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This	book	is	dedicated	to	Erwin	Schrödinger,	who	introduced	the	wave	function,
discovered	its	equation	named	after	him,	and	argued	that	quantum	mechanics	is
incomplete	by	his	famous	cat	paradox.
	



	
	
	
	
It	 has	 even	 been	 doubted	whether	what	 goes	 on	 in	 an	 atom	 can	 be	 described
within	a	 scheme	of	 space	and	 time.	From	a	philosophical	 standpoint,	 I	 should
consider	 a	 conclusive	 decision	 in	 this	 sense	 as	 equivalent	 to	 a	 complete
surrender.	For	we	cannot	really	avoid	our	thinking	in	terms	of	space	and	time,
and	what	we	cannot	comprehend	within	it,	we	cannot	comprehend	at	all.

—Erwin	Schrödinger



	
	
	
	
Someday	we'll	understand	 the	whole	 thing	as	one	 single	marvelous	vision	 that
will	seem	so	overwhelmingly	simple	and	beautiful	that	we	may	say	to	each	other;
"Oh,	 how	 could	we	 have	 been	 so	 stupid	 for	 so	 long?	How	could	 it	 have	 been
otherwise!"

—John	Archibald	Wheeler
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A	True	Story	of	Quantum	Exploration

—An	Excerpt	from	God	Does	Play	Dice	With	the	Universe
During	 my	 childhood,	 it	 had	 been	 a	 wonder	 for	 me	 that	 the	 twinkling	 stars
strewed	in	the	night	sky	don't	fall	to	the	Earth.	I	had	a	strong	desire	to	know	the
whys	 and	 wherefores.	 Later	 I	 found	 the	 answer	 in	 textbooks.	 It	 changed	 my
picture	of	the	universe.	When	I	was	an	undergraduate,	I	began	to	be	entranced	by
the	deep	mysteries	of	the	atomic	world.	I	was	especially	stunned	by	the	fact	that
the	 commonsense	 planetary	 picture	 of	 atoms	 turns	 out	 to	 be	 utterly	 false;	 the
electron	in	an	atom	cannot	rotate	round	the	atomic	nucleus	as	the	Earth	rotates
round	the	sun,	or	else	it	would	soon	radiate	its	energy	and	fall	into	the	nucleus,
and	 as	 a	 result,	my	 body	 composed	 of	 atoms	would	 collapse	 in	 a	 blink.	How
does	 the	electron	move	 then?	 It	must	 exist	 in	 the	atom.	 It	must	move	 in	 some
way	there.	But	more	surprisingly,	textbooks	provided	no	picture	of	the	motion	of
the	electron.	On	22	August	1987,	I	wrote	in	my	diary:	"Is	it	really	true	that	we
have	no	way	 to	describe	 the	atomic	processes	as	processes	happening	 in	space
and	 time?"	 I	 could	 only	 search	 for	 the	 answer	 by	myself.	 Then	 I	 started	 on	 a
lonely	journey	to	"trace"	the	elusive	electron	at	the	age	of	16.
In	order	 to	 find	how	 the	 electron	moves	 in	 an	 atom,	 I	went	 to	 the	 Institute	 of
Electronics,	Chinese	Academy	of	Sciences	 to	pursue	my	graduate	study.	But	 it
was	according	to	expectation	that	nobody	there	could	give	me	any	tips	either.	I
then	spent	nearly	every	day	in	musing	on	the	seemingly	indescribable	motion	of
electrons.	 If	 a	 ball	 indeed	 moves	 in	 a	 continuous	 way,	 then	 it	 seems	 that	 an
electron	or	an	atom	should	also	move	in	the	same	way.	The	ball	is	composed	of
atoms	after	all.	But,	on	the	other	hand,	if	an	electron	moves	continuously	in	an
atom,	 it	 will	 soon	 fall	 into	 the	 nucleus,	while	 the	 tragedy	 does	 not	 happen	 in
reality.	This	is	a	great	dilemma.	I	found	some	possible	solutions,	but	they	shortly
proved	to	be	wrong.
The	puzzle	had	been	plaguing	me.	Day	after	day,	I	gradually	doubted	the	reality
of	continuous	motion.	But	I	still	felt	in	my	bones	that	the	particles	must	move	in
some	way.	 Finally,	 in	 the	 early	morning	 of	 12	October	 1993,	 I	 experienced	 a
sudden	enlightenment.	At	that	moment,	I	felt	that	my	body	permeated	the	whole
universe	and	I	was	united	with	it.	I	"disappeared".	A	clear	picture	then	appeared:
a	 particle	 is	 jumping	 in	 a	 random	 and	 discontinuous	 way.	 It	 is	 not	 inert	 but
active;	it	moves	purely	by	its	own	"free	will".	Maybe	God	does	play	dice	in	the
atomic	world.	 I	 finally	 broke	 loose	 the	 tightest	 shackles	 of	 continuous	motion
with	 the	 help	 of	 inspiration.	After	 this	 event,	 the	 outcome	 seems	 very	 natural
from	 a	 logical	 point	 of	 view.	 If	 a	 particle	 cannot	 move	 continuously,	 it	 must
move	in	a	discontinuous	way.	How	deep-rooted	the	prejudice	of	the	uniqueness



of	continuous	motion	is!
If	 an	 atom	moves	 in	 a	 random	 and	 discontinuous	way,	 then	 it	 can	 easily	 pass
through	 two	 slits	 at	 the	 same	 time.	 But	why	 does	 a	 ball	 appear	 to	move	 in	 a
contrary	 way?	 Moreover,	 why	 on	 earth	 does	 God	 play	 dice?	 These	 puzzles
further	haunted	me.	After	graduated	from	the	Institute	of	Electronics,	I	decided
to	 be	 an	 independent	 theoretical	 physicist,	 or	 more	 accurately,	 a	 natural
philosopher	who	 aims	 at	 understanding	 the	mysterious	 universe.	 Life	was	 not
easy.	But	I	never	gave	up	my	research,	and	I	never	stop	thinking.	It	had	become
the	theme	of	my	life.
As	 time	went	 on,	 the	 picture	 of	 random	 discontinuous	motion	 became	 clearer
and	 clearer	 in	 my	 mind.	 When	 I	 took	 a	 walk	 one	 afternoon	 in	 June	 2001,	 I
suddenly	had	another	inspiration	after	long	reflection	in	solitude	and	meditation.
I	 realized	 that	 motion	 has	 no	 cause	 in	 reality,	 and	 thus	 it	 must	 be	 essentially
random,	i.e.,	God	must	play	dice.	Moreover,	the	familiar	phenomenon	of	inertia
has	already	revealed	that	a	ball	also	jumps	in	a	random	and	discontinuous	way
just	 like	an	atom.	This	 is	 another	new	 idea.	Maybe	 the	path	 to	 truth	 is	 always
devious	 in	 order	 that	 surprise	 can	 hide	 at	 the	 turn	 waiting	 for	 persevering
seekers.	God	also	plays	dice	in	our	everyday	world.	He	actually	plays	dice	with
the	whole	universe.	What	a	harmonic	world!
I	 simply	 want	 to	 know	 the	 answer	 of	 a	 naive	 question.	 I	 simply	 think	 on	 it
continually.	But	 the	 exploration	has	 completely	 changed	my	 life.	 It	 shapes	my
way	 through	 the	 world	 and	 finally	 leads	 me	 to	 God,	 the	 ultimate	 reality.	 As
Trinity	said	in	The	Matrix,	"It’s	the	question	that	brought	you	here…	The	answer
is	out	there,	Neo,	and	it’s	looking	for	you,	and	it	will	find	you	if	you	want	it	to."
	



	
Chapter	1
How	Can	We	Understand	Quantum	Mechanics?
I	 think	 I	 can	 safely	 say	 that	nobody	understands	quantum	mechanics...	Do	not
keep	 saying	 to	 yourself,	 if	 you	 can	 possible	 avoid	 it,	 “But	 how	 can	 it	 be	 like
that?”	 because	 you	 will	 get	 ‘down	 the	 drain’,	 into	 a	 blind	 alley	 from	 which
nobody	has	escaped.	Nobody	knows	how	it	can	be	like	that.

—Richard	Feynman
Quantum	 mechanics,	 according	 to	 its	 Schrödinger	 picture,	 is	 a	 nonrelativistic
theory	about	the	wave	function	and	its	evolution.	There	are	two	main	problems
in	the	conceptual	foundations	of	quantum	mechanics.	The	first	one	concerns	the
physical	meaning	of	the	wave	function	in	the	theory.	It	has	been	widely	argued
that	the	probability	interpretation	is	not	wholly	satisfactory	because	of	resorting
to	 the	 vague	 concept	 of	 measurement	 -	 though	 it	 is	 still	 the	 standard
interpretation	 in	 textbooks	 nowadays.	 On	 the	 other	 hand,	 the	 meaning	 of	 the
wave	 function	 is	 also	 in	 dispute	 in	 the	 alternative	 formulations	 of	 quantum
mechanics	 such	 as	 the	 de	 Broglie-Bohm	 theory	 and	 the	 many-worlds
interpretation.	Exactly	what	does	the	wave	function	describe	then?
The	second	problem	concerns	the	evolution	of	the	wave	function.	It	includes	two
parts.	One	part	concerns	 the	 linear	Schrödinger	evolution.	Why	does	 the	 linear
nonrelativistic	evolution	of	the	wave	function	satisfy	the	Schrödinger	equation?
It	seems	that	a	satisfactory	derivation	of	the	equation	is	still	missing.	The	other
part	concerns	the	collapse	of	the	wave	function	during	a	measurement,	which	is
usually	 called	 the	 measurement	 problem.	 The	 collapse	 postulate	 in	 quantum
mechanics	is	ad	hoc,	and	the	theory	does	not	tell	us	how	a	definite	measurement
result	 emerges.	 Although	 the	 alternatives	 to	 quantum	 mechanics	 already	 give
their	respective	solutions	to	this	problem,	it	has	been	a	hot	topic	of	debate	which
solution	is	right	or	in	the	right	direction.	In	the	final	analysis,	it	is	still	unknown
whether	the	wavefunction	collapse	is	real	or	not.	Even	if	the	wave	function	does
collapse	under	some	circumstances,	it	remains	unclear	exactly	why	and	how	the
wave	 function	 collapses.	 The	 measurement	 problem	 has	 been	 widely
acknowledged	 as	 one	 of	 the	 hardest	 and	 most	 important	 problems	 in	 the
foundations	of	quantum	mechanics.
Let’s	illustrate	these	problems	with	a	typical	double-slit	experiment	with	single
electrons.	 In	 the	 experiment,	 the	 single	 electron	 is	 emitted	 from	 a	 source	 one
after	the	other,	and	then	passes	through	two	slits	to	arrive	at	the	detecting	screen.
Each	electron	is	detected	only	as	a	random	spot	on	the	screen.	But	when	a	large
number	 of	 electrons	 with	 the	 same	 energy	 arrive	 at	 the	 screen,	 these	 spots
collectively	 form	an	undulant	 double-slit	 pattern.	The	 ridges	 in	 the	 pattern	 are



formed	 in	 the	 positions	 where	 more	 electrons	 reach,	 and	 the	 valleys	 in	 the
pattern	are	formed	in	the	positions	where	nearly	no	electrons	reach.	In	particular,
the	 double-slit	 interference	 pattern	 is	 significantly	 different	 from	 the	 direct
mixture	of	two	one-slit	patterns,	each	of	which	is	formed	by	opening	each	of	the
two	slits	independently.	It	is	well	known	that	classical	mechanics	cannot	provide
a	satisfactory	explanation	of	the	double-slit	experiment.	Unfortunately,	quantum
mechanics	cannot	either.
The	 quantum	 mechanical	 "explanation"	 of	 the	 double-slit	 experiment	 with
electrons	can	be	formulated	as	follows.	A	wave	function	is	prepared	and	emitted
from	 the	 source	 of	 electrons.	 This	 mathematical	 wave	 function	 then	 passes
through	 two	 physical	 slits,	 and	 its	 evolution	 follows	 the	 linear	 Schrödinger
equation.	At	last,	the	superposed	wave	function	reaches	the	detecting	screen	and
is	 measured	 there.	 By	 the	 collapse	 postulate,	 it	 instantaneously	 and	 randomly
collapses	to	a	local	wave	function,	which	corresponds	to	a	determinate,	random
measurement	result,	a	spot	on	the	screen.	Moreover,	according	to	the	Born	rule,
the	 probability	 density	 of	 the	 appearance	 of	 the	 spot	 is	 given	 by	 the	modulus
square	 of	 the	 wave	 function	 (immediately	 before	 the	 measurement)	 there.
Although	the	predictions	of	quantum	mechanics	for	 the	probability	distribution
of	 measurement	 results	 agree	 with	 the	 double-slit	 interference	 pattern	 to
astonishing	precision,	 it	keeps	silent	as	 to	what	physical	process	happens	 from
the	 preparation	 to	 the	 measurement	 of	 a	 single	 electron;	 there	 is	 only	 a
mathematical	wave	 function	 that	 spreads,	 superposes	 and	 collapses	 during	 the
whole	process.
As	Feynman	once	claimed,	the	double-slit	experiment	contains	the	only	mystery
of	 quantum	mechanics.	 In	 fact,	 there	 are	 two	mysteries,	 corresponding	 to	 the
above	 two	 fundamental	 problems	 of	 quantum	 mechanics.	 First	 of	 all,	 it	 is
unknown	what	physical	state	the	mathematical	wave	function	describes.	Exactly
what	 is	 an	 electron?	 Is	 it	 a	 localized	 particle	 or	 a	 spreading	 wave	 or	 both	 or
neither?	How	 does	 it	 pass	 through	 the	 two	 slits?	Note	 that	 the	wave	 function
lives	 not	 in	 the	 real	 three-dimensional	 space	 but	 in	 the	 multi-dimensional
configuration	 space	 for	 a	 many-body	 system.	 Then	 what	 does	 the	 system
described	by	it	really	look	like	in	real	space?	Next,	it	remains	unclear	how	come
the	Schrödinger	equation	and	 the	Born	 rule.	This	 is	 the	key	 to	account	 for	 the
double-slit	interference	pattern	and	all	other	quantum	phenomena.	Why	does	the
wave	 function	 of	 a	 single	 electron	 obey	 the	 linear	 Schrödinger	 equation	when
not	being	measured?	Why	does	it	undergo	collapse	when	being	measured?	Is	the
collapse	of	the	wave	function	a	real	physical	process?	If	the	answer	is	negative,
then	 how	 to	 explain	 the	 emergence	 of	 definite	 measurement	 results?	 If	 the
answer	is	positive,	then	why	and	how	does	the	wave	function	collapse?



In	this	book,	we	will	try	to	solve	these	problems	from	a	new	angle.	The	key	is	to
realize	 that	 the	 problem	 of	 interpreting	 the	 wave	 function	 may	 be	 solved
independent	of	how	to	solve	 the	measurement	problem,	and	the	solution	 to	 the
first	problem	can	then	have	important	implications	for	the	solution	to	the	second
one.	Although	 the	meaning	of	 the	wave	 function	 should	be	 ranked	 as	 the	 first
interpretative	problem	of	quantum	mechanics,	 it	has	been	treated	as	a	marginal
problem,	especially	compared	with	 the	measurement	problem.	As	noted	above,
there	 are	 already	 several	 alternatives	 to	 quantum	 mechanics	 which	 give
respective	 solutions	 to	 the	 measurement	 problem.	 However,	 these	 theories	 in
their	 present	 stages	 are	 unsatisfactory	 at	 least	 in	 one	 aspect;	 they	 have	 not
succeeded	 in	 making	 sense	 of	 the	 wave	 function.	 Different	 from	 them,	 our
strategy	is	to	first	find	what	physical	state	the	wave	function	describes	and	then
investigate	the	implications	of	the	answer	for	the	solutions	to	other	fundamental
problems	of	quantum	mechanics.
It	 seems	 quite	 reasonable	 that	 we	 had	 better	 know	what	 the	wave	 function	 is
before	 we	want	 to	 figure	 out	 how	 it	 evolves,	 e.g.	 whether	 it	 collapses	 or	 not
during	a	measurement.	However,	these	problems	are	generally	connected	to	each
other.	In	particular,	in	order	to	know	what	physical	state	the	wave	function	of	a
quantum	 system	 describes,	 we	 need	 to	 measure	 the	 system	 in	 the	 first	 place,
while	 the	 measuring	 process	 and	 the	 measurement	 result	 are	 necessarily
determined	by	the	evolution	law	for	the	wave	function.	Fortunately,	it	has	been
realized	that	the	conventional	measurement	that	leads	to	the	collapse	of	the	wave
function	is	only	one	kind	of	quantum	measurement,	and	there	also	exists	another
kind	of	measurement	that	avoids	the	collapse	of	the	wave	function,	namely	the
protective	measurement	proposed	by	Aharonov,	Vaidman	and	Anandan	in	1993.
Protective	 measurement	 is	 a	 method	 to	 measure	 the	 expectation	 values	 of
observables	on	a	 single	quantum	system,	 and	 its	mechanism	 is	 independent	of
the	 controversial	 process	 of	 wavefunction	 collapse	 and	 only	 depends	 on	 the
established	parts	of	quantum	mechanics.	As	a	result,	protective	measurement	can
not	only	measure	the	physical	state	of	a	quantum	system	and	help	to	unveil	the
meaning	of	the	wave	function,	but	also	be	used	to	examine	the	solutions	to	the
measurement	problem	before	experiments	give	the	last	verdict.	A	full	exposition
of	these	ideas	will	be	given	in	the	subsequent	chapters.
In	 Chapter	 2,	 we	 first	 investigate	 the	 physical	meaning	 of	 the	wave	 function.
According	to	protective	measurement,	the	mass	and	charge	density	of	a	quantum
system	as	one	part	of	its	physical	state	can	be	measured	as	expectation	values	of
certain	 observables,	 and	 it	 turns	 out	 that	 they	 are	 proportional	 to	 the	modulus
square	of	the	wave	function	of	the	system.	The	key	to	unveil	the	meaning	of	the
wave	function	 is	 to	 find	 the	origin	of	 the	mass	and	charge	density.	 It	 is	shown



that	the	density	is	not	real	but	effective;	it	is	formed	by	the	time	average	of	the
ergodic	 motion	 of	 a	 localized	 particle	 with	 the	 total	 mass	 and	 charge	 of	 the
system.	 Moreover,	 it	 is	 argued	 that	 the	 ergodic	 motion	 is	 not	 continuous	 but
discontinuous	 and	 random.	 Based	 on	 this	 result,	 we	 suggest	 that	 the	 wave
function	represents	the	state	of	random	discontinuous	motion	of	particles,	and	in
particular,	the	modulus	square	of	the	wave	function	gives	the	probability	density
of	the	particles	appearing	in	certain	positions	in	real	space.
In	Chapter	3,	we	further	analyze	the	linear	evolution	law	for	the	wave	function.
It	 is	 shown	 that	 the	 linear	 nonrelativistic	 evolution	of	 the	wave	 function	of	 an
isolated	system	obeys	the	free	Schrödinger	equation	due	to	the	requirements	of
spacetime	 translation	 invariance	 and	 relativistic	 invariance.	 Though	 these
requirements	are	already	well	known,	an	explicit	and	complete	derivation	of	the
free	Schrödinger	equation	using	them	is	still	missing	in	 the	literature.	The	new
integrated	analysis,	which	 is	consistent	with	 the	suggested	 interpretation	of	 the
wave	 function,	may	 help	 to	 understand	 the	 physical	 origin	 of	 the	 Schrödinger
equation,	 as	 well	 as	 the	 meanings	 of	 momentum	 and	 energy	 for	 the	 random
discontinuous	motion	of	particles.	In	addition,	we	also	analyze	the	physical	basis
and	 meaning	 of	 the	 principle	 of	 conservation	 of	 energy	 and	 momentum	 in
quantum	mechanics.
In	Chapter	4,	we	investigate	the	implications	of	protective	measurement	and	the
suggested	interpretation	of	the	wave	function	based	on	it	for	the	solutions	to	the
measurement	 problem.	 To	 begin	 with,	 we	 argue	 that	 the	 two	 no-collapse
quantum	 theories,	 namely	 the	 de	 Broglie-Bohm	 theory	 and	 the	 many-worlds
interpretation,	 are	 inconsistent	with	 protective	measurement	 and	 the	 picture	 of
random	 discontinuous	 motion	 of	 particles.	 This	 result	 strongly	 suggests	 that
wavefunction	 collapse	 is	 a	 real	 physical	 process.	 Secondly,	 we	 argue	 that	 the
random	discontinuous	motion	 of	 particles	may	 provide	 an	 appropriate	 random
source	 to	 collapse	 the	 wave	 function.	 The	 key	 point	 is	 to	 realize	 that	 the
instantaneous	 state	 of	 a	 particle	 not	 only	 includes	 its	 wave	 function	 but	 also
includes	 its	 random	 position,	 momentum	 and	 energy	 that	 undergo	 the
discontinuous	 motion,	 and	 these	 random	 variables	 can	 have	 a	 stochastic
influence	on	the	evolution	of	the	wave	function	and	further	lead	to	the	collapse
of	the	wave	function.	Moreover,	it	is	argued	that	the	principle	of	conservation	of
energy	(for	an	ensemble	of	identical	systems)	requires	that	the	random	variable
that	influences	the	evolution	of	the	wave	function	is	not	position	but	energy,	and
due	to	the	discontinuity	of	motion	the	influence	can	accumulate	only	when	time
is	discrete.	As	a	result,	wavefunction	collapse	will	be	a	discrete	process,	and	the
collapse	states	will	be	the	energy	eigenstates	of	the	total	Hamiltonian	of	a	given
system	 in	 general.	 Thirdly,	 we	 propose	 a	 discrete	 model	 of	 energy-conserved



wavefunction	collapse	based	on	the	above	analysis.	It	is	shown	that	the	model	is
consistent	with	existing	experiments	and	our	macroscopic	experience.	Lastly,	we
also	give	some	critical	comments	on	other	dynamical	collapse	models,	including
Penrose’s	gravity-induced	collapse	model	and	the	CSL	(Continuous	Spontaneous
Localization)	model.
In	 the	 last	 chapter,	we	give	 some	primary	 considerations	 on	 the	 unification	 of
quantum	 mechanics	 and	 special	 relativity	 in	 terms	 of	 random	 discontinuous
motion	 of	 particles.	 It	 is	 argued	 that	 a	 consistent	 description	 of	 random
discontinuous	motion	of	particles	requires	absolute	simultaneity,	and	this	leads	to
the	existence	of	a	preferred	Lorentz	frame	when	combined	with	the	requirement
of	 the	 constancy	 of	 speed	 of	 light.	 Moreover,	 it	 is	 shown	 that	 the	 collapse
dynamics	may	 provide	 a	method	 to	 detect	 the	 frame	 according	 to	 our	 energy-
conserved	collapse	model.



