value of date-time.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

226 Extending system API resources

The following code block depicts the completed property field:

{
 . . .
 "definitions": {
 "Activity": {
 "properties": {
 . . .
 "createTime_Ext": {
 "type": "string",
 "format": "date-time"
 },
 . . . }
 }
 }
}

6. In the createUser_Ext property field, add a property value type for object.
You can declare a property value type for an object by adding a $ref attribute to the resource property and
assigning it a URI reference for an inlined resource (for details, refer to “The attributes section” in this guide). In
this instance, enter a $ref attribute and assign it a value of #/definitions/SimpleReference.

The following code block depicts the completed property field:

{
 . . .
 "definitions": {
 "Activity": {
 "properties": {
 . . .
 "createUser_Ext": {
 "$ref": "#/definitions/SimpleReference"
 },
 . . .
 }
 }
 }
}

7. In the shortSubject_Ext property field, add a property value type for string.
To set the property value type, enter a type attribute and assign it a value of string.

The following code block depicts the completed property field:

{
 . . .
 "definitions": {
 "Activity": {
 "properties": {
 . . .
 "shortSubject_Ext": {
 "type": "string"
 },
 . . .
 }
 }
 }
}

8. In the isAutogenerated_Ext property field, add a property value type for bit.
To set the property value type, enter a type attribute and assign it a value of boolean.

The following code block depicts the completed property field:

{
 . . .
 "definitions": {
 "Activity": {
 "properties": {
 . . .
 "isAutogenerated_Ext": {
 "type": "boolean"
 }
 }
 }
 }
}

9. Save your changes.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Extending system API resources 227

Extend a mapper

1. In Studio, open the mapper extension file associated with the Common API.
This file is located at Integration > mappings > ext > common > v1 > common_ext-1.0.mapping.json.

The base file appears as follows:

{
 "schemaName": "ext.common.v1.common_ext-1.0",
 "combine": [
 "gw.content.cc.common.v1.common_content-1.0",
 "ext.framework.v1.framework_ext-1.0"
],
 "mappers": {}
}

2. In the mappers field, create a mapper extension for Activity.

{
 . . .
 "mappers": {
 "Activity": {}
 }
}

3. In the Activity mapper extension, add a schemaDefinition property and give it the value Activity. This
associates the mapper with the Activity resource.

{
 . . .
 "mappers": {
 "Activity": {
 "schemaDefinition": "Activity"
 }
 }
}

4. Add a root property, and give it the value of entity.Activity. This associates the Activity resource with the
ClaimCenter Activity entity.

{
 . . .
 "mappers": {
 "Activity": {
 "schemaDefinition": "Activity",
 "root": "entity.Activity"
 }
 }
}

5. Add a properties property, and within that create fields for each of the properties that you added previously to
the schema definition extension.

{
 . . .
 "mappers": {
 "Activity": {
 "schemaDefinition": "Activity",
 "root": "entity.Activity",
 "properties": {
 "activityClass_Ext": {},
 "createTime_Ext": {},
 "createUser_Ext": {},
 "shortSubject_Ext": {},
 "isAutogenerated_Ext": {}
 }
 }
 }
}

6. Configure the activityClass_Ext property.
a. Add a path attribute and assign it the value Activity.ActivityClass.

This maps the resource property to the ActivityClass entity field.
b. Add a mapper attribute and assign it the value #/mappers/TypeKeyReference.

Any property whose type is declared by a URI reference must have a mapping set to a URI reference for the
related mappers schema.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

228 Extending system API resources

The following code block depicts the completed property field:

{
 . . .
 "mappers": {
 "Activity": {
 "schemaDefinition": "Activity",
 "root": "entity.Activity",
 "properties": {
 "activityClass_Ext": {
 "path": "Activity.ActivityClass",
 "mapper": "#/mappers/TypeKeyReference"
 },
 . . .
 }
 }
 }
}

7. In the createTime_Ext property, add a path attribute and assign it the value Activity.CreateTime.
This maps the resource property to the CreateTime entity field.