	
Chapter	2
Meaning	of	the	Wave	Function
What	does	the	ψ-function	mean	now,	that	is,	what	does	the	system	described	by	it
really	look	like	in	three	dimensions?

—Erwin	Schrödinger
The	 physical	 meaning	 of	 the	 wave	 function	 is	 an	 important	 interpretative
problem	 of	 quantum	 mechanics.	 Notwithstanding	 more	 than	 eighty	 years’
developments	 of	 the	 theory,	 however,	 it	 is	 still	 a	 debated	 issue.	 Besides	 the
standard	 probability	 interpretation	 in	 textbooks,	 there	 are	 various	 conflicting
views	 on	 the	wave	 function	 in	 the	 alternatives	 to	 quantum	mechanics.	 In	 this
chapter,	we	will	try	to	solve	this	fundamental	interpretive	problem	through	a	new
analysis	of	protective	measurement	and	the	mass	and	charge	density	of	a	single
quantum	system.
The	 meaning	 of	 the	 wave	 function	 is	 often	 analyzed	 in	 the	 context	 of
conventional	impulse	measurements,	for	which	the	coupling	interaction	between
the	measured	system	and	measuring	device	is	of	short	duration	and	strong.	As	a
result,	 even	 though	 the	 wave	 function	 of	 a	 quantum	 system	 is	 in	 general
extended	over	space,	an	 impulse	position	measurement	will	 inevitably	collapse
the	wave	function	and	can	only	detect	the	system	in	a	random	position	in	space.
Then	 it	 is	unsurprising	 that	 the	wave	 function	 is	assumed	 to	be	only	 related	 to
the	probability	of	these	random	measurement	results	by	the	standard	probability
interpretation.	However,	 it	 has	been	known	 that	 there	 also	exist	other	kinds	of
measurements	 in	 quantum	 mechanics,	 one	 of	 which	 is	 the	 protective
measurement.	 Protective	 measurement	 also	 uses	 a	 standard	 measuring
procedure,	 but	with	 a	weak	 and	 long	duration	 coupling	 interaction.	Besides,	 it
adds	 an	 appropriate	 procedure	 to	 protect	 the	 measured	 wave	 function	 from
collapsing	(in	some	situations	the	protection	is	provided	by	the	measured	system
itself).	These	differences	permit	protective	measurement	to	be	able	to	gain	more
information	 about	 the	 measured	 quantum	 system	 and	 its	 wave	 function.	 In
particular,	it	can	measure	the	mass	and	charge	distributions	of	a	quantum	system,
and	it	turns	out	that	the	mass	and	charge	density	in	each	position	is	proportional
to	the	modulus	square	of	the	wave	function	of	the	system	there.
The	key	to	unveil	the	meaning	of	the	wave	function	is	to	find	the	origin	of	the
mass	 and	 charge	 density.	 Historically,	 the	 charge	 density	 interpretation	 for
electrons	was	originally	suggested	by	Schrödinger	when	he	introduced	the	wave
function	 and	 founded	 wave	 mechanics.	 Although	 the	 existence	 of	 the	 charge
density	of	an	electron	can	provide	a	classical	explanation	for	some	phenomena
of	 radiation,	 its	explanatory	power	 is	very	 limited.	 In	 fact,	Schrödinger	clearly



realized	that	the	charge	density	cannot	be	classical	because	his	equation	does	not
include	 the	 usual	 classical	 interaction	 between	 the	 densities.	 Presumably	 since
people	thought	that	the	charge	density	could	not	be	measured	and	also	lacked	a
consistent	 physical	 picture,	 this	 initial	 interpretation	 of	 the	wave	 function	was
soon	rejected	and	replaced	by	Born’s	probability	interpretation.	Now	protective
measurement	re-endows	the	charge	density	of	an	electron	with	reality	by	a	more
convincing	 argument.	 The	 question	 is	 then	 how	 to	 find	 a	 consistent	 physical
explanation	 for	 it[1].	 Our	 following	 analysis	 can	 be	 regarded	 as	 a	 further
development	of	Schrödinger’s	idea	to	some	extent.	The	twist	is:	that	the	charge
density	 is	 not	 classical	 does	 not	 imply	 its	 nonexistence;	 rather,	 its	 existence
points	 to	 a	 non-classical	 physical	 picture	 of	 motion	 hiding	 behind	 the
mathematical	wave	function.
The	charge	distribution	of	a	charged	quantum	system	such	as	an	electron	has	two
possible	 existent	 forms:	 it	 is	 either	 real	 or	 effective.	The	 charge	distribution	 is
real	 means	 that	 it	 exists	 throughout	 space	 at	 the	 same	 time,	 and	 the	 charge
distribution	is	effective	means	that	there	is	only	a	localized	particle	with	the	total
charge	of	the	system	at	every	instant,	and	its	motion	forms	the	effective	charge
distribution.	 If	 the	 charge	 distribution	 is	 effective,	 then	 there	 will	 exist	 no
electrostatic	 self-interaction	 of	 the	 charge	 distribution,	 as	 there	 is	 only	 a
localized	charged	particle	at	every	instant.	By	contrast,	if	the	charge	distribution
is	 real,	 then	 there	 will	 exist	 electrostatic	 self-interaction	 of	 the	 charge
distribution,	as	 the	distribution	exists	 throughout	space	at	 the	same	 time.	Since
the	 superposition	 principle	 of	 quantum	 mechanics	 prohibits	 the	 existence	 of
electrostatic	 self-interaction,	 and	 especially,	 the	 existence	 of	 the	 electrostatic
self-interaction	 for	 the	 charge	 distribution	 of	 an	 electron	 already	 contradicts
experimental	observations,	 the	charge	distribution	of	a	quantum	system	cannot
be	 real	 but	must	 be	 effective.	This	means	 that	 for	 a	 quantum	 system,	 at	 every
instant	 there	 is	 only	 a	 localized	 particle	with	 the	 total	mass	 and	 charge	 of	 the
system,	 and	 during	 an	 infinitesimal	 time	 interval	 at	 a	 given	 instant	 the	 time
average	of	the	motion	of	the	particle	forms	the	effective	mass	and	charge	density
in	 every	 position,	 which	 is	 proportional	 to	 the	 modulus	 square	 of	 the	 wave
function	of	 the	system	there.	Since	 the	 integral	of	 the	formed	mass	and	charge
density	 in	 any	 region	 is	 equal	 to	 the	 expectation	 value	 of	 the	 total	 mass	 and
charge	in	the	region,	the	motion	of	the	particle	is	ergodic.
The	next	question	is	which	sort	of	ergodic	motion	the	particle	undergoes.	It	can
be	argued	that	the	classical	ergodic	models,	which	assume	continuous	motion	of
particles,	are	 inconsistent	with	quantum	mechanics,	and	 the	effective	mass	and
charge	 density	 of	 a	 quantum	 system	 is	 formed	 by	 discontinuous	 motion	 of	 a



localized	particle	with	mass	and	charge.	Moreover,	 the	discontinuous	motion	is
not	 deterministic	 but	 random.	 Based	 on	 this	 result,	 we	 suggest	 that	 the	 wave
function	 in	 quantum	 mechanics	 describes	 the	 state	 of	 random	 discontinuous
motion	 of	 particles,	 and	 at	 a	 deeper	 level,	 it	 represents	 the	 property	 of	 the
particles	 that	 determines	 their	 random	 discontinuous	motion.	 In	 particular,	 the
modulus	 square	 of	 the	 wave	 function	 (in	 position	 space)	 determines	 the
probability	density	of	the	particles	appearing	in	certain	positions	in	real	space.	In
the	 following,	we	will	give	a	 full	exposition	of	 this	suggested	 interpretation	of
the	wave	function.
2.1	Standard	quantum	mechanics	and	conventional	measurements
The	standard	formulation	of	quantum	mechanics,	which	was	first	developed	by
Dirac	and	von	Neumann,	is	based	on	the	following	four	basic	principles.

1.	Physical	states

The	state	of	a	physical	system	is	represented	by	a	normalized	wave	function	or
unit	 vector	 |ψ(t)>	 in	 a	 Hilbert	 space[2].	 The	 Hilbert	 space	 is	 complete	 in	 the
sense	 that	every	possible	physical	 state	can	be	 represented	by	a	 state	vector	 in
the	space.

2.	Physical	properties

Every	measurable	property	or	observable	of	a	physical	system	is	represented	by
a	Hermitian	operator	on	the	Hilbert	space	associated	with	the	system.	A	physical
system	 has	 a	 determinate	 value	 for	 an	 observable	 if	 and	 only	 if	 it	 is	 in	 an
eigenstate	of	the	observable	(this	is	often	called	the	eigenvalue-eigenstate	link).

3.	Composition	rule

The	Hilbert	 space	 associated	with	 a	 composite	 system	 is	 the	 tensor	product	of
the	 Hilbert	 spaces	 associated	 with	 the	 systems	 of	 which	 it	 is	 composed.
Similarly,	the	Hilbert	space	associated	with	independent	properties	is	the	tensor
product	of	the	Hilbert	spaces	associated	with	each	property.

4.	Evolution	law



(1).	Linear	evolution
The	state	of	a	physical	 system	 |ψ(t)>	obeys	 the	 linear	Schrödinger	equation	 i∂|
ψ(t)>/∂t=H|ψ(t)>	(when	it	is	not	measured),	where	H	is	the	Hamiltonian	operator
that	depends	on	the	energy	properties	of	the	system.
(2).	Nonlinear	collapse	evolution
If	 a	 physical	 system	 is	 in	 a	 quantum	 superposition	 of	 the	 eigenstates	 of	 an
observable	 A,	 i.e.,	 |ψ>=Σici|ai>,	 then	 an	 (impulse)	 measurement	 of	 the
observable	A	will	 instantaneously,	 discontinuously,	 and	 randomly	 collapse	 the
state	 into	 one	 of	 the	 eigenstates	 |ai>	 with	 probability	 |ci|2.[3]	 This	 is	 usually
called	 the	 collapse	postulate,	 and	 the	nonlinear	 stochastic	 process	 is	 called	 the
reduction	of	the	state	vector	or	the	collapse	of	the	wave	function.
The	link	between	the	mathematical	formalism	and	experiment	is	provided	by	the
Born	 rule.	 It	 says	 that	 the	 probability	 of	 the	 above	 measurement	 of	 the
observable	A	yielding	the	result	ai	is	|ci|2.	Note	that	the	Born	rule	can	be	derived
from	the	collapse	postulate	by	resorting	to	the	eigenvalue-eigenstate	link,	but	it
does	 not	 necessarily	 depend	 on	 the	 postulate.	Different	 from	 the	 controversial
collapse	postulate,	the	Born	rule	has	been	confirmed	by	precise	experiments	and
is	an	established	part	of	quantum	mechanics.
The	 conventional	 impulse	measurements	 can	be	 further	 formulated	 as	 follows.
According	to	the	standard	von	Neumann	procedure,	measuring	an	observable	A
in	a	quantum	state	|ψ>	involves	an	interaction	Hamiltonian
HI	=	g(t)PA	(2.1)
coupling	the	measured	system	to	an	appropriate	measuring	device,	where	P	is	the
conjugate	 momentum	 of	 the	 pointer	 variable.	 The	 time-dependent	 coupling
strength	g(t)	is	a	smooth	function	normalized	to	∫dtg(t)	=	1	during	the	interaction
interval	τ,	and	g(0)	=	g(τ)	=	0.	The	initial	state	of	the	pointer	is	supposed	to	be	a
Gaussian	wave	 packet	 of	width	w0	 centered	 at	 initial	 position	 0,	 denoted	 by	 |
φ(0)>	.
For	an	impulse	measurement,	the	interaction	HI	is	of	very	short	duration	and	so
strong	 that	 it	 dominates	 the	 rest	 of	 the	Hamiltonian	 (i.e.	 the	 effect	 of	 the	 free
Hamiltonians	 of	 the	 measuring	 device	 and	 the	 measured	 system	 can	 be
neglected).	Then	the	state	of	 the	combined	system	at	 the	end	of	 the	 interaction
can	be	written	as

By	expanding	|ψ	in	the	eigenstates	of	A,	|ai	,	we	obtain



where	ci	are	the	expansion	coefficients.	The	exponential	term	shifts	the	center	of
the	pointer	by	ai:

This	 is	 an	 entangled	 state,	where	 the	 eigenstates	 of	A	with	 eigenvalues	 ai	 get
correlated	 to	 measuring	 device	 states	 in	 which	 the	 pointer	 is	 shifted	 by	 these
values	ai	(but	the	width	of	the	pointer	wavepacket	is	not	changed).	Then	by	the
collapse	postulate,	the	state	will	instantaneously	and	randomly	collapse	into	one
of	its	branches	|ai>|φ(ai)>	with	probability	|ci|2.	This	means	that	the	measurement
result	can	only	be	one	of	the	eigenvalues	of	measured	observable	A,	say	ai,	with
a	 certain	 probability	 |ci|2.	 The	 expectation	 value	 of	 A	 is	 then	 obtained	 as	 the
statistical	average	of	eigenvalues	 for	an	ensemble	of	 identical	 systems,	namely
<A>	=Σi|ci|2ai.
2.2	Weak	measurements
The	 conventional	 impulse	 measurements	 are	 only	 one	 kind	 of	 quantum
measurements,	for	which	the	coupling	between	measured	system	and	measuring
device	 is	 very	 strong,	 and	 thus	 the	 results	 are	 the	 eigenvalues	 of	 measured
observable.	In	fact,	we	can	also	obtain	other	kinds	of	measurements	by	adjusting
the	coupling	strength.	An	interesting	example	is	weak	measurements	(Aharonov,
Albert	and	Vaidman	1988),	for	which	the	measurement	result	is	the	expectation
value	 of	 the	measured	 observable.	 In	 this	 section,	we	will	 introduce	 the	 basic
principle	of	weak	measurements.
A	 weak	 measurement	 is	 a	 standard	 measuring	 procedure	 with	 weakened
coupling.	As	 in	 the	conventional	 impulse	measurement,	 the	Hamiltonian	of	 the
interaction	 with	 the	 measuring	 device	 is	 also	 given	 by	 Eq.	 (2.1)	 in	 a	 weak
measurement.	 The	 weakness	 of	 the	 interaction	 is	 achieved	 by	 preparing	 the
initial	state	of	the	measuring	device	in	such	a	way	that	the	conjugate	momentum
of	the	pointer	variable	is	localized	around	zero	with	small	uncertainty,	and	thus
the	interaction	Hamiltonian	(2.1)	is	small[4].	The	explicit	form	of	the	initial	state
of	the	pointer	in	position	space	is:

The	corresponding	initial	probability	distribution	is



Expanding	 the	 initial	 state	 of	 the	 system	 |ψ>	 in	 the	 eigenstates	 |ai>	 of	 the
measured	observable	A,	|ψ>=Σici|ai>,	then	after	the	interaction	(2.1)	the	state	of
the	system	and	the	measuring	device	is:

The	 probability	 distribution	 of	 the	 pointer	 variable	 corresponding	 to	 the	 final
state	(2.7)	is:

In	 case	of	 a	 conventional	 impulse	measurement,	 this	 is	 a	weighted	 sum	of	 the
initial	probability	distribution	localized	around	various	eigenvalues	ai.	Therefore,
the	reading	of	the	pointer	variable	in	the	end	of	the	measurement	always	yields
the	 value	 close	 to	 one	 of	 the	 eigenvalues.	 By	 contrast,	 the	 limit	 of	 weak
measurement	corresponds	to	w0>>ai	for	all	eigenvalues	ai.	Then,	we	can	perform
the	 Taylor	 expansion	 of	 the	 sum	 (2.8)	 around	 x	 =	 0	 up	 to	 the	 first	 order	 and
rewrite	the	final	probability	distribution	of	the	pointer	variable	in	the	following
way:

This	 is	 the	 initial	 probability	 distribution	 shifted	 by	 the	 value	 Σi|ci|2ai.	 This
indicates	that	the	result	of	the	weak	measurement	is	the	expectation	value	of	the
measured	observable	in	the	measured	state:

Certainly,	 since	 the	width	 of	 the	 pointer	wavepacket	 is	much	 greater	 than	 the
shift	of	the	center	of	the	pointer,	namely	w0>>A	,	the	above	weak	measurement

of	 a	 single	 system	 is	 very	 imprecise[5].	 However,	 by	 performing	 the	 weak
measurement	 on	 an	 ensemble	 of	 N	 identical	 systems	 the	 precision	 can	 be
improved	by	a	factor	√N.	This	scheme	of	weak	measurement	has	been	realized
and	proved	useful	 in	quantum	optical	experiments	 (see,	e.g.	Hosten	and	Kwiat



2008).
Although	 weak	 measurements,	 like	 conventional	 impulse	 measurements,	 also
need	 to	 measure	 an	 ensemble	 of	 identical	 quantum	 systems,	 they	 are
conceptually	different.	For	conventional	impulse	measurements,	every	identical
system	 in	 the	 ensemble	 shifts	 the	 pointer	 of	 measuring	 device	 by	 one	 of	 the
eigenvalues	 of	 the	 measured	 observable,	 and	 the	 expectation	 value	 of	 the
observable	is	then	regarded	as	the	property	of	the	whole	ensemble.	By	contrast,
for	weak	measurements,	every	identical	system	in	the	ensemble	shifts	the	pointer
of	 measuring	 device	 directly	 by	 the	 expectation	 value	 of	 the	 measured
observable,	 and	 thus	 the	expectation	value	may	be	 regarded	as	 the	property	of
individual	systems.
2.3	Protective	measurements
Protective	measurements	are	 improved	methods	based	on	weak	measurements,
and	they	can	measure	the	expectation	values	of	observables	on	a	single	quantum
system	without	disturbing	its	state.
As	we	have	seen	above,	although	the	measured	state	is	not	changed	appreciably
by	 a	 weak	 measurement,	 the	 pointer	 of	 the	 measuring	 device	 hardly	 moves
either,	and	in	particular,	its	shift	due	to	the	measurement	is	much	smaller	than	its
position	uncertainty,	and	thus	little	information	can	be	obtained	from	individual
measurements.	A	possible	way	to	remedy	the	weakness	of	weak	measurements	is
to	 increase	 the	 time	 of	 the	 coupling	 between	 the	 measured	 system	 and	 the
measuring	 device.	 If	 the	 state	 is	 almost	 constant	 during	 the	measurement,	 the
total	shift	of	the	pointer,	which	is	proportional	to	the	duration	of	the	interaction,
will	be	large	enough	to	be	identified.	However,	under	normal	circumstances	the
state	 of	 the	 system	 is	 not	 constant	 during	 the	 measurement,	 and	 the	 weak
coupling	also	leads	to	a	small	rate	of	change	of	the	state.	As	a	result,	the	reading
of	 the	measuring	device	will	correspond	not	 to	 the	state	which	 the	system	had
prior	to	the	measurement,	but	to	some	time	average	depending	on	the	evolution
of	the	state	influenced	by	the	measuring	procedure.
Therefore,	in	order	to	be	able	to	measure	the	state	of	a	single	system,	we	need,	in
addition	 to	 the	 standard	 weak	 and	 long-duration	 measuring	 interaction,	 a
procedure	 which	 can	 protect	 the	 state	 from	 changing	 during	 the	 measuring
interaction.	 A	 general	 method	 is	 to	 let	 the	 measured	 system	 be	 in	 a
nondegenerate	 eigenstate	 of	 the	whole	Hamiltonian	 using	 a	 suitable	 protective
interaction,	and	then	make	the	measurement	adiabatically	so	that	the	state	of	the
system	 neither	 collapses	 nor	 becomes	 entangled	 with	 the	 measuring	 device
appreciably.	 In	 this	 way,	 protective	measurement	 can	measure	 the	 expectation
values	 of	 observables	 on	 a	 single	 quantum	 system.	 In	 the	 following,	 we	 will
introduce	the	principle	of	protective	measurement	in	more	detail	(Aharonov	and



Vaidman	1993;	Aharonov,	Anandan	and	Vaidman	1993;	Aharonov,	Anandan	and
Vaidman	1996)[6].
2.3.1	Measurements	with	natural	protection
As	a	typical	example,	we	consider	a	quantum	system	in	a	discrete	nondegenerate
energy	eigenstate	|En>.	 In	 this	case,	 the	system	itself	supplies	 the	protection	of
the	state	due	to	energy	conservation	and	no	artificial	protection	is	needed.
The	interaction	Hamiltonian	for	a	protective	measurement	of	an	observable	A	in
this	 state	 involves	 the	 same	 interaction	Hamiltonian	as	 the	 standard	measuring
procedure:
HI	=	g(t)PA,	(2.11)
where	P	is	the	momentum	conjugate	to	the	pointer	variable	X	of	an	appropriate
measuring	device.	Let	the	initial	state	of	the	pointer	at	t	=	0	be	|φ(x0)>	,	which	is
a	Gaussian	wave	packet	of	eigenstates	of	X	with	width	w0,	centered	around	the
eigenvalue	 x0.	 The	 time-dependent	 coupling	 strength	 g(t)	 is	 also	 a	 smooth
function	 normalized	 to	 ∫dtg(t)	 =	 1.	 But	 different	 from	 conventional	 impulse
measurements,	 where	 the	 interaction	 is	 very	 strong	 and	 almost	 instantaneous,
protective	measurements	make	use	of	the	opposite	limit	where	the	interaction	of
the	measuring	device	with	 the	 system	 is	weak	and	adiabatic,	 and	 thus	 the	 free
Hamiltonians	cannot	be	neglected.	Let	the	Hamiltonian	of	the	combined	system
be
H(t)	=	HS	+	HD	+	g(t)PA,	(2.12)
where	 HS	 and	 HD	 are	 the	 Hamiltonians	 of	 the	 measured	 system	 and	 the
measuring	device,	respectively.	The	interaction	lasts	for	a	long	time	T	,	and	g(t)
is	very	small	and	constant	for	the	most	part,	and	it	goes	to	zero	gradually	before
and	after	the	interaction.
The	state	of	the	combined	system	after	T	is	given	by

By	 ignoring	 the	 switching	 on	 and	 switching	 off	 processes[7],	 the	 full
Hamiltonian	(with	g(t)	=	1/T	)	is	time-independent







time.	For	example,	the	kinematic	energy	term	P2/2M	in	the	free	Hamiltonian	of
the	pointer	will	spread	the	wave	packet	without	shifting	the	center,	and	the	width
of	 the	 wave	 packet	 at	 the	 end	 of	 interaction	 will	 be	 w(T	 )	 =[1/2(w0

2	 +
T2/M2w0

2)]1/2	 (Dass	and	Qureshi	1999).	However,	 the	spreading	of	 the	pointer
wave	packet	can	be	made	as	small	as	possible	by	increasing	the	mass	M	of	the
pointer,	and	thus	it	will	not	interfere	with	resolving	the	shift	of	the	center	of	the
pointer	in	principle[8].
2.3.2	Measurements	with	artificial	protection
Protective	 measurements	 can	 not	 only	 measure	 the	 discrete	 nondegenerate
energy	eigenstates	of	a	single	quantum	system,	which	are	naturally	protected	by
energy	conservation,	but	also	measure	the	general	quantum	states	by	adding	an



artificial	 protection	 procedure	 in	 principle	 (Aharonov	 and	Vaidman	1993).	 For
this	case,	the	measured	state	needs	to	be	known	beforehand	in	order	to	arrange	a
proper	protection.
For	degenerate	energy	eigenstates,	the	simplest	way	is	to	add	a	potential	(as	part
of	the	measuring	procedure)	to	change	the	energies	of	the	other	states	and	lift	the
degeneracy.	Then	 the	measured	 state	 remains	unchanged,	but	 is	now	protected
by	 energy	 conservation	 like	 nondegenerate	 energy	 eigenstates.	 Although	 this
protection	does	not	change	the	state,	it	does	change	the	physical	situation.	This
change	can	be	brought	to	a	minimum	by	adding	strong	protection	potential	for	a
dense	set	of	very	short	time	intervals.	Then	most	of	the	time	the	system	has	not
only	the	same	state,	but	also	the	original	potential.
The	superposition	of	energy	eigenstates	can	be	measured	by	a	similar	procedure.
One	 can	 add	 a	 dense	 set	 of	 time-dependent	 potentials	 acting	 for	 very	 short
periods	 of	 time	 such	 that	 the	 state	 at	 all	 these	 times	 is	 the	 nondegenerate
eigenstate	of	 the	Hamiltonian	together	with	the	additional	potential.	Then	most
of	 the	 time	 the	system	also	evolves	under	 the	original	Hamiltonian.	A	stronger
protection	is	needed	in	order	to	measure	all	details	of	the	time-dependent	state.
The	 simplest	 way	 is	 via	 the	 quantum	 Zeno	 effect.	 The	 frequent	 impulse
measurements	can	test	and	protect	the	time	evolution	of	the	quantum	state.	For
measurement	 of	 any	 desired	 accuracy	 of	 the	 state,	 there	 is	 a	 density	 of	 the
impulse	measurements	which	can	protect	the	state	from	being	changed	due	to	the
measuring	 interaction.	 When	 the	 time	 scale	 of	 intervals	 between	 consecutive
protections	is	much	smaller	than	the	time	scale	of	the	original	state	evolution,	the
system	will	evolve	according	 to	 its	original	Hamiltonian	most	of	 the	 time,	and
thus	what’s	measured	is	still	the	property	of	the	system	and	not	of	the	protection
procedure	(Aharonov	and	Vaidman	1993).
Lastly,	it	is	worth	noting	that	the	scheme	of	protective	measurement	can	also	be
extended	 to	 a	 many-particle	 system	 (Anandan	 1993).	 If	 the	 system	 is	 in	 a
product	state,	then	this	is	easily	done	by	protectively	measuring	each	state	of	the
individual	 systems.	But	 this	 is	 impossible	when	 the	 system	 is	 in	 an	 entangled
state	because	neither	particle	is	then	in	a	unique	state	that	can	be	protected.	If	a
protective	measurement	 is	made	 only	 on	 one	 of	 the	 particles,	 then	 this	would
also	 collapse	 the	 entangled	 state	 into	 one	 of	 the	 eigenstates	 of	 the	 protecting
Hamiltonian.	The	right	method	is	by	adding	appropriate	protection	procedure	to
the	whole	system	so	that	the	entangled	state	is	a	nondegenerate	eigenstate	of	the
total	 Hamiltonian	 of	 the	 system	 together	 with	 the	 added	 potential.	 Then	 the
entangled	state	can	be	protectively	measured.	Note	that	the	additional	protection
usually	 contains	 a	 nonlocal	 interaction	 for	 separated	 particles.	 However,	 this
measurement	may	be	performed	without	violating	Einstein	causality	by	having



the	 entangled	 particles	 sufficiently	 close	 to	 each	 other	 so	 that	 they	 have	 this
protective	interaction.	Then	when	the	particles	are	separated	they	would	still	be
in	the	same	entangled	state	which	has	been	protectively	measured.
2.3.3	Further	discussions
According	to	the	standard	view,	the	expectation	values	of	observables	are	not	the
physical	 properties	 of	 a	 single	 system,	 but	 the	 statistical	 properties	 of	 an
ensemble	 of	 identical	 systems.	 This	 seems	 reasonable	 if	 there	 exist	 only
conventional	 impulse	measurements.	An	 impulse	measurement	can	only	obtain
one	 of	 the	 eigenvalues	 of	 the	 measured	 observable,	 and	 thus	 the	 expectation
value	 can	 only	 be	 defined	 as	 a	 statistical	 average	 of	 the	 eigenvalues	 for	 an
ensemble	of	identical	systems.	However,	as	we	have	seen,	there	exist	other	kinds
of	 quantum	 measurements,	 and	 in	 particular,	 protective	 measurements	 can
measure	 the	 expectation	 values	 of	 observables	 for	 a	 single	 system,	 using	 an
adiabatic	measuring	procedure.	Therefore,	the	expectation	values	of	observables
should	be	considered	as	the	physical	properties	of	a	single	quantum	system,	not
those	 of	 an	 ensemble	 (Aharonov	 and	Vaidman	 1993;	Aharonov,	Anandan	 and
Vaidman	1993;	Aharonov,	Anandan	and	Vaidman	1996)[9].
It	 is	 worth	 pointing	 out	 that	 a	 realistic	 protective	 measurement	 (where	 the
measuring	time	T	is	finite)	can	never	be	performed	on	a	single	quantum	system
with	absolute	certainty	because	of	the	tiny	unavoidable	entanglement	in	the	final
state	(e.g.	Eq.(2.17))[10].	For	example,	we	can	only	obtain	the	exact	expectation
value	A	with	 a	probability	very	 close	 to	one,	 and	 the	measurement	 result	may
also	be	the	expectation	value	A⊥	with	a	probability	proportional	to	1/T2,	where
⊥	 refers	 to	 the	 normalized	 state	 in	 the	 subspace	 normal	 to	 the	 initial	 state	 as
picked	 out	 by	 the	 first-order	 perturbation	 theory	 (Dass	 and	 Qureshi	 1999).
Therefore,	 a	 small	 ensemble	 is	 still	 needed	 for	 a	 realistic	 protective
measurement,	 and	 the	 size	 of	 the	 ensemble	 is	 in	 inverse	 proportion	 to	 the
duration	 of	 measurement.	 However,	 the	 limitation	 of	 a	 realistic	 protective
measurement	does	not	 influence	 the	 above	 conclusion.	The	key	point	 is	 that	 a
protective	measurement	can	measure	the	expectation	values	of	observables	on	a
single	quantum	system	with	certainty	in	principle,	using	an	adiabatic	measuring
procedure,	 and	 thus	 they	 should	 be	 regarded	 as	 the	 physical	 properties	 of	 the
system.
In	 addition,	 we	 can	 also	 provide	 an	 argument	 against	 the	 standard	 view,
independent	of	our	analysis	of	protective	measurement.	First	of	all,	although	the
expectation	 values	 of	 observables	 can	 only	 be	 obtained	 by	 measuring	 an
ensemble	 of	 identical	 systems	 in	 the	 context	 of	 conventional	 impulse
measurements,	 this	 fact	 does	 not	 necessarily	 entails	 that	 they	 can	 only	 be	 the



statistical	 properties	 of	 the	 ensemble.	Next,	 if	 each	 system	 in	 the	 ensemble	 is
indeed	identical	as	the	standard	view	holds	(this	means	that	the	quantum	state	is
a	complete	description	of	a	single	system),	then	obviously	the	expectation	values
of	 observables	 will	 be	 also	 the	 properties	 of	 each	 individual	 system	 in	 the
ensemble.	Thirdly,	even	if	 the	quantum	state	 is	not	a	complete	description	of	a
single	system	and	hidden	variables	are	added	as	in	the	de	Broglie-Bohm	theory
(de	Broglie	1928;	Bohm	1952),	the	quantum	state	of	each	system	in	an	ensemble
of	 identical	 systems	 is	 still	 the	 same,	 and	 thus	 the	 expectation	 values	 of
observables,	 which	 are	 calculated	 in	 terms	 of	 the	 quantum	 state,	 are	 also	 the
same	 for	 every	 system	 in	 the	 ensemble.	As	 a	 result,	 the	 expectation	 values	 of
observables	can	still	be	regarded	as	the	properties	of	individual	systems.
Lastly,	 we	 stress	 that	 the	 expectation	 values	 of	 observables	 are	 instantaneous
properties	 of	 a	 quantum	 system	 (Aharonov,	 Anandan	 and	 Vaidman	 1996).
Although	 the	 measured	 state	 may	 be	 unchanged	 during	 a	 protective
measurement	 and	 the	 duration	 of	 measurement	 may	 be	 very	 long,	 for	 an
arbitrarily	short	period	of	time	the	measuring	device	always	shifts	by	an	amount
proportional	 to	 the	 expectation	 value	 of	 the	measured	 observable	 in	 the	 state.
Therefore,	 the	 expectation	 values	 of	 observables	 are	 not	 time-averaged
properties	of	a	quantum	system	during	a	finite	period	of	time,	but	instantaneous
properties	of	the	system.
2.4	How	does	the	mass	and	charge	of	a	quantum	system	distribute?
The	fundamental	assumption	 is	 that	 the	space	density	of	electricity	 is	given	by
the	square	of	the	wavefunction.	—	Erwin	Schrödinger,	1926[11]
According	 to	 protective	 measurement,	 the	 expectation	 values	 of	 dynamical
variables	 are	properties	of	 a	 single	quantum	system.	Typical	 examples	of	 such
properties	are	the	mass	and	charge	density	of	a	quantum	system.	In	this	section,
we	will	 present	 a	 detailed	 analysis	 of	 this	 property,	 as	 it	 may	 have	 important
implications	for	the	physical	meaning	of	the	wave	function.
2.4.1	A	heuristic	argument
The	mass	and	charge	of	a	classical	system	always	localize	in	a	definite	position
in	space	at	each	moment.	For	a	charged	quantum	system	described	by	the	wave
function	ψ(x,	 t),	 how	do	 its	mass	 and	 charge	distribute	 in	 space	 then?	We	can
measure	 the	 total	mass	 and	 charge	of	 the	quantum	system	by	 the	gravitational
and	electromagnetic	interactions	and	find	them	in	some	region	of	space.	Thus	it
seems	 that	 the	mass	 and	 charge	of	 a	 quantum	 system	must	 also	 exist	 in	 space
with	 a	 certain	 distribution.	 Before	 we	 discuss	 the	 answer	 given	 by	 protective
measurement,	we	will	first	give	a	heuristic	argument.
The	 Schrödinger	 equation	 of	 a	 charged	 quantum	 system	 under	 an	 external



electromagnetic	 potential	 may	 provide	 a	 clue	 to	 the	 answer.	 The	 equation	 is	

where	m	and	Q	are	the	mass	and	charge	of	the	system,	respectively,	ϕ	and	A	are
the	 electromagnetic	 potential,	 and	 c	 is	 the	 speed	 of	 light.	 The	 electrostatic
interaction	term	Qϕψ(x,	t)	in	the	equation	indicates	that	the	interaction	exists	in
all	regions	where	the	wave	function	of	the	system,	ψ(x,	t),	is	nonzero,	and	thus	it
seems	to	suggest	that	the	charge	of	the	system	also	distributes	throughout	these
regions.	 If	 the	 charge	 does	 not	 distribute	 in	 some	 regions	 where	 the	 wave
function	 is	 nonzero,	 then	 there	will	 not	 exist	 an	 electrostatic	 interaction	 there.
Furthermore,	since	the	integral	∫Q|ψ(x,	t)|2d3x	is	 the	 total	charge	of	 the	system,
the	 charge	 density	 in	 space,	 if	 indeed	 exists,	will	 be	Q|ψ(x,	 t)|2.	 Similarly,	 the
mass	 density	 can	 be	 obtained	 from	 the	 Schrödinger	 equation	 of	 a	 quantum
system	under	an	external	gravitational	potential:

The	gravitational	interaction	term	mVGψ(x,	t)	in	the	equation	also	suggests	that
the	(passive	gravitational)	mass	of	the	quantum	system	distributes	throughout	the
whole	region	where	its	wave	function	ψ(x,	t)	is	nonzero,	and	the	mass	density	in
space	is	m|ψ(x,	t)|2.
2.4.2	The	answer	of	protective	measurement
In	 the	 following,	 we	 will	 show	 that	 protective	 measurement	 provides	 a	 more
convincing	argument	for	the	existence	of	mass	and	charge	density.	The	mass	and
charge	density	of	a	single	quantum	system,	as	well	as	its	wave	function,	can	be
measured	 by	 protective	 measurement	 as	 expectation	 values	 of	 certain
observables	 (Aharonov	 and	 Vaidman	 1993).	 For	 example,	 a	 protective
measurement	of	the	flux	of	the	electric	field	of	a	charged	quantum	system	out	of
a	certain	region	will	yield	the	expectation	value	of	its	charge	inside	this	region,
namely	the	integral	of	its	charge	density	over	this	region.	Similarly,	we	can	also
measure	the	mass	density	of	a	quantum	system	by	a	protective	measurement	of
the	flux	of	its	gravitational	field	in	principle	(Anandan	1993).
Consider	a	quantum	system	in	a	discrete	nondegenerate	energy	eigenstate	ψ(x).
We	take	the	measured	observable	An	to	be	(normalized)	projection	operators	on
small	spatial	regions	Vn	having	volume	vn:



The	protective	measurement	of	An	then	yields

where	|ψn|2	is	the	average	of	the	density	ρ(x)	=	|ψ(x)|2	over	the	small	region	Vn.
Then	 when	 vn→	 0	 and	 after	 performing	 measurements	 in	 sufficiently	 many
regions	Vn	we	can	measure	ρ(x)	everywhere	in	space.
Since	 the	 physical	 realization	 of	 the	 observable	 An	 and	 the	 corresponding
interaction	 Hamiltonian	 must	 always	 resort	 to	 the	 electromagnetic	 or
gravitational	interaction	between	the	measured	system	and	the	measuring	device,
what	 the	above	protective	measurement	measures	 is	 in	 fact	 the	charge	or	mass
density	 of	 the	 quantum	 system[12],	 and	 its	 result	 indicates	 that	 the	 mass	 and
charge	density	is	proportional	to	the	modulus	square	of	the	wave	function	of	the
system,	 namely	 the	 density	 ρ(x).	 In	 the	 following,	 we	 will	 give	 a	 concrete
example	 to	 illustrate	 this	 important	 result	 (see	 also	 Aharonov,	 Anandan	 and
Vaidman	1993).
2.4.3	A	specific	example
Consider	 the	 spatial	 wave	 function	 of	 a	 single	 quantum	 system	with	 negative
charge	Q	(e.g.	Q	=	-e)
ψ(x,	t)	=	aψ1(x,	t)	+	bψ2(x,	t),	(2.27)
where	 ψ1(x,	 t)	 and	 ψ2(x,	 t)	 are	 two	 normalized	 wave	 functions	 respectively
localized	in	their	ground	states	in	two	small	 identical	boxes	1	and	2,	and	 |a|2	+
|b|2	 =	 1.	An	 electron,	which	 initial	 state	 is	 a	Gaussian	wave	 packet	 narrow	 in
both	 position	 and	 momentum,	 is	 shot	 along	 a	 straight	 line	 near	 box	 1	 and
perpendicular	 to	 the	 line	 of	 separation	 between	 the	 boxes.	 The	 electron	 is
detected	on	a	screen	after	passing	by	box	1.	Suppose	the	separation	between	the
boxes	is	large	enough	so	that	a	charge	Q	in	box	2	has	no	observable	influence	on
the	electron.	Then	if	the	system	were	in	box	2,	namely	|a|2	=	0,	the	trajectory	of
the	electron	wave	packet	would	be	a	straight	line	as	indicated	by	position	“0”	in
Fig.1.	By	contrast,	if	the	system	were	in	box	1,	namely	|a|2	=	1,	the	trajectory	of
the	electron	wave	packet	would	be	deviated	by	the	electric	field	of	the	system	by
a	maximum	amount	as	indicated	by	position	“1”	in	Fig.1.
We	 first	 suppose	 that	 ψ(x,	 t)	 is	 unprotected,	 then	 the	 wave	 function	 of	 the



combined	system	after	interaction	will	be
ψ(x,	x	,	t)	=	aϕ1(x	,	t)ψ1(x,	t)	+	bϕ2(x	,	t)ψ2(x,	t),	(2.28)
where	ϕ1(x	,	t)	and	ϕ2(x	,	t)	are	the	wave	functions	of	the	electron	influenced	by
the	electric	fields	of	the	system	in	box	1	and	box	2,	respectively,	the	trajectory	of
ϕ1(x	,	t)	is	deviated	by	a	maximum	amount,	and	the	trajectory	of	ϕ2(x	,	t)	is	not
deviated	and	still	a	straight	line.	When	the	electron	is	detected	on	the	screen,	the
above	wave	 function	will	 collapse	 to	ϕ1(x	 ,	 t)ψ1(x,	 t)	 or	ϕ2(x	 ,	 t)ψ2(x,	 t).	As	 a
result,	 the	 detected	 position	 of	 the	 electron	will	 be	 either	 “1”	 or	 “0”	 in	 Fig.1,
indicating	 that	 the	 system	 is	 in	 box	 1	 or	 2	 after	 the	 detection.	 This	 is	 a
conventional	 impulse	 measurement	 of	 the	 projection	 operator	 on	 the	 spatial
region	 of	 box	 1,	 denoted	 by	A1.	 A1	 has	 two	 eigenstates	 corresponding	 to	 the
system	being	in	box	1	and	2,	respectively,	and	the	corresponding	eigenvalues	are
1	 and	 0,	 respectively.	 Since	 the	 measurement	 is	 accomplished	 through	 the
electrostatic	interaction	between	two	charges,	the	measured	observable	A1,	when
multiplied	 by	 the	 charge	 Q,	 is	 actually	 the	 observable	 for	 the	 charge	 of	 the
system	in	box	1,	and	its	eigenvalues	are	Q	and	0,	corresponding	to	the	charge	Q
being	 in	 boxes	 1	 and	 2,	 respectively.	 Such	 a	 measurement	 cannot	 tell	 us	 the
charge	distribution	of	the	system	in	each	box	before	the	measurement.



Fig.1	Scheme	of	a	protective	measurement	of	 the	charge	density	of	a	quantum
system
Now	let’s	make	a	protective	measurement	of	A1.	Since	ψ(x,	t)	is	degenerate	with
its	 orthogonal	 state	 ψ	 (x,	 t)	 =	 b∗ψ1(x,	 t)−a∗ψ2(x,	 t),	 we	 need	 an	 artificial
protection	procedure	to	remove	the	degeneracy,	e.g.	joining	the	two	boxes	with	a
long	tube	whose	diameter	is	small	compared	to	the	size	of	the	box[13].	By	this
protection	 ψ(x,	 t)	 will	 be	 a	 nondegenerate	 energy	 eigenstate.	 The	 adiabaticity
condition	 and	 the	 weakly	 interacting	 condition,	 which	 are	 required	 for	 a
protective	 measurement,	 can	 be	 further	 satisfied	 when	 assuming	 that	 (1)	 the
measuring	time	of	the	electron	is	long	compared	to	/∆E,	where	∆E	is	the	smallest
of	 the	energy	differences	between	ψ(x,	 t)	and	 the	other	energy	eigenstates,	and
(2)	at	all	 times	the	potential	energy	of	 interaction	between	the	electron	and	the
system	is	small	compared	to	∆E.	Then	the	measurement	of	A1	by	means	of	the
electron	trajectory	is	a	protective	measurement,	and	the	trajectory	of	the	electron
is	only	influenced	by	the	expectation	value	of	the	charge	of	the	system	in	box	1.
In	 particular,	 when	 the	 size	 of	 box	 1	 can	 be	 ignored	 compared	 with	 the
separation	 between	 it	 and	 the	 electron	wave	 packet,	 the	wave	 function	 of	 the
electron	will	obey	the	following	Schrödinger	equation:

where	me	is	the	mass	of	electron,	k	is	the	Coulomb	constant,	r1	is	the	position	of
the	center	of	box	1,	and	|a|2Q	is	the	expectation	value	of	the	charge	Q	in	box	1.
Correspondingly,	 the	 trajectory	of	 the	center	of	 the	electron	wave	packet,	 rc(t),
will	satisfy	the	following	equation	by	Ehrenfest’s	theorem:

Then	 the	 electron	wave	packet	will	 reach	 the	position	 “	 |a|2”	 between	 “0”	 and
“1”	on	the	screen	as	denoted	in	Fig.1.	This	shows	that	the	result	of	the	protective
measurement	is	the	expectation	value	of	the	projection	operator	A1,	namely	the
integral	of	the	density	|ψ(x)|2	in	the	region	of	box	1.	When	multiplied	by	Q,	it	is
the	expectation	value	of	the	charge	Q	in	the	state	ψ1(x,	t)	in	box	1,	namely	the
integral	 of	 the	 charge	 density	 Q|ψ(x)|2	 in	 the	 region	 of	 box	 1.	 In	 fact,	 as	 Eq.
(2.29)	 and	 Eq.	 (2.30)	 clearly	 show,	 this	 is	 what	 the	 protective	 measurement
really	measures.



As	we	 have	 argued	 in	 the	 last	 section,	 the	 result	 of	 a	 protective	measurement
reflects	 an	 objective	 property	 of	 the	 measured	 system.	 Thus	 the	 result	 of	 the
above	protective	measurement,	namely	the	expectation	value	of	the	charge	Q	in
the	state	ψ1(x,	t),	|a|2Q,	will	reflect	the	actual	charge	distribution	of	the	system	in
box	1.	In	other	words,	the	result	indicates	that	there	exists	a	charge	|a|2Q	in	box
1.[14]	In	the	following,	we	will	give	another	two	arguments	for	this	conclusion.
First	of	all,	 let’s	analyze	 the	result	of	 the	protective	measurement.	Suppose	we
can	continuously	change	the	measured	state	from	|a|2	=	0	to	|a|2	=	1.	When	|a|2	=
0,	the	single	electron	will	reach	the	position	“0”	of	the	screen	one	by	one,	and	it
is	incontrovertible	that	no	charge	is	in	box	1.	When	|a|2	=	1,	the	single	electron
will	 reach	 the	 position	 “1”	 of	 the	 screen	 one	 by	 one,	 and	 it	 is	 also
incontrovertible	 that	 there	 is	 a	 charge	 Q	 in	 box	 1.	 Then	 when	 |a|2	 assumes	 a
numerical	 value	 between	 0	 and	 1	 and	 the	 single	 electron	 reaches	 the	 position
“|a|2”	between	“0”	and	“1”	on	the	screen	one	by	one,	the	results	should	similarly
indicate	that	there	is	a	charge	|a|2Q	in	the	box	by	continuity.	The	point	is	that	the
definite	deviation	of	the	trajectory	of	the	electron	will	reflect	that	there	exists	a
definite	 amount	 of	 charge	 in	 box	 1.[15]	Next,	 let’s	 analyze	 the	 equation	 that
determines	the	result	of	the	protective	measurement,	namely	Eq.	(2.30).	It	gives
a	more	direct	support	for	the	existence	of	a	charge	|a|2Q	in	box	1.	The	r.h.s	of	Eq.
(2.30)	 is	 the	 formula	 of	 the	 electric	 force	 between	 two	 charges	 located	 in
different	spatial	regions.	It	is	incontrovertible	that	e	is	the	charge	of	the	electron,
and	it	exists	in	the	position	r.	Then	|a|2Q	should	be	the	other	charge	that	exists	in
the	position	r1.	In	other	words,	there	exists	a	charge	|a|2Q	in	box	1.
In	conclusion,	protective	measurement	shows	that	a	quantum	system	with	mass
m	and	 charge	Q,	which	 is	 described	 by	 the	wave	 function	ψ(x,	 t),	 has	 a	mass
density	m|ψ(x,	t)|2	and	a	charge	density	Q|ψ(x,	t)|2,	respectively[16].
2.5	The	origin	of	mass	and	charge	density
We	 have	 argued	 that	 a	 charged	 quantum	 system	 has	mass	 and	 charge	 density
proportional	to	the	modulus	square	of	its	wave	function.	In	this	section,	we	will
further	investigate	the	physical	origin	of	the	mass	and	charge	density.	Is	it	real	or
only	effective?	As	we	will	see,	the	answer	may	provide	an	important	clue	to	the
physical	meaning	of	the	wave	function.
2.5.1	The	mass	and	charge	density	is	not	real
If	the	mass	and	charge	density	of	a	charged	quantum	system	is	real,	that	is,	if	the
densities	 at	 different	 locations	 exist	 at	 the	 same	 time,	 then	 there	 will	 exist
gravitational	and	electrostatic	self-interactions	of	the	density[17].



Interestingly,	 the	 Schrödinger-Newton	 equation,	which	was	 proposed	 by	Diosi
(1984)	and	Penrose	(1998),	just	describes	the	gravitational	self-interaction	of	the
mass	density.	The	equation	for	a	single	quantum	system	can	be	written	as

where	m	 is	 the	mass	 of	 the	 quantum	 system,	V	 is	 an	 external	 potential,	 G	 is
Newton’s	 gravitational	 constant.	 Much	 work	 has	 been	 done	 to	 study	 the
mathematical	properties	of	this	equation	(Moroz,	Penrose	and	Tod	1998;	Moroz
and	 Tod	 1999;	 Harrison,	 Moroz	 and	 Tod	 2003;	 Salzman	 2005).	 Several
experimental	 schemes	 have	 been	 also	 proposed	 to	 test	 its	 physical	 validity
(Salzman	and	Carlip	2006).	As	we	will	 see	below,	 although	 such	gravitational
self-interactions	cannot	yet	be	excluded	by	experiments[18],	the	existence	of	the
electrostatic	 self-interaction	 for	 a	 charged	 quantum	 system	 already	 contradicts
experimental	observations.
If	 there	 is	 also	 an	 electrostatic	 self-interaction,	 then	 the	 equation	 for	 a	 free
quantum	system	with	mass	m	and	charge	Q	will	be

Note	 that	 the	 gravitational	 self-interaction	 is	 attractive,	 while	 the	 electrostatic
self-interaction	is	repulsive.	It	has	been	shown	that	the	measure	of	the	potential
strength	of	the	gravitational	self-interaction	is	ε2	=	(4Gm2/hc)2	for	a	free	system
with	 mass	 m	 (Salzman	 2005).	 This	 quantity	 represents	 the	 strength	 of	 the
influence	of	 the	 self-interaction	on	 the	normal	 evolution	of	 the	wave	 function;
when	ε2≈	1	the	influence	is	significant.	Similarly,	for	a	free	charged	system	with
charge	 Q,	 the	 measure	 of	 the	 potential	 strength	 of	 the	 electrostatic	 self-
interaction	 is	 ε2	 =	 (4kQ2/hc)2.	 As	 a	 typical	 example,	 for	 a	 free	 electron	 the
potential	strength	of	the	electrostatic	self-interaction	will	be	ε2	=	(4ke2/hc)2	≈	1
×	 10−3.	 This	 indicates	 that	 the	 electrostatic	 self-interaction	 will	 have	 a
remarkable	 influence	 on	 the	 evolution	 of	 the	 wave	 function	 of	 a	 free
electron[19].	If	such	an	interaction	indeed	exists,	it	should	have	been	detected	by
precise	 interference	 experiments	 on	 electrons.	 On	 the	 other	 hand,	 the
superposition	principle	of	quantum	mechanics,	which	denies	the	existence	of	the
observable	 electrostatic	 self-interaction,	 has	 been	 verified	 for	 microscopic
particles	with	astonishing	precision.	As	another	example,	consider	the	electron	in



the	hydrogen	atom.	Since	 the	potential	of	 the	electrostatic	self-interaction	 is	of
the	 same	 order	 as	 the	Coulomb	 potential	 produced	 by	 the	 nucleus,	 the	 energy
levels	of	hydrogen	atoms	will	be	 remarkably	different	 from	those	predicted	by
quantum	mechanics	and	confirmed	by	experiments.	Therefore,	 the	electrostatic
self-interaction	cannot	exist	for	a	charged	quantum	system.
In	 conclusion,	 although	 the	 gravitational	 self-interaction	 is	 too	 weak	 to	 be
detected	presently,	the	existence	of	the	electrostatic	self-interaction	for	a	charged
quantum	 system	 such	 as	 an	 electron	 already	 contradicts	 experimental
observations.	 Accordingly,	 the	 mass	 and	 charge	 density	 of	 a	 quantum	 system
cannot	be	real	but	be	effective[20].	This	means	that	at	every	instant	there	is	only
a	 localized	particle	with	 the	 total	mass	and	charge	of	 the	system,	and	during	a
time	 interval	 the	 time	 average	 of	 the	 ergodic	motion	 of	 the	 particle	 forms	 the
effective	 mass	 and	 charge	 density[21].	 There	 exist	 no	 gravitational	 and
electrostatic	self-interactions	of	the	density	in	this	case.
2.5.2	The	ergodic	motion	of	a	particle	is	discontinuous
Which	 sort	 of	 ergodic	 motion	 then?	 If	 the	 ergodic	 motion	 of	 the	 particle	 is
continuous,	then	it	can	only	form	the	effective	mass	and	charge	density	during	a
finite	time	interval.	However,	the	mass	and	charge	density	of	a	particle,	which	is
proportional	 to	 the	 modulus	 square	 of	 its	 wave	 function,	 is	 an	 instantaneous
property	of	the	particle.	In	other	words,	the	ergodic	motion	of	the	particle	must
form	the	effective	mass	and	charge	density	during	an	infinitesimal	time	interval
(not	 during	 a	 finite	 time	 interval)	 at	 a	 given	 instant.	 Thus	 it	 seems	 that	 the
ergodic	motion	 of	 the	 particle	 cannot	 be	 continuous.	 This	 is	 at	 least	what	 the
existing	quantum	mechanics	says.	However,	there	may	exist	a	possible	loophole
here.	Although	the	classical	ergodic	models	that	assume	continuous	motion	are
inconsistent	 with	 quantum	mechanics	 due	 to	 the	 existence	 of	 a	 finite	 ergodic
time,	they	may	be	not	completely	precluded	by	experiments	if	only	the	ergodic
time	is	extremely	short.	After	all	quantum	mechanics	 is	only	an	approximation
of	 a	more	 fundamental	 theory	 of	 quantum	gravity,	 in	which	 there	may	 exist	 a
minimum	time	scale	such	as	the	Planck	time.	Therefore,	we	need	to	investigate
the	classical	ergodic	models	more	thoroughly.
Consider	 an	 electron	 in	 a	 one-dimensional	 box	 in	 the	 first	 excited	 state	 ψ(x)
(Aharonov	and	Vaidman	1993).	Its	wave	function	has	a	node	at	the	center	of	the
box,	where	its	charge	density	is	zero.	Assume	the	electron	performs	a	very	fast
continuous	motion	 in	 the	box,	and	during	a	very	short	 time	 interval	 its	motion
generates	an	effective	charge	density	distribution.	Let’s	see	whether	this	density
can	 assume	 the	 same	 form	 as	 e|ψ(x)|2,	 which	 is	 required	 by	 protective
measurement[22].	 Since	 the	 effective	 charge	 density	 is	 proportional	 to	 the



amount	of	time	the	electron	spends	in	a	given	position,	the	electron	must	be	in
the	left	half	of	the	box	half	of	the	time	and	in	the	right	half	of	the	box	half	of	the
time.	But	it	can	spend	no	time	at	the	center	of	the	box	where	the	effective	charge
density	 is	 zero;	 in	 other	words,	 it	must	move	 at	 infinite	 velocity	 at	 the	 center.
Certainly,	 the	 appearance	 of	 velocity	 faster	 than	 light	 or	 even	 infinite	 velocity
may	 be	 not	 a	 fatal	 problem,	 as	 our	 discussion	 is	 entirely	 in	 the	 context	 of
nonrelativistic	 quantum	mechanics,	 and	 especially	 the	 infinite	 potential	 in	 the
example	is	also	an	ideal	situation.	However,	it	seems	difficult	to	explain	why	the
electron	 speeds	 up	 at	 the	 node	 and	where	 the	 infinite	 energy	 required	 for	 the
acceleration	comes	from.	Moreover,	the	sudden	acceleration	of	the	electron	near
the	 node	may	 also	 result	 in	 large	 radiation	 (Aharonov,	Anandan	 and	Vaidman
1993),	which	is	inconsistent	with	the	predictions	of	quantum	mechanics.	Again,
it	seems	very	difficult	to	explain	why	the	accelerating	electron	does	not	radiate
here.
Let’s	further	consider	an	electron	in	a	superposition	of	two	energy	eigenstates	in
two	boxes	ψ1(x)	+	ψ2(x).	In	this	example,	even	if	one	assumes	that	the	electron
can	move	with	infinite	velocity	(e.g.	at	the	nodes),	it	cannot	continuously	move
from	one	box	to	another	due	to	the	restriction	of	box	walls.	Therefore,	any	sort
of	 continuous	 motion	 cannot	 generate	 the	 effective	 charge	 density	 e|ψ1(x)	 +
ψ2(x)|2.	One	may	still	object	that	this	is	merely	an	artifact	of	the	idealization	of
infinite	potential.	However,	even	in	this	ideal	situation,	the	model	should	also	be
able	 to	generate	 the	effective	charge	density	by	means	of	some	sort	of	ergodic
motion	 of	 the	 electron;	 otherwise	 it	 will	 be	 inconsistent	 with	 quantum
mechanics.	On	the	other	hand,	it	is	very	common	in	quantum	optics	experiments
that	 a	 single-photon	wave	 packet	 is	 split	 into	 two	branches	moving	 along	 two
well	 separated	 paths	 in	 space.	 The	 wave	 function	 of	 the	 photon	 disappears
outside	 the	 two	 paths	 for	 all	 practical	 purposes.	 Moreover,	 the	 experimental
results	are	not	influenced	by	the	environment	and	setup	between	the	two	paths	of
the	 photon.	 Thus	 it	 is	 very	 difficult	 to	 imagine	 that	 the	 photon	 performs	 a
continuous	ergodic	motion	back	and	forth	in	the	space	between	its	two	paths.
In	 view	 of	 these	 serious	 drawbacks	 of	 the	 classical	 ergodic	 models	 and	 their
inconsistency	with	quantum	mechanics,	we	conclude	that	the	ergodic	motion	of
particles	cannot	be	continuous.	If	the	motion	of	a	particle	is	discontinuous,	then
the	particle	can	readily	move	throughout	all	regions	where	the	wave	function	is
nonzero	during	an	arbitrarily	short	time	interval	at	a	given	instant.	Furthermore,
if	 the	 probability	 density	 of	 the	 particle	 appearing	 in	 each	 position	 is
proportional	 to	 the	modulus	 square	of	 its	wave	 function	 there	 at	 every	 instant,
the	discontinuous	motion	can	also	generate	 the	right	effective	mass	and	charge