The following code block depicts the completed property field:

{
 . . .
 "mappers": {
 "Activity": {
 "schemaDefinition": "Activity",
 "root": "entity.Activity",
 "properties": {
 . . .
 "createTime_Ext": {
 "path": "Activity.CreateTime"
 },
 . . .
 }
 }
 }
}

8. Configure the createUser_Ext property.
a. Add a path attribute and assign it the value Activity.CreateUser.

This maps the resource property to the CreateUser entity field.
b. Add a mapper attribute and assign it the value #/mappers/SimpleReference.

Any property whose type is declared by a URI reference must have a mapping set to a URI reference for the
related mappers schema.

The following code block depicts the completed property field:

{
 . . .
 "mappers": {
 "Activity": {
 "schemaDefinition": "Activity",
 "root": "entity.Activity",
 "properties": {
 . . .
 "createUser_Ext": {
 "path": "Activity.CreateUser",
 "mapper": "#/mappers/SimpleReference"
 },
 . . .
 }
 }
 }
}

9. In the shortSubject_Ext property, add a path attribute and assign it the value Activity.ShortSubject.
This maps the resource property to the ShortSubject entity field.

The following code block depicts the completed property field:

{
 . . .
 "mappers": {
 "Activity": {

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Extending system API resources 229

 "schemaDefinition": "Activity",
 "root": "entity.Activity",
 "properties": {
 . . .
 "shortSubject_Ext": {
 "path": "Activity.ShortSubject"
 },
 . . .
 }
 }
 }
}

10. In the isAutogenerated_Ext property, add a path attribute and assign it the value
Activity.IsAutogenerated_Ext.
This maps the resource property to the IsAutogenerated_Ext entity field.

The following code block depicts the completed property field:

{
 . . .
 "mappers": {
 "Activity": {
 "schemaDefinition": "Activity",
 "root": "entity.Activity",
 "properties": {
 . . .
 "isAutogenerated_Ext": {
 "path": "Activity.IsAutogenerated_Ext"
 }
 }
 }
 }
}

11. Save your changes.

Extend the updater

For the updater, you only need to add resource properties that can be updated by a POST or PATCH operation. If a
resource extension does not have any such properties, then it is not necessary to create an updater extension.

To create an updater that supports POST or PATCH operations for the isAutogenerated_Ext properties, follow these
steps.

1. In Studio, open the updater extension file associated with the Common API.
This file is located at Integration > updaters > ext > common > v1 > common_ext-1.0.updater.json.

The base file appears as follows:

{
 "schemaName": "ext.common.v1.common_ext-1.0",
 "combine": [
 "gw.content.cc.common.v1.common_content-1.0",
 "ext.framework.v1.framework_ext-1.0"
],
 "updaters": {}
}

2. In the updaters field, create an updater extension for Activity.

{
 . . .
 "updaters": {
 "Activity": {}
 }
}

3. In the Activity updater extension, add a schemaDefinition property and give it the value Activity.
This associates the updater with the Activity resource.

{
 . . .
 "updaters": {
 "Activity": {
 "schemaDefinition": "Activity"
 }

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

230 Extending system API resources

 }
}

4. Add a root property, and give it the value of entity.Activity.
This associates the Activity resource with the ClaimCenter Activity entity.

{
 . . .
 "updaters": {
 "Activity": {
 "schemaDefinition": "Activity",
 "root": "entity.Activity"
 }
 }
}

5. Add a properties property, and within that create a field for each of the supported properties as defined in the
schema definition extension.

{
 . . .
 "updaters": {
 "Activity": {
 "schemaDefinition": "Activity",
 "root": "entity.Activity",
 "properties": {
 "shortSubject_Ext": {},
 "isAutogenerated_Ext": {}
 }
 }
 }
}

6. In the isAutogenerated_Ext property, add a path attribute and assign it the value
Activity.IsAutogenerated_Ext.
This maps the resource property to the IsAutogenerated_Ext entity field, enabling property data to be written to
the InsuranceSuite database.