density.	 This	 will	 solve	 the	 above	 problems	 plagued	 by	 the	 classical	 ergodic
models.	 The	 discontinuous	 ergodic	 motion	 requires	 no	 existence	 of	 a	 finite
ergodic	 time.	 Moreover,	 a	 particle	 undergoing	 discontinuous	 motion	 can	 also
move	from	one	region	to	another	spatially	separated	region,	no	matter	whether
there	is	an	infinite	potential	wall	between	them,	and	such	discontinuous	motion
is	 not	 influenced	 by	 the	 environment	 and	 setup	 between	 these	 regions	 either.
Besides,	 discontinuous	motion	 can	 also	 solve	 the	problems	of	 infinite	 velocity
and	 accelerating	 radiation.	 The	 reason	 is	 that	 no	 classical	 velocity	 and
acceleration	 can	 be	 defined	 for	 discontinuous	 motion,	 and	 energy	 and
momentum	 will	 require	 new	 definitions	 and	 understandings	 as	 in	 quantum
mechanics.
In	 conclusion,	we	have	 argued	 that	 the	mass	 and	 charge	density	of	 a	 quantum
system,	 which	 can	 be	 measured	 by	 protective	 measurement,	 is	 not	 real	 but
effective.	 Moreover,	 the	 effective	 mass	 and	 charge	 density	 is	 formed	 by	 the
discontinuous	motion	of	a	 localized	particle,	and	 the	probability	density	of	 the
particle	appearing	 in	each	position	 is	proportional	 to	 the	modulus	square	of	 its
wave	function	there.
2.5.3	An	argument	for	random	discontinuous	motion
Although	the	above	analysis	demonstrates	that	the	ergodic	motion	of	a	particle	is
discontinuous,	 it	doesn’t	say	that	 the	discontinuous	motion	must	be	random.	In
particular,	the	randomness	of	the	result	of	a	quantum	measurement	may	be	only
apparent.	In	order	to	know	whether	the	motion	of	particles	is	random	or	not,	we
need	to	analyze	the	cause	of	motion.	For	example,	if	motion	has	no	deterministic
cause,	then	it	will	be	random,	only	determined	by	a	probabilistic	cause.	This	may
also	be	the	right	way	to	find	how	particles	move.	Since	motion	involves	change
in	position,	if	we	can	find	the	cause	or	instantaneous	condition	determining	the
change[23],	we	will	be	able	to	find	how	particles	move	in	reality.
Let’s	 consider	 the	 simplest	 states	 of	 motion	 of	 a	 free	 particle,	 for	 which	 the
instantaneous	 condition	 determining	 the	 change	 of	 its	 position	 is	 a	 constant
during	the	motion.	In	logic	the	instantaneous	condition	can	only	be	deterministic
or	indeterministic.	That	the	instantaneous	condition	is	deterministic	means	that	it
leads	 to	 a	 deterministic	 change	of	 the	 position	 of	 a	 particle	 at	 a	 given	 instant.
That	the	instantaneous	condition	is	indeterministic	means	that	it	only	determines
the	 probability	 of	 the	 particle	 appearing	 in	 each	 position	 in	 space	 at	 a	 given
instant.	If	the	instantaneous	condition	is	deterministic,	then	the	simplest	states	of
motion	 of	 the	 free	 particle	 will	 have	 two	 possible	 forms.	 The	 first	 one	 is
continuous	 motion	 with	 constant	 velocity,	 and	 the	 equation	 of	 motion	 of	 the
particle	is	x(t	+	dt)	=	x(t)	+	vdt,	where	the	deterministic	instantaneous	condition



v	is	a	constant[24].	The	second	one	is	discontinuous	motion	with	infinite	average
velocity;	 the	 particle	 performs	 a	 finite	 jump	 along	 a	 fixed	 direction	 at	 every
instant,	 where	 the	 jump	 distance	 is	 a	 constant,	 determined	 by	 the	 constant
instantaneous	condition[25].	On	the	other	hand,	if	the	instantaneous	condition	is
indeterministic,	 then	 the	 simplest	 states	 of	motion	 of	 the	 free	 particle	 will	 be
random	 discontinuous	 motion	 with	 even	 position	 probability	 density.	 At	 each
instant	 the	probability	density	of	 the	particle	appearing	 in	every	position	 is	 the
same.
In	order	to	know	whether	the	instantaneous	condition	is	deterministic	or	not,	we
need	to	determine	which	sort	of	simplest	states	of	motion	are	the	solutions	of	the
equation	 of	 free	 motion	 in	 quantum	 mechanics	 (i.e.	 the	 free	 Schrödinger
equation)[26].	According	 to	 the	 analysis	 in	 the	 last	 subsection,	 the	momentum
eigenstates	 of	 a	 free	 particle,	 which	 are	 the	 solutions	 of	 the	 free	 Schrödinger
equation,	 describe	 the	 ergodic	 motion	 of	 the	 particle	 with	 even	 position
probability	 density	 in	 space.	 Therefore,	 the	 simplest	 states	 of	 motion	 with	 a
constant	probabilistic	instantaneous	condition	are	the	solutions	of	the	equation	of
free	motion,	while	 the	 simplest	 states	 of	motion	with	 a	 constant	 deterministic
instantaneous	condition	are	not.
When	assuming	 that	 (1)	 the	simplest	 states	of	motion	of	a	 free	particle	are	 the
solutions	 of	 the	 equation	 of	 free	 motion;	 and	 (2)	 the	 instantaneous	 condition
determining	 the	 position	 change	 of	 a	 particle	 is	 always	 deterministic	 or
indeterministic	for	any	state	of	motion,	the	above	result	then	implies	that	motion,
no	matter	whether	it	is	free	or	forced,	has	no	deterministic	cause,	and	thus	it	is
random	 and	 discontinuous,	 only	 determined	 by	 a	 probabilistic	 cause.	 The
argument	may	be	improved	by	further	analyzing	these	two	seemingly	reasonable
assumptions,	but	we	will	leave	this	for	future	work.
2.6	The	wave	function	represents	the	state	of	random	discontinuous	motion
of	particles
The	wavefunction	gives	not	the	density	of	stuff,	but	gives	rather	(on	squaring	its
modulus)	 the	 density	 of	 probability.	 Probability	 of	 what	 exactly?	 Not	 of	 the
electron	 being	 there,	 but	 of	 the	 electron	 being	 found	 there,	 if	 its	 position	 is
measured.	Why	this	aversion	to	being	and	insistence	on	finding?	The	founding
fathers	were	unable	to	form	a	clear	picture	of	things	on	the	remote	atomic	scale.
—	John	Bell,	1990
In	 classical	 mechanics,	 we	 have	 a	 clear	 physical	 picture	 of	motion.	 It	 is	 well
understood	that	 the	trajectory	function	x(t)	 in	classical	mechanics	describes	the
continuous	motion	of	a	particle.	 In	quantum	mechanics,	 the	 trajectory	 function
x(t)	is	replaced	by	a	wave	function	ψ(x,	t).	If	the	particle	ontology	is	still	viable



in	 the	 quantum	 domain,	 then	 it	 seems	 natural	 that	 the	 wave	 function	 should
describe	 some	 sort	 of	 more	 fundamental	 motion	 of	 particles,	 of	 which
continuous	motion	is	only	an	approximation	in	the	classical	domain,	as	quantum
mechanics	 is	 a	 more	 fundamental	 theory	 of	 the	 physical	 world,	 of	 which
classical	mechanics	is	an	approximation.	The	analysis	in	the	last	section	provides
a	strong	support	for	this	conjecture,	and	it	suggests	that	what	the	wave	function
describes	 is	 the	 more	 fundamental	 motion	 of	 particles,	 which	 is	 essentially
discontinuous	and	random.	In	this	section,	we	will	give	a	more	detailed	analysis
of	 this	 suggested	 interpretation	 of	 the	 wave	 function	 (Gao	 1993,	 1999,	 2000,
2003,	2006b,	2008,	2011a,	2011b).
2.6.1	An	analysis	of	random	discontinuous	motion
Let’s	first	make	clearer	what	we	mean	when	we	say	a	quantum	system	such	as
an	electron	is	a	particle.	The	picture	of	particle	appears	from	our	analysis	of	the
mass	 and	 charge	 density	 of	 a	 quantum	 system.	As	we	 have	 shown	 in	 the	 last
section,	 the	 mass	 and	 charge	 density	 of	 an	 electron,	 which	 is	 measurable	 by
protective	 measurement	 and	 proportional	 to	 the	 modulus	 square	 of	 its	 wave
function,	 is	 not	 real	 but	 effective;	 it	 is	 formed	 by	 the	 ergodic	 motion	 of	 a
localized	particle	with	the	total	mass	and	charge	of	the	electron.	If	the	mass	and
charge	 density	 is	 real,	 i.e.,	 if	 the	 mass	 and	 charge	 distributions	 at	 different
locations	 exist	 at	 the	 same	 time,	 then	 there	 will	 exist	 gravitational	 and
electrostatic	 self-interactions	 of	 the	 density,	 the	 existence	 of	 which	 not	 only
contradicts	experiments	but	also	violates	the	superposition	principle	of	quantum
mechanics.	 It	 is	 this	analysis	 that	 reveals	 the	basic	existent	 form	of	a	quantum
system	such	as	an	electron	in	space	and	time.	An	electron	is	a	particle[27].	Here
the	concept	of	particle	is	used	in	its	usual	sense.	A	particle	is	a	small	 localized
object	with	mass	and	charge,	and	it	is	only	in	one	position	in	space	at	an	instant.
However,	as	we	have	argued	above,	 the	motion	of	an	electron	described	by	 its
wave	 function	 is	 not	 continuous	 but	 discontinuous	 and	 random	 in	 nature.	We
may	say	that	an	electron	is	a	quantum	particle	in	the	sense	that	its	motion	is	not
continuous	motion	described	by	classical	mechanics,	but	random	discontinuous
motion	described	by	quantum	mechanics.
Next,	let’s	analyze	the	random	discontinuous	motion	of	particles.	From	a	logical
point	of	view,	 for	 the	 random	discontinuous	motion	of	 a	particle,	 there	 should
exist	 a	 probabilistic	 instantaneous	 condition	 that	 determines	 the	 probability
density	of	 the	particle	appearing	 in	every	position	 in	space,	otherwise	 it	would
not	"know"	how	frequently	they	should	appear	in	every	position	in	space.	This
condition	cannot	come	from	otherwhere	but	must	come	from	the	particle	itself.
In	other	words,	the	particle	must	have	an	instantaneous	property	that	determines



its	motion	in	a	probabilistic	way.	This	property	is	usually	called	indeterministic
disposition	or	propensity	in	the	literature29.	In	a	word,	a	particle	has	a	propensity
to	 be	 in	 a	 particular	 position	 in	 space,	 and	 the	 propensity	 as	 a	 probabilistic
instantaneous	 condition	 determines	 the	 probability	 density	 of	 the	 particle
appearing	in	every	position	in	space.	This	can	be	regarded	as	the	physical	basis
of	 random	 discontinuous	 motion	 of	 particles.	 As	 a	 result,	 the	 position	 of	 the
particle	 at	 every	 instant	 is	 random,	 and	 its	 trajectory	 formed	 by	 the	 random
position	series	is	not	continuous	at	every	instant[28].	In	short,	the	motion	of	the
particle	is	essentially	random	and	discontinuous[29].
Unlike	 the	 deterministic	 continuous	 motion,	 the	 trajectory	 function	 x(t)	 no
longer	 provides	 a	 useful	 description	 for	 random	 discontinuous	 motion.	 In	 the
following,	we	will	give	a	strict	description	of	 random	discontinuous	motion	of
particles	based	on	measure	theory.	For	simplicity	but	without	 losing	generality,
we	will	mainly	analyze	the	one-dimensional	motion	that	corresponds	to	the	point
set	in	two-dimensional	space	and	time.	The	results	can	be	readily	extended	to	the
three-dimensional	situation.

Fig.2	The	description	of	random	discontinuous	motion	of	a	single	particle
We	first	analyze	the	random	discontinuous	motion	of	a	single	particle.	Consider
the	state	of	motion	of	the	particle	in	finite	intervals	∆t	and	∆x	near	a	space-time
point	 (ti,xj)	 as	 shown	 in	 Fig.	 2.	 The	 positions	 of	 the	 particle	 form	 a	 random,
discontinuous	 trajectory	 in	 this	 square	 region.	We	 study	 the	 projection	 of	 this
trajectory	in	the	t-axis,	which	is	a	dense	instant	set	in	the	time	interval	∆t.	Let	W
be	the	discontinuous	trajectory	of	the	particle	and	Q	be	the	square	region	[xj,	xj	+
∆x]×	[ti,	ti+	∆t].	The	dense	instant	set	can	be	denoted	by	πt(W	∩	Q)	∈	R	,	where
πt	is	the	projection	on	the	t-axis.	According	to	the	measure	theory,	we	can	define
the	Lebesgue	measure:



Since	the	sum	of	the	measures	of	all	such	dense	instant	sets	in	the	time	interval
∆t	is	equal	to	the	length	of	the	continuous	time	interval	∆t,	we	have:

Then	we	can	define	the	measure	density	as	follows[30]:

We	 call	 it	 position	measure	 density	 or	 position	 density	 in	 brief.	 This	 quantity
provides	 a	 strict	 description	 of	 the	 position	 distribution	 of	 the	 particle	 or	 the
relative	frequency	of	the	particle	appearing	in	an	infinitesimal	space	interval	dx
near	position	x	during	an	infinitesimal	interval	dt	near	instant	t.	In	other	words,
ρ(x,	t)	provides	a	strict	description	of	the	state	of	random	discontinuous	motion
of	 the	particle	at	 instant	 t.	From	Eq.	 (2.34)	we	can	see	 that	ρ(x,	 t)	satisfies	 the
normalization	relation,	namely	∫ρ(x,	t)dx	=	1.
Since	the	position	density	will	change	with	time	in	general,	we	can	further	define
the	position	flux	density	j(x,	t)	through	the	relation	j(x,	t)	=	ρ(x,	t)v(x,	t),	where
v(x,	t)	is	the	velocity	of	the	local	position	density.	It	describes	the	change	rate	of
the	position	density.	Due	to	the	conservation	of	measure,	ρ(x,	t)	and	j(x,	t)	satisfy
the	continuity	equation:

The	position	density	ρ(x,	t)	and	position	flux	density	j(x,	t)	provide	a	complete
description	of	the	state	of	random	discontinuous	motion	of	a	single	particle.
The	description	of	the	motion	of	a	single	particle	can	be	extended	to	the	motion
of	many	particles.	For	the	random	discontinuous	motion	of	N	particles,	we	can
define	joint	position	density	ρ(x1,	x2,	...xN,	t)	and	joint	position	flux	density	j(x1,
x2,	...xN,	t)	=	ρ(x1,	x2,	...xN,	t)	v(x1,	x2,	...xN,	t).	They	also	satisfy	the	continuity
equation:



When	 these	 N	 particles	 are	 independent,	 the	 joint	 position	 density	 can	 be
reduced	to	the	direct	product	of	the	position	density	for	each	particle.	Note	that
the	joint	position	density	ρ(x1,	x2,	...xN,	t)	and	joint	position	flux	density	j(x1,	x2,
...xN,	 t)	 are	not	 defined	 in	 the	 real	 three-dimensional	 space,	 but	 defined	 in	 the
3N-dimensional	configuration	space.
2.6.2	Interpreting	the	wave	function
Although	 the	motion	 of	 particles	 is	 essentially	 discontinuous	 and	 random,	 the
discontinuity	 and	 randomness	 of	motion	 is	 absorbed	 into	 the	 state	 of	 motion,
which	 is	 defined	 during	 an	 infinitesimal	 time	 interval,	 by	 the	 descriptive
quantities	of	position	density	ρ(x,	t)	and	position	flux	density	j(x,	t).	Therefore,
the	 evolution	 of	 the	 state	 of	 random	 discontinuous	motion	 of	 particles	 can	 be
described	 as	 a	 deterministic	 continuous	 equation.	 By	 assuming	 that	 the
nonrelativistic	 equation	 of	 random	 discontinuous	 motion	 is	 the	 Schrödinger
equation	in	quantum	mechanics,	both	ρ(x,	t)	and	j(x,	t)	can	be	expressed	by	the
wave	function	in	a	unique	way[31]:

Correspondingly,	the	wave	function	ψ(x,	t)	can	be	uniquely	expressed	by	ρ(x,	t)
and	j(x,	t)	(except	for	a	constant	phase	factor):

In	this	way,	the	wave	function	ψ(x,	t)	also	provides	a	complete	description	of	the
state	 of	 random	 discontinuous	 motion	 of	 particles.	 For	 the	 motion	 of	 many
particles,	the	joint	position	density	and	joint	position	flux	density	are	defined	in
the	 3N-dimensional	 configuration	 space,	 and	 thus	 the	 many-particle	 wave
function,	which	is	composed	of	 these	two	quantities,	 is	also	defined	in	the	3N-
dimensional	configuration	space.
Interestingly,	we	can	reverse	the	above	logic	in	some	sense,	namely	by	assuming
the	wave	function	is	a	complete	objective	description	for	the	motion	of	particles,
we	can	also	reach	the	random	discontinuous	motion	of	particles,	independent	of



our	previous	analysis.	If	the	wave	function	ψ(x,	t)	is	a	description	of	the	state	of
motion	 for	 a	 single	 particle,	 then	 the	 quantity	 |ψ(x,	 t)|2dx	 not	 only	 gives	 the
probability	of	the	particle	being	found	in	an	infinitesimal	space	interval	dx	near
position	 x	 at	 instant	 t	 (as	 in	 standard	 quantum	mechanics),	 but	 also	 gives	 the
objective	probability	of	the	particle	being	there.	This	accords	with	the	common-
sense	assumption	that	the	probability	distribution	of	the	measurement	results	of	a
property	is	the	same	as	the	objective	distribution	of	the	property	in	the	measured
state.	 Then	 at	 instant	 t	 the	 particle	 may	 appear	 in	 any	 location	 where	 the
probability	density	|ψ(x,	t)|2	is	nonzero,	and	during	an	infinitesimal	time	interval
near	instant	t	the	particle	will	move	throughout	the	whole	region	where	the	wave
function	ψ(x,	t)	spreads.	Moreover,	its	position	density	is	equal	to	the	probability
density	 |ψ(x,	 t)|2.	 Obviously	 this	 kind	 of	 motion	 is	 essentially	 random	 and
discontinuous.
One	 important	 point	 needs	 to	 be	 stressed	 here.	 Since	 the	 wave	 function	 in
quantum	 mechanics	 is	 defined	 at	 an	 instant,	 not	 during	 an	 infinitesimal	 time
interval,	it	should	be	regarded	not	simply	as	a	description	of	the	state	of	random
discontinuous	 motion	 of	 particles,	 but	 more	 suitably	 as	 a	 description	 of	 the
probabilistic	 instantaneous	 condition	 or	 dispositional	 property	 of	 the	 particles
that	determines	their	random	discontinuous	motion	at	a	deeper	level						[32].	In
particular,	 the	modulus	 square	of	 the	wave	 function	determines	 the	probability
density	of	the	particles	appearing	in	every	position	in	space	at	a	given	instant.	By
contrast,	the	position	density	and	position	flux	density,	which	are	defined	during
an	infinitesimal	time	interval	at	a	given	instant,	are	only	a	description	of	the	state
of	 the	 resulting	 random	 discontinuous	 motion	 of	 particles,	 and	 they	 are
determined	by	the	wave	function.	In	this	sense,	we	may	say	that	 the	motion	of
particles	is	"guided"	by	their	wave	function	in	a	probabilistic	way.
We	have	been	discussed	random	discontinuous	motion	of	particles	in	real	space.
The	picture	of	random	discontinuous	motion	may	exist	not	only	for	position	but
also	for	other	dynamical	variables	such	as	momentum	and	energy,	and	thus	the
suggested	interpretation	of	the	wave	function	in	position	space	may	also	apply	to
the	wave	function	in	momentum	space	etc.	Due	to	the	randomness	of	motion	for
each	variable,	the	probability	distributions	of	all	variables	for	an	arbitrary	wave
function	 can	 be	 consistent	with	 quantum	mechanics[33].	However,	 it	 is	worth
stressing	 that	 spin	 is	 a	 distinct	 property.	 Since	 the	 spin	 of	 a	 particle	 is	 always
definite	 along	 one	 direction	 (though	 the	 spin	 state	 can	 always	 be	 decomposed
into	 two	 eigenstates	 of	 spin	 along	 another	 direction),	 the	 spin	 of	 the	 particle,
unlike	its	position,	does	not	undergo	random	discontinuous	motion	for	any	spin



state[34].