The following code block depicts the completed property field:

{
 . . .
 "updaters": {
 "Activity": {
 "schemaDefinition": "Activity",
 "root": "entity.Activity",
 "properties": {
 "isAutogenerated_Ext": {
 "path": "Activity.IsAutogenerated_Ext"
 },
 . . .
 }
 }
 }
}

7. In the shortSubject_Ext property, add a path attribute and assign it the value Activity.ShortSubject.
This maps the resource property to the ShortSubject entity field, enabling property data to be written to the
InsuranceSuite database.

The following code block depicts the completed property field:

{
 . . .
 "updaters": {
 "Activity": {
 "schemaDefinition": "Activity",
 "root": "entity.Activity",
 "properties": {
 . . .
 "shortSubject_Ext": {
 "path": "Activity.ShortSubject"
 }
 }
 }
 }
}

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Extending system API resources 231

8. Save your changes.

Verify the extended resource

After creating the schema definition extension, you can review the revised schema definition in Swagger UI.

1. Launch Swagger UI, and then load the Common API.
For details, see the Cloud API Business Flows Guide.

2. Select the GET /common/v1/activities/{activityId} endpoint.
3. Under Responses, select the Model view.
4. In the Activity schema associated with the data.attributes section, verify the presence of the extended

properties.

Additionally, you can test drive the revised schema definition using Postman and some sample data. This tutorial
assumes you have set up your environment with Postman and the correct sample data set. For more information, see
the Cloud API Business Flows Guide.

First, you can review the response object of a GET operation for the resource property extensions.

1. In Postman, start a new request by clicking the + to the right of the Launchpad tab.
2. Specify Basic Auth authorization using user aapplegate and password gw.
3. Enter the following call, and then click Send:

GET http://localhost:8080/cc/rest/common/v1/activites/cc:201
4. Review the body of the response. It appears as follows:

{
 "data": {
 "attributes": {
 "activityClass_Ext": {
 "code": "task",
 "name": "Task"
 },
 "activityPattern": "vendor_did_not_accept_work",
 "activityType": {
 "code": "general",
 "name": "General"
 },
 "assignedByUser": {
 "displayName": "System User",
 "id": "systemTables:2"
 },
 "assignedGroup": {
 "displayName": "Auto1 - TeamA",
 "id": "demo_sample:31"
 },
 "assignedUser": {
 "displayName": "Andy Applegate",
 "id": "demo_sample:1"
 },
 "assignmentStatus": {
 "code": "assigned",
 "name": "Assigned"
 },
 "createTime_Ext": "2020-06-04T22:10:00.091Z",
 "createUser_Ext": {
 "displayName": "System User",
 "id": "systemTables:2"
 },
 "description": "Follow up with vendor - work not accepted in timely manner",
 "dueDate": "2020-06-05T22:10:00.035Z",
 "escalated": false,
 "externallyOwned": false,
 "id": "cc:201",
 "importance": {
 "code": "high",
 "name": "High"
 },
 "mandatory": false,
 "priority": {
 "code": "high",
 "name": "High"
 },
 "recurring": false,
 "status": {
 "code": "open",
 "name": "Open"
 },
 "subject": "Follow up with vendor - work not accepted in timely manner"

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

232 Extending system API resources

 },
 . . .
 }
 }
}

You can test the updater by executing a PATCH operation on the same resource:

1. In Postman, start a new request by clicking the + to the right of the Launchpad tab.
2. Specify Basic Auth authorization using user aapplegate and password gw.
3. Enter the following call, but do not click Send:

PATCH http://localhost:8080/cc/rest/common/v1/activites/cc:201
4. Specify the request payload.

a. In the first row of tabs (the one that starts with Params), click Body.
b. In the row of radio buttons, select raw.
c. At the end of the row of radio buttons, change the drop-down list value from Text to JSON.
d. Paste the following into the text field underneath the radio buttons:

{
 "data": {
 "attributes": {
 "isAutogenerated_Ext": true,
 "shortSubject_Ext": "shortsub"
 }
 }
}

5. Click Send. The response payload appears below the request payload.

{
 "data": {
 "attributes": {
 "activityClass_Ext": {
 "code": "task",
 "name": "Task"
 },
 "activityPattern": "vendor_did_not_accept_work",
 "activityType": {
 "code": "general",
 "name": "General"
 },
 "assignedByUser": {
 "displayName": "System User",
 "id": "systemTables:2"
 },
 "assignedGroup": {
 "displayName": "Auto1 - TeamA",
 "id": "demo_sample:31"
 },
 "assignedUser": {
 "displayName": "Andy Applegate",
 "id": "demo_sample:1"
 },
 "assignmentStatus": {
 "code": "assigned",
 "name": "Assigned"
 },
 "createTime_Ext": "2020-06-04T22:10:00.091Z",
 "createUser_Ext": {
 "displayName": "System User",
 "id": "systemTables:2"
 },
 "description": "Follow up with vendor - work not accepted in timely manner",
 "dueDate": "2020-06-05T22:10:00.035Z",
 "escalated": false,
 "externallyOwned": false,
 "id": "cc:201",
 "importance": {
 "code": "high",
 "name": "High"
 },
 "isAutogenerated_Ext": true,
 "mandatory": false,
 "priority": {
 "code": "high",
 "name": "High"
 },
 "recurring": false,
 "shortSubject_Ext": "shortsub",
 "status": {

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Extending system API resources 233

 "code": "open",
 "name": "Open"
 },
 "subject": "Follow up with vendor - work not accepted in timely manner"
 },
 . . .
 }
}

Providing feedback
The system APIs expose a subset of ClaimCenter base entities and associated fields. If there are entities or fields that
you think should be added to system API resources, let your Guidewire representative know. The system APIs are in
active development, and your feedback will be helpful to the system API development team.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

234 Extending system API resources

chapter 23

Obfuscating Personally Identifiable
Information (PII)

Generally, enterprises that handle personal data must abide by the data protection and privacy regulations of the
jurisdictions in which they operate. For example, companies operating in the European Union must abide by the
General Data Protection Regulation (GDPR) within that jurisdiction.

One way to protect the privacy of individuals is to obfuscate Personally Identifiable Information (PII). This approach
limits the exposure of designated PII, and is supported by the system APIs. PII can be obfuscated by either nullifying
or masking. PII is nullified when its value is returned null. PII is masked when a portion of its value is returned with
placeholder characters, such as 'XXXXXXX-3213' as a return value for an account number.

Nullifying PII
You can nullify the return value of PII by modifying the mapper for the relevant resource property. This can be done in
a resource extension. For details on resource extensions, see “Extending system API resources” on page 217.

The schema for the ClaimContact resource contains a taxId property:

For example, a claim has ClaimContacts. Depending on business purposes, it might have been necessary to obtain tax
identification information for a ClaimContact. Later, a system API caller could request the ClaimContact and then view
the contact's tax ID in the response. To prevent the exposure of this data, you can nullify the value in the resource
mapper.

"ClaimContact": {
 "type": "object",
 "x-gw-extensions": {
 "discriminatorProperty": "contactSubtype"
 },
 "properties": {
 . . .
 "taxId": {
 "type": "string"
 },
 . . .
 }
}

To nullify the value of the taxId property, you can modify that property in the ClaimContact mapper as follows:

"ClaimContact": {
 "schemaDefinition": "ClaimContact",
 "root": "entity.ClaimContact",
 "properties": {

Obfuscating Personally Identifiable Information (PII) 235

 . . .
 "taxId": {
 "path": "null as String",
 "predicate": "false"
 },
 . . .
 }
}

Setting the taxId.path property to "null as String" converts the expected value to a null string. Setting
taxId.predicate to false prevents the original value, in this case the PII, from being evaluated.

Masking PII
You can mask the return value of PII by writing a Gosu method and modifying the mapper for the relevant resource
property to use that method. For details on implementing Gosu code, see the Configuration Guide. The mapper can be
modified through a resource extension. For details on extending resources, see “Extending system API resources” on
page 217.

For example, a claim has ClaimContacts. Depending on business purposes, it might have been necessary to obtain tax
identification information for a ClaimContact. Later, a system API caller could request the ClaimContact and then view
the contact's tax ID in the response. To limit the exposure of this data, you can mask that value.

The schema for the ClaimContact resource contains a taxId property:

"ClaimContact": {
 "type": "object",
 "x-gw-extensions": {
 "discriminatorProperty": "contactSubtype"
 },
 "properties": {
 . . .
 "taxId": {
 "type": "string"
 },
 . . .
 }
}

This property is mapped to the TaxID field of the ClaimContact.Contact entity. You must create a Gosu method for
this entity that masks the tax ID string. In this example, the method is named maskTaxId.

You then modify the taxId property in the ClaimContact mapper as follows:

"ClaimContact": {
 "schemaDefinition": "ClaimContact",
 "root": "entity.ClaimContact",
 "properties": {
 . . .
 "taxId": {
 "path": "ClaimContact.Contact.maskTaxId(ClaimContact.Contact.TaxID)"
 },
 . . .
 }
}

With the taxId.path property set to ClaimContact.Contact.maskTaxId(ClaimContact.Contact.TaxID) , the
value of TaxID is passed through the maskTaxId method before being exposed to the caller.

Changing the masking pattern

To change the masking pattern applied to a resource property, you can either revise the existing masking Gosu method
or write a new one.

Unmasking PII

Conversely, you can unmask PII that has been masked in the base configuration. This can be necessary when you need
to expose the PII to a specific internal role, such as administrator. In such circumstances, Guidewire recommends that
you create a new schema extension for the masked property. For example, if you wish to unmask the taxId property,
you would create a taxIdUnmasked_Ext schema property that is mapped directly to the TaxID entity field. In such a

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

236 Obfuscating Personally Identifiable Information (PII)

case, Guidewire recommends that you also allowlist the extended property to make it visible only to authorized roles.
For details on creating resource extensions, see “Extending system API resources” on page 217. For details on
allowlisting fields, see the section on API role files in Cloud API Authentication Guide.

IMPORTANT: Nothing in the Cloud API infrastructure prevents configuration that could expose PII in a
sensitive way. For example, if you specify taxId as a filterable parameter or sortable, it can be included as part
of the URL in a request and is more likely to appear in application logs.

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

Obfuscating Personally Identifiable Information (PII) 237

Guidewire ClaimCenter for Guidewire Cloud 2021.04 Cloud API Business Flows Guide

238 Obfuscating Personally Identifiable Information (PII)

	Contents
	Support
	Consuming the Cloud API
	REST API fundamentals in Cloud API
	The InsuranceSuite Cloud API
	Resources
	Endpoints
	Root resources
	Child resources
	Operations
	Paths

	Requests and responses
	Testing requests and responses
	Tutorial: Set up your Postman environment

	Overview of the system APIs in Cloud API
	The base configuration system APIs
	Cloud API versions

	Viewing Cloud API information
	Swagger UI
	View a system API using Swagger UI
	Organization of API information in Swagger UI
	The metadata endpoints and Postman
	View a system API using Postman
	Organization of information in metadata endpoint output

	Beta APIs
	Published APIs and endpoints
	Beta APIs and endpoints
	Beta APIs for this release

	Additional metadata endpoint functionality
	Functionality for alternate API tools
	The /typelists endpoints
	Tutorial: Query for typelist metadata

	Routing related API calls in clustered environments

	GETs and response payload structures
	Overview of GETs
	Standardizing payload structures
	Viewing response schemas
	View a response schema in Swagger UI