	
Chapter	3
How	Come	the	Schrödinger	Equation?
The	 motion	 of	 particles	 follows	 probability	 law	 but	 the	 probability	 itself
propagates	according	to	the	law	of	causality.

—Max	Born
After	 investigating	 the	physical	meaning	of	 the	wave	 function,	we	will	 further
analyze	 the	 linear	 evolution	 law	 for	 the	 wave	 function	 in	 this	 chapter.	 It	 is
demonstrated	that	the	linear	nonrelativistic	evolution	of	the	wave	function	of	an
isolated	system	obeys	the	free	Schrödinger	equation	due	to	the	requirements	of
spacetime	translation	invariance	and	relativistic	invariance.	In	addition,	we	also
investigate	 the	meaning	 and	 implications	 of	 the	 conservation	 laws	 in	 quantum
mechanics.
Many	 quantum	 mechanics	 textbooks	 provide	 a	 heuristic	 "derivation"	 of	 the
Schrödinger	 equation.	 It	 begins	 with	 the	 assumption	 that	 the	 state	 of	 a	 free
quantum	system	has	 the	 form	of	 a	plane	wave	ei(kx−ωt).	When	 combining	with
the	de	Broglie	relations	for	momentum	and	energy	p	=	hk	and	E	=	hω,	this	state
becomes	ei(px−Et)/h	.	Then	it	uses	the	nonrelativistic	energy-momentum	relation	E
=	p2/2m	to	obtain	the	free	particle	Schrödinger	equation.	Lastly,	this	equation	is
generalized	to	include	an	external	potential,	and	the	end	result	is	the	Schrödinger
equation.	In	the	following	sections,	we	will	show	that	the	heuristic	"derivation"
of	the	free	Schrödinger	equation	can	be	turned	into	a	real	derivation	by	resorting
to	 spacetime	 translation	 invariance	 and	 relativistic	 invariance.	 Spacetime
translation	 gives	 the	 definitions	 of	 momentum	 and	 energy,	 and	 spacetime
translation	invariance	entails	that	the	state	of	a	free	quantum	system	with	definite
momentum	and	energy	assumes	the	plane	wave	form	ei(px−Et)/h	 .	Moreover,	 the
relativistic	invariance	of	the	free	states	further	determines	the	relativistic	energy-
momentum	relation,	whose	nonrelativistic	approximation	is	E	=	p2/2m.	Though
the	 requirements	 of	 these	 invariances	 are	 already	well	 known,	 an	 explicit	 and
complete	 derivation	 of	 the	 free	 Schrödinger	 equation	 using	 them	 seems	 still
missing	 in	 the	 literature	 and	 textbooks.	 The	 new	 integrated	 analysis	 may	 be
helpful	 in	 understanding	 the	 physical	 origin	 of	 the	 Schrödinger	 equation,	 and
moreover,	 it	 is	also	helpful	 for	understanding	momentum	and	energy	and	 their
conservation	for	random	discontinuous	motion	of	particles.
3.1	Spacetime	translation	and	its	invariance
In	this	section,	we	will	show	that	the	free	states	of	motion	for	a	quantum	system
can	be	basically	determined	by	spacetime	translation	invariance.	The	spacetime
translation	invariance	of	natural	laws	reflects	the	homogeneity	of	space	and	time.



The	homogeneity	of	 space	ensures	 that	 the	 same	experiment	performed	at	 two
different	places	gives	the	same	result,	and	the	homogeneity	in	time	ensures	that
the	same	experiment	repeated	at	two	different	times	gives	the	same	result.	There
are	 in	 general	 two	 different	 pictures	 of	 translation:	 active	 transformation	 and
passive	transformation.	The	active	transformation	corresponds	to	displacing	the
studied	 system,	 and	 the	 passive	 transformation	 corresponds	 to	 moving	 the
coordinate	system.	Physically,	the	equivalence	of	the	active	and	passive	pictures
is	due	 to	 the	 fact	 that	moving	 the	system	one	way	 is	equivalent	 to	moving	 the
coordinate	system	the	other	way	by	an	equal	amount	(see	also	Shankar	1994).	In
the	following,	we	will	mainly	analyze	spacetime	translations	in	 terms	of	active
transformations.
A	space	translation	operator	can	be	defined	as
T	(a)ψ(x,	t)	=	ψ(x	−	a,	t).	(3.1)
It	means	translating	rigidly	the	state	of	a	system,	ψ(x,	t),	by	an	amount	a	in	the
positive	x	direction.	The	operator	preserves	the	norm	of	the	state	because	∫ψ∗(x,
t)ψ(x,	 t)dx	 =	 ∫ψ∗(x	 −	 a,	 t)ψ(x	 −	 a,	 t)dx.	 This	 implies	 that	 T	 (a)	 is	 unitary,
satisfying	T†(a)T	(a)	=	I.	As	a	unitary	operator,	T	(a)	can	be	further	expressed	as
T	(a)	=	e−iaP,	(3.2)	where	P	is	called	the	generator	of	space	translation,	and	it	is
Hermitian	and	its	eigenvalues	are	real.	By	expanding	ψ(x	−	a,	t)	in	order	of	a,	we
can	further	get
P	=	−i∂/∂x.	(3.3)
Similarly,	a	time	translation	operator	can	be	defined	as
U(t)ψ(x,	0)	=	ψ(x,	t).	(3.4)
Let	the	evolution	equation	of	state	be	of	the	following	form:
i∂ψ(x,	t)/∂t	=	Hψ(x,	t).	(3.5)
where	 H	 is	 a	 to-be-determined	 operator	 that	 depends	 on	 the	 properties	 of	 the
system.	In	the	following	analysis	of	this	section,	we	assume	H	is	independent	of
the	evolved	state,	namely	 the	evolution	 is	 linear[35].	Then	 the	 time	 translation
operator	U(t)	 can	be	 expressed	 as	U(t)	=	 e−itH,	 and	H	 is	 the	 generator	 of	 time
translation.	 Note	 that	 we	 cannot	 determine	 whether	 U(t)	 is	 unitary	 and	 H	 is
Hermitian	here.
Let’s	 now	 analyze	 the	 implications	 of	 spacetime	 translation	 invariance	 for	 the
law	 of	motion	 of	 a	 free	 system	 or	 an	 isolated	 system.	 First,	 time	 translational
invariance	requires	that	H	has	no	time	dependence,	namely	dH/dt	=	0.	This	can
be	demonstrated	as	follows	(see	also	Shankar	1994,	p.295).	Suppose	an	isolated
system	is	in	state	ψ0	at	time	t1	and	evolves	for	an	infinitesimal	time	δt.	The	state
of	the	system	at	time	t1+	δt,	to	first	order	in	δt,	will	be



ψ(x,	t1	+	δt)	=	[I	−	iδtH(t1)]ψ0	(3.6)
If	the	evolution	is	repeated	at	 time	t2,	beginning	with	the	same	initial	state,	 the
state	at	t2	+	δt	will	be
ψ(x,	t2	+	δt)	=	[I	−	iδtH(t2)]ψ0	(3.7)
Time	translational	invariance	requires	the	outcome	state	should	be	the	same:
ψ	(x,	t2	+	δt)	−	ψ(x,	t1	+	δt)	=	iδt[H(t1)	−	H(t2)]ψ0	=	0	(3.8)
Since	 the	 initial	 state	 ψ0	 is	 arbitrary,	 it	 follows	 that	 H(t1)	 =	 H(t2).	 Moreover,
since	 t1	and	 t2	 are	also	arbitrary,	 it	 follows	 that	H	 is	 time-independent,	namely
dH/dt	=	0.	It	can	be	seen	that	this	result	relies	on	the	linearity	of	evolution.	If	H
depends	 on	 the	 state,	 then	 obviously	we	 cannot	 obtain	 dH/dt	 =	 0	 because	 the
state	is	related	to	time,	though	we	still	have	H(t1,	ψ0)	=	H(t2,	ψ0),	which	means
that	the	state-dependent	H	also	satisfies	time	translational	invariance.
Secondly,	space	translational	invariance	requires	[	T	(a),	U(t)]	=	0,	which	further
leads	to	[P,	H]	=	0.	This	can	be	demonstrated	as	follows	(see	also	Shankar	1994,
p.293).	 Suppose	 at	 t	 =	 0	 two	 observers	 A	 and	 B	 prepare	 identical	 isolated
systems	at	x	=	0	and	x	=	a,	respectively.	Let	ψ(x,	0)	be	the	state	of	 the	system
prepared	by	A.	Then	T	(a)ψ(x,	0)	is	the	state	of	the	system	prepared	by	B,	which
is	obtained	by	translating	(without	distortion)	the	state	ψ(x,	0)	by	an	amount	a	to
the	 right.	The	 two	 systems	 look	 identical	 to	 the	observers	who	prepared	 them.
After	 time	 t,	 the	 states	 evolve	 into	U(t)ψ(x,	0)	 and	U(t)T	 (a)ψ(x,	0).	Since	 the
time	 evolution	 of	 each	 identical	 system	 at	 different	 places	 should	 appear	 the
same	 to	 the	 local	 observers,	 the	 above	 two	 systems,	which	 differed	 only	 by	 a
spatial	 translation	at	 t	=	0,	should	differ	only	by	 the	same	spatial	 translation	at
future	times.	Thus	the	state	U(t)T	(a)ψ(x,	0)	should	be	the	translated	version	of
A’s	system	at	time	t,	namely	we	have	U(t)T	(a)ψ(x,	0)	=	T	(a)U(t)ψ(x,	0).	This
relation	holds	true	for	any	initial	state	ψ(x,	0),	and	thus	we	have	[T	(a),	U(t)]	=	0,
which	 says	 that	 space	 translation	 operator	 and	 time	 translation	 operator	 are
commutative.	 Again,	 we	 stress	 that	 the	 linearity	 of	 evolution	 is	 an	 important
presupposition	 of	 this	 result.	 If	 U(t)	 depends	 on	 the	 state,	 then	 the	 space
translational	invariance	will	only	lead	to	U(t,	T	ψ)T	(a)ψ(x,	0)	=	T	(a)U(t,	ψ)ψ(x,
0),	from	which	we	cannot	obtain	[T	(a),	U(t)]	=	0.
When	 dH/dt	 =	 0,	 the	 solutions	 of	 the	 evolution	 equation	 Eq.(3.5)	 assume	 the
following	form
ψ(x,	t)	=	ϕE(x)e−iEt,	(3.9)
where	E	 is	 a	 constant,	 and	ϕE(x)	 is	 the	 eigenstate	 of	H	 and	 satisfies	 the	 time-
independent	equation:
HϕE(x)	=	EϕE(x).	(3.10)



The	commutative	relation	[	P,	H]	=	0	further	implies	that	P	and	H	have	common
eigenstates.	 This	 means	 that	 ϕE(x)	 is	 also	 the	 eigenstate	 of	 P	 .	 Since	 the
eigenstate	of	P	=	−i∂/∂x	is	eipx,	where	p	is	a	real	eigenvalue,	the	solution	of	the
evolution	equation	Eq.(3.5)	 for	an	 isolated	system	will	be	ei(px−Et).	 In	quantum
mechanics,	P	and	H,	the	generators	of	space	translation	and	time	translation,	are
also	 called	 momentum	 operator	 and	 energy	 operator,	 respectively.
Correspondingly,	ei(px−Et)	is	the	eigenstate	of	both	momentum	and	energy,	and	p
and	E	are	the	corresponding	momentum	and	energy	eigenvalues,	respectively.	In
other	 words,	 the	 state	 ei(px−Et)	 describes	 an	 isolated	 system	 (e.g.	 a	 free
microscopic	particle)	with	definite	momentum	p	and	energy	E.
3.2	Relativistic	invariance
The	 relation	 between	 momentum	 p	 and	 energy	 E	 can	 be	 determined	 by	 the
relativistic	invariance	of	the	momentum	eigenstate	ei(px−Et),	and	it	turns	out	to	be
E2	 =	 p2c2	 +	m2c4,	 where	m	 is	 the	mass	 of	 the	 system,	 and	 c	 is	 the	 speed	 of
light[36].	 In	 the	nonrelativistic	domain,	 the	energy	momentum	relation	reduces
to	E	=	p2/2m.
Now	 we	 will	 derive	 the	 relation	 between	 momentum	 p	 and	 energy	 E	 in	 the
relativistic	domain.	Consider	two	inertial	frames	S0	and	S	with	coordinates	x0,	t0
and	x,	t.	S0	is	moving	with	velocity	v	relative	to	S.	Then	x,	t	and	x0,	t0	satisfy	the
Lorentz	transformations:

Suppose	the	state	of	a	free	particle	is	ψ	=	ei(p0x0−E0t0),	an	eigenstate	of	P	,	in	S0,
where	 p0,	 E0	 is	 the	momentum	 and	 energy	 of	 the	 particle	 in	 S0,	 respectively.
When	described	in	S	by	coordinates	x,	t,	the	state	is

This	 means	 that	 in	 frame	 S	 the	 state	 is	 still	 the	 eigenstate	 of	 P	 ,	 and	 the
corresponding	momentum	p	and	energy	E	is[37]



	
4	We	can	also	get	 this	 result	 from	the	definition	Eq.	 (3.16)	by	using	 the	above
transformations	of	momentum	and	energy	Eq.(3.14)	and	Eq.(3.15).
We	further	suppose	that	the	particle	is	at	rest	 in	frame	S0.	Then	the	velocity	of
the	particle	 is	 v	 in	 frame	S4.	Considering	 that	 the	 velocity	 of	 a	 particle	 in	 the
momentum	eigenstate	ei(px−Et)	or	a	wavepacket	superposed	by	these	eigenstates
is	defined	as	the	group	velocity	of	the	wavepacket,	namely
u	=	dE/dp,	(3.16)



we	have
dE0/dp0	=	0,	(3.17)
dE/dp	=	v.	(3.18)
Eq.(3.17)	means	that	E0	and	p0	are	independent.	Moreover,	since	the	particle	is
at	rest	in	S0,	E0	and	p0	do	not	depend	on	v.	By	differentiating	both	sides	of	Eq.
(3.14)	and	Eq.(3.15)	relative	to	v	we	obtain

Dividing	Eq.(3.20)	by	Eq.(3.19)	and	using	Eq.(3.18)	we	obtain

This	means	 that	 p0	 =	 0.	 Inputting	 this	 important	 result	 into	 Eq.(3.15)	 and	Eq.
(3.14),	we	immediately	obtain

Then	the	energy-momentum	relation	is:

where	E0	 is	 the	energy	of	 the	particle	at	 rest,	called	rest	energy	of	 the	particle,
and	 p	 and	 E	 is	 the	momentum	 and	 energy	 of	 the	 particle	with	 velocity	 v.	 By
defining	m	=	E0/c2	as	 the	(rest)	mass	of	 the	particle[38],	we	can	further	obtain
the	familiar	energy-momentum	relation
E2	=	p2c2	+	m2c4	(3.25)
In	 the	 nonrelativistic	 domain,	 this	 energy-momentum	 relation	 reduces	 to	 E	 =
p2/2m.



3.3	Derivation	of	the	free	Schrödinger	equation
The	relation	between	energy	E	and	momentum	p	for	momentum	eigenstates	 in
the	nonrelativistic	domain	implies	that	the	operator	relation	is	H	=	P2/2m	for	an
isolated	system,	where	H	is	the	free	Hamiltonian	of	the	system.	Note	that	since
the	value	of	E	 is	 real	by	Eq.(3.24),	H	 is	Hermitian	and	U(t)	 is	unitary	 for	 free
evolution.	 By	 inputting	 this	 operator	 relation	 into	 the	 evolution	 equation	 Eq.
(3.5),	we	can	obtain	the	free	evolution	equation,	which	assumes	the	same	form
as	the	free	particle	Schrödinger	equation[39]:

It	is	worth	noting	that,	unlike	the	free	particle	Schrödinger	equation,	the	reduced
Planck	constant	with	dimension	of	action	is	missing	in	this	equation.	However,
this	is	in	fact	not	a	problem.	The	reason	is	that	the	dimension	of	can	be	absorbed
into	the	dimension	of	the	mass	m.	For	example,	we	can	stipulate	the	dimensional
relations	 as	 p	 =	 1/L,	 E	 =	 1/T	 and	 m	 =	 T/L2,	 where	 L	 and	 T	 represents	 the
dimensions	of	space	and	time,	respectively	(see	Duff,	Okun	and	Veneziano	2002
for	more	discussions).	Moreover,	the	value	of	can	be	set	to	the	unit	of	number	1
in	principle.	Thus	the	above	equation	is	essentially	the	free	particle	Schrödinger
equation	in	quantum	mechanics.
By	 using	 the	 definition	 of	 classical	 potential	 and	 requiring	 an	 appropriate
expectation	value	correspondence,	d	<	P	>	dt	=<	F	>=<	∂V∂x	>,	we	can	further
obtain	the	Schrödinger	equation	under	an	external	potential[40]:

The	 general	 form	 of	 a	 classical	 potential	may	 be	V	 (x,∂/∂x,t)	 and	 its	 concrete
form	 is	 determined	 by	 the	 nonrelativistic	 approximation	 of	 the	 quantum
interactions	 involved,	 which	 are	 described	 by	 the	 relativistic	 quantum	 field
theory.	Since	the	potential	V	(x,	t)	is	real-valued,	the	Hamiltonian	H	=	P2/2m	+	V
(x,	 t)	 is	 Hermitian,	 and	 as	 a	 result,	 the	 time	 translation	 operator	 or	 evolution
operator	U(t)	is	also	unitary.
3.4	Further	discussions
We	have	derived	the	free	Schrödinger	equation	in	quantum	mechanics	based	on
spacetime	translation	invariance	and	relativistic	invariance.	The	derivation	may
not	only	make	the	equation	more	logical	and	understandable,	but	also	shed	some
new	light	on	the	physical	meaning	of	the	wave	function	ψ(x,	t)	in	the	equation.
The	free	Schrödinger	equation	is	usually	"derived"	in	textbooks	by	analogy	and



correspondence	with	classical	physics.	There	are	at	least	two	mysteries	in	such	a
heuristic	"derivation".	First,	even	if	the	behavior	of	microscopic	particles	is	like
wave	and	thus	a	wave	function	is	needed	to	describe	them,	it	is	unclear	why	the
wave	 function	 must	 assume	 a	 complex	 form.	 Indeed,	 when	 Schrödinger
originally	 invented	 his	 equation,	 he	 was	 very	 puzzled	 by	 the	 inevitable
appearance	 of	 the	 imaginary	 unit	 "i"	 in	 the	 equation.	Next,	 one	 doesn’t	 know
why	 there	are	 the	de	Broglie	 relations	 for	momentum	and	energy	and	why	 the
nonrelativistic	energy-momentum	relation	must	be	E	=	p2/2m.	Usually	one	can
only	resort	to	experience	and	classical	physics	to	answer	these	questions.	This	is
unsatisfactory	 in	 logic	as	quantum	mechanics	 is	a	more	fundamental	 theory,	of
which	classical	mechanics	is	only	an	approximation.
As	we	 have	 argued	 above,	 the	 key	 to	 unveil	 these	mysteries	 is	 to	 analyze	 the
origin	 of	 momentum	 and	 energy.	 According	 to	 the	 modern	 understanding,
spacetime	 translation	 gives	 the	 definitions	 of	 momentum	 and	 energy.	 The
momentum	operator	P	is	defined	as	the	generator	of	space	translation,	and	it	 is
Hermitian	 and	 its	 eigenvalues	 are	 real.	 Moreover,	 the	 form	 of	 momentum
operator	can	be	uniquely	determined	by	its	definition.	It	 is	P	=	−i∂/∂x	 ,	and	its
eigenstate	is	eipx,	where	p	is	a	real	eigenvalue.	Similarly,	the	energy	operator	H	is
defined	 as	 the	generator	 of	 time	 translation.	But	 its	 form	 is	 determined	by	 the
concrete	 situation.	 Fortunately,	 for	 an	 isolated	 system	 the	 form	 of	 energy
operator,	 which	 determines	 the	 evolution	 equation,	 can	 be	 fixed	 by	 the
requirements	 of	 spacetime	 translation	 invariance	 and	 relativistic	 invariance
(when	assuming	the	evolution	is	linear).	Concretely	speaking,	time	translational
invariance	 requires	 that	 dH/dt	 =	 0,	 and	 the	 solution	 of	 the	 evolution	 equation
i∂ψ(x,t)/∂t=Hψ(x,	 t)	 must	 assume	 the	 form	 ψ(x,	 t)	 =	 ϕE(x)e−iEt.	 Space
translational	invariance	requires	[P,	H]	=	0,	and	this	further	determines	that	ϕE(x)
is	the	eigenstate	of	P	,	namely	ϕE(x)	=	eipx.	Thus	spacetime	translation	invariance
entails	 that	 the	state	of	an	 isolated	system	with	definite	momentum	and	energy
assumes	the	plane	wave	form	ei(px−Et).	Furthermore,	the	relation	between	p	and	E
or	 the	 energy-momentum	 relation	 can	 be	 determined	 by	 the	 relativistic
invariance	 of	 the	 momentum	 eigenstate	 ei(px−Et),	 and	 its	 nonrelativistic
approximation	is	just	E	=	p2/2m.	Then	we	can	obtain	the	form	of	energy	operator
for	an	isolated	system,	H	=	P2/2m,	and	the	free	Schrödinger	equation,	Eq.(3.26).
To	 sum	 up,	 this	 analysis	 may	 answer	 why	 the	 wave	 function	 must	 assume	 a
complex	form	in	general	and	why	there	are	the	de	Broglie	relations	and	why	the
nonrelativistic	energy-momentum	relation	is	what	it	is.
So	far	so	good.	But	how	does	the	wave	function	ψ(x,	t)	in	the	thus-derived	free



Schrödinger	equation	relate	 to	 the	actual	physical	state	of	 the	system?	Without
answering	this	question	the	above	analysis	seems	vacuous	in	physics.	This	leads
us	 to	 the	problem	of	 interpreting	 the	wave	 function.	According	 to	 the	standard
probability	 interpretation,	 the	 wave	 function	 in	 quantum	 mechanics	 is	 a
probability	 amplitude,	 and	 its	modulus	 square	 gives	 the	 probability	 density	 of
finding	 a	 particle	 in	 certain	 locations.	 Notwithstanding	 the	 success	 of	 the
standard	interpretation,	our	derivation	of	the	free	Schrödinger	equation	seems	to
suggest	 that	 the	wave	function	ψ(x,	 t)	 is	a	description	of	the	objective	physical
state	of	a	quantum	system,	rather	than	the	probability	amplitude	relating	only	to
measurement	outcomes.	In	our	derivation	we	never	refer	to	the	measurement	of
the	isolated	system	at	all.	Moreover,	the	derivation	seems	to	further	suggest	that
the	wave	 function	ψ(x,	 t)	 is	a	complete	description	of	 the	physical	 state	of	 the
system.	As	we	 have	 argued	 in	 the	 last	 chapter,	 ψ(x,	 t)	 can	 be	 regarded	 as	 an
objective	description	of	the	state	of	random	discontinuous	motion	of	a	particle,
and	 |ψ(x,	 t)|2dx	 gives	 the	 objective	 probability	 of	 the	 particle	 being	 in	 an
infinitesimal	 space	 interval	 dx	 near	 position	 x	 at	 instant	 t.	 This	 objective
interpretation	of	the	wave	function	is	quite	consistent	with	the	above	derivation
of	the	free	Schrödinger	equation.
On	 the	other	hand,	 the	derivation	may	provide	a	 further	argument	 for	 the	non-
existence	 of	 continuous	 motion	 from	 the	 aspect	 of	 the	 laws	 of	 motion.
Continuous	 motion	 can	 be	 regarded	 as	 a	 very	 special	 form	 of	 discontinuous
motion,	for	which	the	position	density	of	a	particle	is	ρ(x,	t)	=	δ2(x	−	x(t))	and	its
velocity	is	v(t)	=	dx(t)/dt,	where	x(t)	is	the	continuous	trajectory	of	the	particle.
However,	such	states	are	not	solutions	of	the	free	Schrödinger	equation,	though
they	 do	 satisfy	 the	 continuity	 equation.	 According	 to	 the	 free	 Schrödinger
equation,	an	initial	local	state	like	δ(x	−	x0)	cannot	sustain	its	locality	during	the
evolution,	and	it	will	immediately	spread	throughout	the	whole	space.	Thus	the
law	 of	 free	motion,	 which	 is	 derived	 based	 on	 the	 requirements	 of	 spacetime
translation	invariance	etc,	seems	to	imply	that	the	motion	of	a	particle	cannot	be
continuous	but	be	essentially	discontinuous.	Note	that	our	derivation	of	the	free
Schrödinger	 equation	does	not	depend	on	 the	picture	of	discontinuous	motion,
and	 thus	 this	 argument	 for	 the	 non-existence	 of	 continuous	 motion	 is	 not	 a
vicious	circle.
As	 noted	 above,	 our	 derivation	 of	 the	 free	 Schrödinger	 equation	 relies	 on	 the
presupposition	 that	 the	Hamiltonian	H	is	 independent	of	 the	evolved	state,	 i.e.,
that	the	evolution	is	linear.	It	can	be	reasonably	assumed	that	the	linear	evolution
and	 nonlinear	 evolution	 both	 exist,	 and	 moreover,	 they	 satisfy	 spacetime
translation	 invariance	 respectively	because	 their	 effects	 cannot	 counteract	 each



other	 in	 general.	 Then	 our	 derivation	 only	 shows	 that	 the	 linear	 part	 of	 free
evolution,	 if	 satisfying	 spacetime	 translation	 invariance	 and	 relativistic
invariance,	must	assume	the	same	form	as	the	free	Schrödinger	equation	in	the
nonrelativistic	domain.	Obviously,	our	derivation	cannot	exclude	the	existence	of
nonlinear	quantum	evolution.	Moreover,	since	a	general	nonlinear	evolution	can
readily	satisfy	spacetime	 translation	 invariance,	 the	 invariance	 requirement	can
no	longer	determine	the	concrete	form	of	possible	nonlinear	evolution.
3.5	On	the	conservation	of	energy-momentum
The	 conservation	 of	 energy	 and	 momentum	 is	 one	 of	 the	 most	 important
principles	 in	 modern	 physics.	 In	 this	 section,	 we	 will	 analyze	 the	 basis	 and
physical	meaning	of	this	principle,	especially	its	relationship	with	the	linearity	of
quantum	dynamics.
As	we	have	noted	in	the	above	derivation	of	the	free	Schrödinger	equation,	the
origin	of	momentum	and	energy	 is	closely	related	 to	spacetime	 translation;	 the
momentum	operator	 P	 and	 energy	 operator	H	 are	 defined	 as	 the	 generators	 of
space	 translation	and	 time	 translation,	 respectively.	Moreover,	 it	 is	well	known
that	 the	 conservation	 of	 energy	 and	 momentum	 results	 from	 spacetime
translation	invariance.	The	usual	derivation	is	as	follows.	The	evolution	law	for
an	 isolated	 system	 satisfies	 spacetime	 translation	 invariance	 due	 to	 the
homogeneity	of	space	and	time.	Time	translational	invariance	requires	that	H	has
no	 time	 dependence,	 namely	 dH/dt	 =	 0,	 and	 space	 translational	 invariance
requires	 that	 the	 generators	 of	 space	 translation	 and	 time	 translation	 are
commutative,	namely	 [P,	H]	=	0.	Then	by	Ehrenfest’s	 theorem	for	an	arbitrary
observable
d<	A	>/dt=<∂A/∂t>	−	i<[A,	H]>,	(3.28)
where	=	∫ψ∗(x,	t)Aψ(x,	t)dx	is	defined	as	the	expectation	value	of	A,	we	have
d<	H	>/dt=0,	(3.29)



and
d<	P	>/dt=0.	(3.30)
This	means	that	the	expectation	values	of	energy	and	momentum	are	conserved
for	 the	 evolution	 of	 an	 isolated	 system.	Moreover,	 for	 arbitrary	 functions	 f(H)
and	f(P	),	we	also	have
d<	f(H)	>/dt=	0,	(3.31)
and
d<	f(P)	>/dt=	0.	(3.32)
This	 is	 equivalent	 to	 the	constancy	of	 the	expectation	values	of	 the	generating
functions	or	spacetime	translation	operators	U(a)	≡	e−iaH	and	T	(a)	≡	e−iaP
d	<	U(a)	>/dt	=	0,	(3.33)
and
d<	T	(a)	>/dt	=	0.	(3.34)
By	 these	 two	 equations	 it	 follows	 that	 the	 probability	 distributions	 of	 energy
eigenvalues	and	momentum	eigenvalues	are	constant	 in	time.	This	statement	is
usually	 defined	 as	 the	 conservation	 of	 energy	 and	 momentum	 in	 quantum
mechanics.
Now	 let’s	 analyze	 the	 implications	 of	 this	 derivation	 for	 the	 meaning	 of	 the
conservation	 of	 energy	 and	 momentum.	 First	 of	 all,	 we	 point	 out	 that	 the
linearity	of	evolution	is	an	indispensable	presupposition	in	the	derivation.	As	we
have	 stressed	 in	 the	 derivation	 of	 the	 free	 Schrödinger	 equation,	 spacetime
translation	invariance	does	not	lead	to	dH/dt	=	0	and	[P,	H]	=	0	without	assuming
the	 linearity	 of	 evolution.	 Therefore,	 the	 common	 wisdom	 that	 invariance	 or
symmetry	 implies	 laws	 of	 conservation	 only	 holds	 true	 for	 linear	 evolutions;
spacetime	 translation	 invariance	 no	 longer	 leads	 to	 the	 conservation	 of	 energy
and	 momentum	 for	 any	 nonlinear	 evolution,	 and	 the	 invariance	 imposes	 no
restriction	 for	 the	nonlinear	evolution	either.	Moreover,	 for	a	general	nonlinear
evolution	 H(ψ),	 energy	 and	 momentum	 will	 be	 not	 conserved	 by	 Ehrenfest’s
theorem[41]:



We	 can	 see	 the	 violation	 of	 the	 conservation	 of	 energy	 and	momentum	more
clearly	by	 analyzing	 the	nonlinear	 evolution	of	momentum	eigenstates	 ei(px−Et)
and	 their	 superpositions.	 If	 a	 nonlinear	 evolution	 can	 conserve	 energy	 and
momentum	for	momentum	eigenstates,	then	the	momentum	eigenstates	must	be
the	 solutions	 of	 the	 nonlinear	 evolution	 equation;	 otherwise	 the	 evolution	will
change	 the	definite	momentum	eigenvalues	or	energy	eigenvalues	or	both,	and
thus	the	conservation	of	energy	and	momentum	will	be	violated.	Some	nonlinear
evolutions	can	satisfy	 this	 requirement.	For	example,	when	H(ψ)	=	P2/2m	+	α|
ψ|2,	 the	 solutions	 still	 include	 the	 momentum	 eigenstates	 ei(px−Et),	 where	 E	 =
p2/2m	 +	 α,	 and	 thus	 energy	 and	momentum	 are	 conserved	 for	 such	 nonlinear
evolutions	of	momentum	eigenstates.	However,	even	if	a	nonlinear	evolution	can
conserve	energy	and	momentum	for	momentum	eigenstates,	 it	cannot	conserve
energy	 and	 momentum	 for	 the	 superpositions	 of	 momentum	 eigenstates.	 The
reason	 is	 obvious.	 Only	 for	 a	 linear	 evolution	 the	momentum	 eigenstates	 and
their	superpositions	can	both	be	the	solutions	of	the	evolution	equation.	For	any
nonlinear	evolution	H(ψ),	if	the	momentum	eigenstates	are	already	its	solutions,
then	 their	 linear	 superpositions	 cannot	 be	 its	 solutions.	 This	 means	 that	 the
coefficients	of	the	momentum	eigenstates	in	the	superposition	will	change	with
time	during	the	evolution.	The	change	of	amplitudes	of	the	coefficients	directly
leads	to	the	change	of	the	probability	distribution	of	momentum	eigenvalues	and
energy	eigenvalues,	while	 the	change	of	phases	of	 the	coefficients	 leads	 to	 the
change	of	the	momentum	eigenvalues	or	energy	eigenvalues,	which	also	leads	to
the	 change	of	 the	probability	 distribution	of	momentum	eigenvalues	 or	 energy
eigenvalues.	In	fact,	a	nonlinear	evolution	may	not	only	change	the	probability
distributions	of	energy	and	momentum	eigenvalues,	but	also	change	the	energy-
momentum	 relation	 in	 general	 cases	 (e.g.	 in	 the	 above	 example)[42].	 These
results	are	understandable	when	considering	 the	 fact	 that	a	nonlinear	evolution
of	 the	 spatial	 wave	 function	 will	 generally	 introduce	 a	 time-dependent
interaction	between	 its	different	momentum	eigenstates,	which	 is	equivalent	 to
introducing	 a	 time-dependent	 external	 potential	 for	 its	 free	 evolution	 in	 some
sense.	Therefore,	it	is	not	beyond	expectation	that	a	nonlinear	evolution	violates
the	conservation	of	energy	and	momentum	in	general.
Two	 points	 needs	 to	 be	 stressed	 here.	 First,	 energy	 and	 momentum	 are	 still
defined	 as	 usual	 for	 nonlinear	 evolutions	 in	 the	 above	 discussions.	 One	 may
object	 that	 they	 should	 be	 re-defined	 for	 a	 nonlinear	 evolution.	However,	 this
may	 be	 not	 the	 case.	 The	 reason	 is	 as	 follows.	 Momentum	 is	 defined	 as	 the
generator	 of	 space	 translation,	 and	 this	 definition	 uniquely	 determines	 that	 its
eigenstates	 are	 eipx.	 Similarly,	 energy	 is	 defined	 as	 the	 generator	 of	 time



translation,	 and	 this	 definition	 uniquely	 determines	 that	 its	 eigenstates	 satisfy
H(ψ)ψ(x)	 =	 Eψ(x).	 Since	 these	 definitions	 are	 independent	 of	 whether	 the
evolution	 of	 the	 state	 is	 linear	 or	 nonlinear,	 they	 should	 have	 a	 fundamental
status	 in	any	 theory	formulated	 in	space	and	 time	such	as	quantum	mechanics.
The	 second	 point	 is	 that	 the	 above	 argument	 implicitly	 assumes	 that	 the
nonlinear	evolution	H(ψ)	is	universal,	i.e.,	that	it	applies	to	all	possible	states.	If
the	 nonlinear	 evolution	 only	 applies	 to	 some	 special	 states,	 then	 the	 evolution
may	still	conserve	energy	and	momentum.	For	example,	suppose	 the	nonlinear
evolution	H(ψ)	=	P2/2m	+	α|ψ|2	applies	only	to	the	momentum	eigenstates	ei(px
−Et)	 and	 the	 linear	 evolution	 H(ψ)	 =	 P2/2m	 applies	 to	 the	 superpositions	 of
momentum	 eigenstates,	 then	 energy	 and	momentum	 are	 still	 conserved	 during
the	evolution.	On	the	other	hand,	it	has	been	argued	that	the	universal	nonlinear
quantum	 dynamics	 has	 a	 serious	 drawback,	 namely	 that	 the	 description	 of
composite	 systems	 depends	 on	 a	 particular	 basis	 in	 a	 Hilbert	 space	 (Czachor
1996).	If	a	nonlinear	quantum	evolution	only	applies	to	certain	privileged	bases
due	 to	 some	 reason,	 then	 such	 nonlinear	 quantum	 dynamics	may	 be	 logically
consistent	and	also	conserve	energy	and	momentum	(Gao	2004).
The	second	implication	of	the	above	derivation	of	the	conservation	laws	is	that
spacetime	 translation	 invariance	 implies	 the	 conservation	 of	 energy	 and
momentum	for	individual	states,	not	for	an	ensemble	of	identical	systems.	As	in
the	 derivation	 of	 the	 free	 Schrödinger	 equation,	 we	 only	 refer	 to	 an	 isolated
system	and	never	refer	to	any	ensemble	of	identical	systems	in	the	derivation	of
the	 conservation	 laws.	Moreover,	 the	 transformations	 of	 spacetime	 translation
also	apply	to	a	single	isolated	system.	Therefore,	what	the	derivation	tells	us	is
that	 spacetime	 translation	 invariance	 implies	 the	 conservation	 of	 energy	 and
momentum	 for	 the	 linear	 evolution	 of	 the	 states	 of	 an	 isolated	 system.	 The
conservation	 of	 energy	 and	 momentum	 for	 a	 single	 system	 means	 that	 the
objective	 probability	 distributions	 of	 energy	 eigenvalues	 and	 momentum
eigenvalues	 are	 constant	 during	 the	 evolution	 of	 the	 state	 of	 the	 system.	 As
argued	before,	the	objective	probability	can	be	well	understood	according	to	the
suggested	interpretation	of	the	wave	function	in	terms	of	random	discontinuous
motion.	 Similarly,	 our	 analysis	 of	 nonlinear	 evolutions	 also	 shows	 that	 a
universal	nonlinear	evolution	violates	the	conservation	of	energy	and	momentum
for	individual	systems.
This	implication	raises	a	further	issue.	It	is	well	known	that	the	conservation	of
energy	and	momentum	in	quantum	mechanics	refers	to	an	ensemble	of	identical
systems,	 not	 to	 individual	 systems,	 and	 its	 precise	 statement	 is	 that	 the
probability	 distributions	 of	 the	measurement	 results	 of	 energy	 and	momentum



for	an	ensemble	of	identical	isolated	systems	are	the	same	at	every	instant	during
the	evolution	of	the	systems	in	the	ensemble.	But	as	we	have	argued	above,	the
derivation	of	the	conservation	laws	based	on	spacetime	translation	invariance	is
for	 individual	 isolated	 systems,	 not	 for	 an	 ensemble	 of	 these	 systems.	 The
derivation	never	 refers	 to	 the	measurements	of	 these	systems	either.	Therefore,
there	 is	 still	 a	 gap	 (which	 maybe	 very	 large)	 between	 the	 derivation	 and	 the
conservation	 laws	 in	 quantum	 mechanics.	 Undoubtedly	 we	 must	 analyze	 the
measurement	 process	 in	 order	 to	 fill	 the	 gap.	 We	 will	 postpone	 the	 detailed
analysis	of	the	measurement	problem	to	the	next	section.	Here	we	only	want	to
answer	a	more	general	question.	If	the	conservation	laws	in	quantum	mechanics
are	 indeed	 valid	 as	 widely	 thought,	 then	 what	 are	 their	 implications	 for	 the
evolution	of	individual	states?
First	 of	 all,	 the	 evolution	 of	 the	 state	 of	 an	 isolated	 system	 cannot	 contain	 a
universal	deterministic	nonlinear	evolution,	which	applies	to	all	possible	states;
otherwise	 the	evolution	will	violate	 the	conservation	of	energy	and	momentum
not	only	at	the	individual	level	but	also	at	the	ensemble	level.	Next,	the	evolution
may	 contain	 linear	 evolutions	 as	 well	 as	 special	 deterministic	 nonlinear
evolutions	 that	 apply	only	 to	certain	privileged	 states.	They	can	both	conserve
energy	and	momentum	for	 individual	states[43].	Lastly,	 the	evolution	may	also
contain	a	(universal)	stochastic	nonlinear	evolution,	which	applies	to	all	possible
states.	 Although	 the	 evolution	 cannot	 conserve	 energy	 and	 momentum	 for
individual	 states,	 it	 may	 conserve	 energy	 and	 momentum	 for	 an	 ensemble	 of
identical	 states.	 As	 we	 will	 see	 in	 the	 next	 chapter,	 the	 collapse	 of	 the	 wave
function	may	be	such	a	stochastic	nonlinear	evolution.
To	summarize,	we	have	analyzed	the	relationships	between	the	conservation	of
energy	 and	 momentum,	 spacetime	 translation	 invariance	 and	 the	 linearity	 of
quantum	dynamics.	It	has	been	often	claimed	that	the	conservation	of	energy	and
momentum	 is	 a	 conservation	 law	 resulting	 from	 the	 requirement	 of	 spacetime
translation	 invariance.	 However,	 this	 common-sense	 view	 is	 not	 wholly	 right.
Only	 when	 assuming	 the	 linearity	 of	 quantum	 dynamics,	 can	 spacetime
translation	 invariance	 lead	 to	 the	 conservation	 of	 energy	 and	 momentum.
Moreover,	 the	connection	between	 invariance	of	natural	 laws	and	conservation
laws	is	for	individual	states,	not	for	an	ensemble	of	identical	states.	Although	a
nonlinear	 evolution	 of	 the	 wave	 function	 can	 readily	 satisfy	 spacetime
translation	 invariance,	 the	 invariance	can	no	 longer	 lead	 to	 the	conservation	of
energy	 and	 momentum,	 let	 alone	 determining	 the	 form	 of	 the	 nonlinear
evolution.	 Rather,	 a	 universal	 nonlinear	 evolution	 that	 applies	 to	 all	 possible
states	will	inevitably	violate	the	conservation	of	energy	and	momentum.