	Sending GETs
	Send a GET using Postman
	Tutorial: Send a basic Postman request

	Payload structure for a basic response
	Structure of a basic response
	The count property
	The data section
	The attributes section
	The checksum field
	The links subsection (for an element)
	The collection-level links section

	Payload structure for a response with included resources
	Tutorial: Send a Postman request with included resources
	Structure of a response with included resources
	The related section (for a resource)
	The included section (for a response)
	Including either a collection or a specific resource
	Determining which resources can be included

	Refining response payloads
	Overview of query parameters
	Viewing query parameter documentation in Swagger UI
	Query parameter error messages

	Specifying the resources and fields to return
	Filtering GETs
	Tutorial: Send a GET with the filter parameters
	Specifying which fields to GET
	Tutorial: Send a GET with the fields parameter

	Sorting the result set
	Tutorial: Send a GET with the sort query parameter

	Controlling pagination
	Limiting the number of resources per payload
	Selecting a single resource in a collection
	Paging through resources
	Retrieving the total number of resources
	Tutorial: Send a GET with the pageSize and totalCount parameters

	Using query parameters on included resources
	Specifying query parameters that apply to an included resource
	Summary of query parameters for included resources
	Tutorial: Send a GET with query parameters for included resources

	POSTs and request payload structures
	Overview of POSTs
	Standardizing payload structures
	Viewing request schemas
	View a request schema in Swagger UI

	Designing a request payload
	Determining the required, optional, and write-only fields
	Request payload structure
	Specifying scalar values in a request payload
	Specifying objects in a request payload

	Sending POSTs
	Send a POST using Postman
	Tutorial: Create a new note that specifies required fields only
	Tutorial: Create a new note that specifies optional fields

	Responses to a POST
	Postman behavior with redirects
	Business action POSTs
	Improving POST performance

	PATCHes
	Overview of PATCHes
	The PATCH payload structure
	Designing a request payload

	PATCHes and arrays
	Sending PATCHes
	Send a PATCH using Postman
	Tutorial: PATCH an activity

	Responses to a PATCH
	PATCHes and lost updates
	Postman behavior with redirects

	DELETEs
	Overview of DELETEs
	Tutorial: DELETE a note

	DELETEs and lost updates

	Reducing the number of calls
	Features that execute multiple requests at once
	Comparing features that execute multiple requests
	Determining which feature to use

	Request inclusion
	Syntax for simple parent/child relationships
	Syntax for named relationships
	Additional request inclusion behaviors

	Batch requests
	Optional subrequest attributes
	Batch request syntax
	Simple batch requests
	Batch requests with query parameters
	Batch requests with request payloads
	Batch requests with distinct operations
	Specifying subrequest headers
	Specifying onFail behavior

	Composite requests
	Constructing composite request calls
	The requests section
	Using variables to share information across subrequests
	Responses to the subrequests
	The selections section
	Error handling
	Composite request limitations
	Complete composite request syntax

	Lost updates and checksums
	Lost updates
	Checksums
	Checksums for PATCHes and business action POSTs
	Tutorial: PATCH an activity using checksums
	Tutorial: Assign an activity using checksums

	Checksums for DELETEs
	Send a checksum in a request header using Postman
	Tutorial: DELETE a note using checksums

	Cloud API headers
	HTTP headers
	Overview of Cloud API headers
	Send a request with a Cloud API header using Postman

	Preventing duplicate database transactions
	Warming up an endpoint
	Handling a call with unknown elements
	Validating response payloads against additional constraints

	Globalization
	Specifying language and locale in API requests
	Addresses and locales
	Address locale configuration

	ClaimCenter business flows
	Executing FNOL
	Overview of the FNOL process
	Draft claims and open claims
	Verified and unverified policies

	Overview of the FNOL process in the system APIs
	The system API FNOL process
	FNOL use cases by policy state
	Canceling claims
	Claim modes

	The Testsupport API
	Viewing Testsupport API information
	Set the ClaimCenter environment in Studio
	View the Testsupport API in Swagger UI
	Creating test policy data
	Tutorial: Creating a policy using the Testsupport API
	Creating test data for contacts, user roles, and users

	POSTing a minimal draft claim
	Tutorial: POSTing a minimal draft claim for personal auto

	PATCHing a draft claim
	Tutorial: PATCHing a draft claim for personal auto

	POSTing a typical draft claim
	Tutorial: POSTing a typical draft claim for personal auto

	Creating claims with unverified policies
	Minimum criteria for an unverified policy and claim
	Contacts on an unverified policy
	Locations on an unverified policy
	Risk units on an unverified policy
	Coverages on unverified policies
	PATCH an unverified policy
	Retrieving information about an unverified policy

	Submitting a draft claim
	Minimum criteria for submitting a claim with an unverified policy
	Tutorial: Submitting a draft claim

	Canceling a draft claim
	Sample payload addendum
	Sample policy payload
	Sample typical claim payload

	Working with claims
	Querying for claims associated with you
	Querying for a claim by claim ID
	Querying for claims regardless of association
	Request payload for a claim search
	Response payload for a claim search

	Retrieving policy information
	Summary of the policy endpoints

	Assigning claims
	Validating claims
	ClaimCenter validation levels
	Validating a claim through the system APIs

	Working with ClaimContacts
	Overview of ClaimContacts in ClaimCenter
	Overview of ClaimContacts in the system APIs
	Modifying ClaimContact roles
	Setting reserved roles
	Setting non-reserved roles

	Identifying the ClaimContact
	Creating a new ClaimContact and specifying its role
	Specifying a role for a ClaimContact that is already on the claim
	Specifying a role for a contact that is on the policy

	ClaimContact role constraints

	Working with incidents
	Overview of incidents in ClaimCenter
	Overview of incidents in the system APIs
	Creating incidents
	Dwelling incidents
	Fixed property incidents
	Injury incidents
	Living expenses incidents
	Vehicle incidents

	Summary of incident types

	Working with exposures
	Overview of exposures in ClaimCenter
	Creating exposures
	Minimum creation criteria
	Building an exposure payload
	Step 1: Identify the coverage type
	Step 2: Identify the coverage subtype
	Step 3: Create or identify the claimant
	Step 4: Create or identify the incident

	Querying for and modifying exposures
	Assigning exposures
	Additional exposure endpoints
	Deleting draft exposures
	Validating exposures
	Closing exposures

	Working with service requests
	Overview of service requests in ClaimCenter
	Service request kinds
	The service request lifecycle
	Invoices for service request

	Overview of service requests in the system APIs
	Service request APIs and vendor portals
	Required service request data model
	Service request numbers
	Support for each service request kind

	Querying for service requests
	Creating service requests
	Minimum creation criteria

	Modifying existing service requests
	PATCHing service requests
	Assigning service requests to users

	Advancing a service request in its lifecycle
	Submitting, accepting, and declining service requests
	Completing and canceling service requests

	Service request invoices
	Querying for invoices
	Creating invoices for service requests
	Withdrawing service request invoices

	Working with activities
	Querying for activities
	Creating activities
	Assigning activities
	Assignment options
	Assignment examples
	Retrieving recommended assignees

	Closing activities
	Additional activity functionality

	Working with documents
	Overview of documents
	Querying for document information
	Querying for document metadata
	Querying for document content

	POSTing documents
	POSTing documents using Postman

	PATCHing documents
	DELETEing documents

	Working with notes
	Querying for notes
	Creating claim notes
	Additional notes functionality

	Working with users
	Querying for users
	Creating users
	Updating users

	Configuring the Cloud API
	Extending system API resources
	Schema organization
	Extending schema definitions
	Schema definition extension syntax

	Extending mappers
	Mapper extension syntax

	Extending updaters
	Updater extension syntax

	Tutorial: Create a resource extension
	Providing feedback

	Obfuscating Personally Identifiable Information (PII)
	Nullifying PII
	Masking PII