Since	 the	 conservation	 of	 energy	 and	 momentum	 is	 required	 by	 spacetime
translation	 invariance	 only	 for	 the	 linear	 evolution	 of	 the	wave	 function	 of	 an
isolated	 system,	 the	 principle	 cannot	 exclude	 the	 existence	 of	 a	 possible
nonlinear	 evolution	 that	 may	 violate	 it.	 In	 other	 words,	 spacetime	 translation
invariance	 is	 no	 longer	 a	 reason	 to	 require	 that	 the	 evolution	 of	 the	 wave
function	 of	 an	 isolated	 system	must	 conserve	 energy	 and	momentum.	 On	 the
other	hand,	the	conservation	of	energy	and	momentum	may	still	hold	true	for	an
ensemble	 of	 identical	 isolated	 systems	 as	 claimed	 by	 the	 standard	 quantum
mechanics.	Therefore,	 a	 (universal)	 stochastic	 nonlinear	 evolution	of	 the	wave
function	 may	 exist.	 Although	 such	 evolutions	 cannot	 conserve	 energy	 and
momentum	for	 individual	states,	 it	may	conserve	energy	and	momentum	at	 the
ensemble	 level.	 However,	 unlike	 the	 linear	 evolution,	 which	 is	 natural	 in	 the
sense	that	 its	form	can	be	uniquely	determined	by	the	invariance	requirements,
the	stochastic	nonlinear	evolution	must	have	a	physical	origin,	and	its	form	can
only	be	determined	by	 the	underlying	mechanism.	 In	 the	next	chapter,	we	will
investigate	the	possible	stochastic	nonlinear	evolution	of	the	wave	function.



	
Chapter	4
The	Solution	to	the	Measurement	Problem
Was	the	wavefunction	of	the	world	waiting	to	jump	for	thousands	of	millions	of
years	 until	 a	 single-celled	 living	 creature	 appeared?	Or	 did	 it	 have	 to	 wait	 a
little	longer,	for	some	better	qualified	system	...	with	a	Ph.D.?	...	Do	we	not	have
jumping	then	all	the	time?

—John	Bell
In	 standard	 quantum	mechanics,	 it	 is	 postulated	 that	when	 a	wave	 function	 is
measured	 by	 a	 macroscopic	 device,	 it	 will	 no	 longer	 follow	 the	 linear
Schrödinger	equation,	but	instantaneously	collapse	to	one	of	the	wave	functions
that	correspond	to	definite	measurement	results.	However,	this	collapse	postulate
is	 ad	 hoc[44],	 and	 the	 theory	 does	 not	 tell	 us	 why	 and	 how	 a	 definite
measurement	result	appears	(Bell	1990).
There	are	in	general	two	ways	to	solve	the	measurement	problem.	The	first	one
is	to	integrate	the	collapse	evolution	with	the	normal	Schrödinger	evolution	into
a	unified	dynamics,	e.g.	in	the	dynamical	collapse	theories	(Ghirardi	2008).	The
second	way	 is	 to	 reject	 the	collapse	postulate	and	assume	 that	 the	Schrödinger
equation	completely	describes	the	evolution	of	the	wave	function.	There	are	two
main	alternative	 theories	for	avoiding	collapse.	The	first	one	 is	 the	de	Broglie-
Bohm	theory	(de	Broglie	1928;	Bohm	1952),	which	takes	the	wave	function	as
an	 incomplete	 description	 and	 adds	 some	 hidden	 variables	 to	 explain	 the
emergence	 of	 definite	 measurement	 results.	 The	 second	 is	 the	 many-worlds
interpretation	 (Everett	 1957;	 DeWitt	 and	 Graham	 1973),	 which	 assumes	 the
existence	of	many	equally	real	worlds	corresponding	to	different	possible	results
of	quantum	experiments	and	still	regards	the	unitarily	evolving	wave	function	as
a	complete	description	of	the	total	worlds.
It	has	been	in	hot	debate	which	solution	to	the	measurement	problem	is	the	right
one	 or	 in	 the	 right	 direction.	 One	 of	 the	 main	 reasons	 is	 that	 the	 physical
meaning	 of	 the	 wave	 function	 is	 not	 well	 understood.	 The	 failure	 of	 making
sense	of	the	wave	function	is	partly	because	the	problem	is	only	investigated	in
the	 context	 of	 conventional	 impulse	 measurements.	 As	 we	 have	 seen	 in	 the
previous	 chapters,	 with	 the	 help	 of	 protective	 measurement,	 the	 problem	 of
interpreting	 the	wave	 function	 can	 be	 solved	 independent	 of	 how	 to	 solve	 the
measurement	 problem.	Since	 the	 principle	 of	 protective	measurement	 is	 based
on	 the	 established	parts	 of	 quantum	mechanics,	 namely	 the	 linear	Schrödinger
evolution	of	the	wave	function	(for	microscopic	systems)	and	the	Born	rule,	its
implications[45],	 especially	 the	 suggested	 interpretation	 of	 the	 wave	 function



based	on	 it,	 can	be	used	 to	examine	 the	existing	 solutions	 to	 the	measurement
problem	before	experiments	give	the	last	verdict	(cf.	Marshall	et	al	2003)[46].
In	this	chapter,	we	will	analyze	the	implications	of	protective	measurement	and
the	suggested	interpretation	of	the	wave	function	based	on	it	for	the	solution	to
the	measurement	problem.	It	is	first	shown	that	the	two	main	quantum	theories
without	 wavefunction	 collapse,	 namely	 the	 de	 Broglie-Bohm	 theory	 and	 the
many-worlds	 interpretation,	 are	 inconsistent	 with	 protective	 measurement	 and
the	picture	of	random	discontinuous	motion	of	particles.	This	result	implies	that
wavefunction	 collapse	 is	 a	 real	 physical	 process.	 Next,	 it	 is	 argued	 that	 the
random	discontinuous	motion	 of	 particles	may	 provide	 an	 appropriate	 random
source	to	collapse	the	wave	function.	Moreover,	 the	wavefunction	collapse	is	a
discrete	process	due	 to	 the	discontinuity	of	motion,	 and	 the	collapse	 states	 are
energy	 eigenstates	 when	 the	 principle	 of	 conservation	 of	 energy	 is	 satisfied.
Based	 on	 these	 analyses,	 we	 further	 propose	 a	 discrete	 model	 of	 energy-
conserved	wavefunction	collapse.	 It	 is	 shown	 that	 the	model	 is	consistent	with
existing	experiments	and	our	macroscopic	experience.	We	also	provide	a	critical
analysis	 of	 other	 dynamical	 collapse	 models,	 including	 Penrose’s	 gravity-
induced	 collapse	 model	 and	 the	 CSL	 (Continuous	 Spontaneous	 Localization)
model.
4.1	The	reality	of	wavefunction	collapse
At	 first	 sight,	 the	 main	 solutions	 to	 the	 measurement	 problem,	 i.e.,	 the	 de
Broglie-Bohm	 theory,	 the	 many-worlds	 interpretation	 and	 dynamical	 collapse
theories,	 seem	 apparently	 inconsistent	 with	 the	 suggested	 interpretation	 of	 the
wave	function.	They	all	attach	reality	to	the	wave	function,	e.g.	taking	the	wave
function	as	a	 real	physical	entity	on	configuration	space	or	assuming	 the	wave
function	 has	 a	 field-like	 spatiotemporal	 manifestation	 in	 the	 real	 three-
dimensional	space	(see,	e.g.	Ghirardi	1997,	2008;	Wallace	and	Timpson	2009).
But	according	 to	our	suggested	 interpretation,	 the	wave	function	 is	not	a	 field-
like	physical	entity	on	configuration	space[47];	rather,	 it	 is	a	description	of	 the
random	discontinuous	motion	of	particles	in	real	space	(and	at	a	deeper	level	a
description	 of	 the	 dispositional	 property	 of	 the	 particles	 that	 determines	 their
random	 discontinuous	 motion).	 Anyway,	 in	 spite	 of	 the	 various	 views	 on	 the
wave	 function	 in	 these	 theories,	 they	 never	 interpret	 the	 wave	 function	 as	 a
description	of	 the	motion	of	particles	 in	real	space.	However,	on	the	one	hand,
the	interpretation	of	the	wave	function	in	these	theories	is	still	an	unsettled	issue,
and	on	the	other	hand,	these	theories	may	be	not	influenced	by	the	interpretation
of	the	wave	function	in	a	significant	way.	Therefore,	they	may	be	consistent	with
our	suggested	interpretation	of	the	wave	function	after	certain	revision.



4.1.1	Against	the	de	Broglie-Bohm	theory
Let's	 first	 investigate	 the	 de	 Broglie-Bohm	 theory	 (de	 Broglie	 1928;	 Bohm
1952).	 According	 to	 the	 theory,	 a	 complete	 realistic	 description	 of	 a	 quantum
system	is	provided	by	the	configuration	defined	by	the	positions	of	its	particles
together	 with	 its	 wave	 function.	 The	 wave	 function	 follows	 the	 linear
Schrödinger	 equation	 and	 never	 collapses.	 The	 particles,	 called	 Bohmian
particles,	are	guided	by	 the	wave	 function	via	 the	guiding	equation	 to	undergo
deterministic	continuous	motion.	The	result	of	a	measurement	is	indicated	by	the
positions	 of	 the	 Bohmian	 particles	 representing	 the	 pointer	 of	 the	 measuring
device,	 and	 thus	 it	 is	 always	 definite.	Moreover,	 it	 can	 be	 shown	 that	 the	 de
Broglie-Bohm	 theory	 gives	 the	 same	 predictions	 of	 measurement	 results	 as
standard	quantum	mechanics	by	means	of	a	quantum	equilibrium	hypothesis	(so
long	 as	 the	 latter	 gives	 unambiguous	 predictions).	 Concretely	 speaking,	 the
quantum	equilibrium	hypothesis	provides	the	initial	conditions	for	the	guidance
equation	which	make	the	de	Broglie-Bohm	theory	obey	Born's	rule	in	terms	of
position	 distributions.	 Moreover,	 since	 all	 measurements	 can	 be	 finally
expressed	 in	 terms	 of	 position,	 e.g.	 pointer	 positions,	 this	 amounts	 to	 full
accordance	with	all	predictions	of	quantum	mechanics[48].	In	this	way,	it	seems
that	 the	 de	 Broglie-Bohm	 theory	 can	 succeed	 in	 avoiding	 the	 collapse	 of	 the
wave	function.
However,	although	the	de	Broglie-Bohm	theory	is	mathematically	equivalent	to
quantum	 mechanics,	 there	 is	 no	 clear	 consensus	 with	 regard	 to	 its	 physical
interpretation.	 The	 physical	 contents	 of	 the	 theory	 contain	 three	 parts:	 the
Bohmian	particles,	the	wave	function,	and	the	interaction	between	them.	We	first
analyze	the	Bohmian	particles	and	their	physical	properties.	It	is	fair	to	say	that
what	physical	properties	a	Bohmian	particle	has	 is	 still	 an	unsettled	 issue,	 and
different	proponents	of	the	theory	may	have	different	opinions.	For	example,	 it
has	been	often	claimed	that	a	Bohmian	particle	has	mass,	as	the	guiding	equation
for	each	Bohmian	particle	of	a	many-body	system	obviously	contains	the	mass
of	 each	 subsystem	 (Goldstein	2009).	Yet	 it	 seems	unclear	whether	 the	mass	 is
inertial	mass	or	(passive	or	active)	gravitational	mass	or	both	or	neither.	On	the
other	 hand,	 it	 has	 been	 argued	 that	 the	 mass	 of	 a	 quantum	 system	 should	 be
possessed	by	its	wave	function,	not	by	its	Bohmian	particles	(Brown,	Dewdney
and	Horton	1995).	It	was	even	claimed	(without	proof)	that	a	Bohmian	particle
has	no	properties	other	 than	 its	position	(Hanson	and	Thoma	2011).	 In	 the	 last
analysis,	 in	order	 to	know	exactly	what	physical	properties	a	Bohmian	particle
has,	we	need	to	analyze	the	guiding	equation	that	defines	the	laws	of	motion	for
them.



In	 the	 minimum	 formulation	 of	 the	 theory,	 which	 is	 usually	 called	 Bohmian
mechanics	 (Goldstein	 2009)[49],	 the	 guiding	 equation	 contains	 an
electromagnetic	 interaction	 term	 eA(x,t)	 for	 the	 Bohmian	 particle	 of	 a	 one-
particle	 system	 with	 mass	 m	 and	 charge	 e	 in	 the	 presence	 of	 an	 external
electromagnetic	field[50].	According	to	this	equation,	the	motion	of	a	Bohmian
particle	 is	 not	 only	 guided	 by	 the	 wave	 function,	 but	 also	 influenced	 by	 the
external	 vector	 potential.	 In	 particular,	 the	 existence	 of	 the	 electromagnetic
interaction	term	indicates	that	the	Bohmian	particle	has	the	charge	of	the	system,
and	 the	charge	 is	 localized	 in	 its	position[51].	Similarly,	 the	appearance	of	 the
mass	of	the	system	in	the	equation	indicates	that	the	Bohmian	particle	also	has
the	 (inertial)	mass	of	 the	 system.	Therefore,	 according	 to	Bohmian	mechanics,
the	Bohmian	particle	of	a	one-particle	system	such	as	an	electron	has	the	mass
and	charge	of	the	system.	For	example,	in	the	ground	state	of	a	hydrogen	atom,
the	Bohmian	particle	of	the	electron	in	the	atom	has	the	mass	and	charge	of	the
electron,	and	 it	 is	at	 rest	 in	a	 random	position	 relative	 to	 the	nucleus.	That	 the
Bohmian	particle	of	a	one-particle	system	has	the	mass	and	charge	of	the	system
can	 be	 seen	 more	 clearly	 from	 the	 quantum	 potential	 formulation	 of	 the	 de
Broglie-Bohm	 theory.	 Its	 guiding	 equation	 contains	 both	 an	 electromagnetic
interaction	 term	and	a	gravitational	 interaction	 term	in	 the	presence	of	external
electromagnetic	 field	 and	gravitational	 field,	which	 indicates	 that	 the	Bohmian
particle	has	the	charge	and	(passive	gravitational)	mass	of	the	system.
It	 can	 be	 seen	 that	 although	 a	 Bohmian	 particle	 has	 mass	 and	 charge,	 the
functions	 of	 these	 properties	 are	 not	 as	 complete	 as	 usual.	 For	 example,	 in
Bohmian	 mechanics,	 a	 charged	 Bohmian	 particle	 responds	 not	 to	 the	 electric
scalar	 potential,	 but	 only	 to	 the	 magnetic	 vector	 potential,	 and	 it	 has	 no
gravitational	mass	but	only	inertial	mass.	This	apparent	abnormality	is	in	want	of
a	 reasonable	 physical	 explanation.	 In	 addition,	 in	 the	 quantum	 potential
formulation,	 although	 the	 Bohmian	 particles	 of	 a	 quantum	 system	 respond	 to
external	 gravitational	 and	 electromagnetic	 potentials,	 they	 don't	 have
gravitational	and	electromagnetic	influences	on	other	charged	quantum	systems,
including	 their	 Bohmian	 particles.	 Moreover,	 the	 Bohmian	 particles	 of	 a
quantum	system	do	not	have	gravitational	and	electromagnetic	interactions	with
each	other.	Therefore,	the	(gravitational)	mass	and	charge	of	a	Bohmian	particle
are	 always	 passive,	 i.e.,	 a	Bohmian	 particle	 is	 only	 a	 receptor	 of	 gravitational
and	electromagnetic	interactions.	This	characteristic	may	lead	to	some	problems.
For	 one,	 the	 nonreciprocal	 interactions	will	 violate	 the	 conservation	 of	 energy
and	 momentum	 (except	 that	 the	 Bohmian	 particles	 have	 no	 momentum	 and
energy).	 At	 the	 worst,	 it	 may	 already	 suggest	 that	 the	 hypothetical	 Bohmian



particles	 are	 redundant	 entities	 in	 the	 theory	 (and	 their	 role	 in	 solving	 the
measurement	 problem	 is	 ad	 hoc),	 since	 they	 have	 no	 any	 influence	 on	 other
entities	in	the	theory	such	as	the	wave	function.	Note	that	these	problems	do	not
exist	 for	 the	 wave	 function;	 the	 evolution	 of	 the	 wave	 function	 of	 a	 charged
quantum	 system	 is	 influenced	 by	 both	 electric	 scalar	 potential	 and	 magnetic
vector	potential,	as	well	as	by	gravitational	potential,	and	the	wave	functions	of
two	 charged	 quantum	 systems	 also	 have	 gravitational	 and	 electromagnetic
interactions	with	each	other.
Another	suggestion	of	the	non-existence	of	Bohmian	particles	concerns	the	mass
and	charge	distributions	of	a	one-particle	system	such	as	an	electron.	As	we	have
shown	above,	the	guiding	equation	in	the	de	Broglie-Bohm	theory	requires	that
the	Bohmian	 particle	 of	 a	 one-particle	 system	 has	 the	mass	 and	 charge	 of	 the
system,	and	the	mass	and	charge	are	localized	in	a	position	where	the	Bohmian
particle	 is.	On	 the	 other	 hand,	 as	 noted	 before,	 protective	measurement	 shows
that	 the	mass	 and	 charge	 of	 a	 one-particle	 system	 such	 as	 an	 electron	 are	 not
localized	 in	 one	 position	 but	 distributed	 throughout	 space,	 and	 the	 mass	 and
charge	density	in	each	position	is	proportional	to	the	modulus	square	of	its	wave
function	 there.	Therefore,	 the	de	Broglie-Bohm	 theory	 is	 inconsistent	with	 the
results	of	protective	measurement	concerning	the	mass	and	charge	distributions
of	a	quantum	system[52].	This	poses	a	serious	objection	to	the	de	Broglie-Bohm
theory.
Now	let's	turn	to	the	wave	function	in	the	de	Broglie-Bohm	theory.	Admittedly,
the	 interpretation	 of	 the	 wave	 function	 in	 the	 theory	 has	 been	 debated	 by	 its
proponents.	For	example,	the	wave	function	has	been	regarded	as	a	field	similar
to	 electromagnetic	 field	 (Bohm	 1952),	 an	 active	 information	 field	 (Bohm	 and
Hiley	 1993),	 a	 field	 carrying	 energy	 and	momentum	 (Holland	 1993),	 a	 causal
agent	 more	 abstract	 than	 ordinary	 fields	 (Valentini	 1997),	 a	 component	 of
physical	law	(Durr,	Goldstein	and	Zangh`i	1997),	and	a	dispositional	property	of
Bohmian	 particles	 (Belot	 2011)	 etc.	 Notwithstanding	 the	 differences	 between
these	existing	interpretations,	they	are	inconsistent	with	the	meaning	of	the	wave
function	as	 implied	by	 the	 results	of	protective	measurement.	To	say	 the	 least,
they	 fail	 to	explain	 the	existence	of	 the	mass	and	charge	density	 for	a	charged
quantum	 system,	 which	 is	 measurable	 by	 protective	 measurement	 and
proportional	 to	 the	 modulus	 square	 of	 the	 wave	 function	 of	 the	 system.	 Our
previous	analysis	shows	that	the	mass	and	charge	density	of	a	quantum	system	is
formed	 by	 the	 ergodic	 motion	 of	 a	 localized	 particle	 with	 the	 total	 mass	 and
charge	 of	 the	 system,	which	 is	 discontinuous	 and	 random	 in	 nature.	 Thus	 the
wave	function	describes	 the	state	of	 random	discontinuous	motion	of	particles,



and	at	a	deeper	 level,	 it	 represents	 the	property	of	 the	particles	 that	determines
their	 random	 discontinuous	 motion.	 Since	 the	 principle	 of	 protective
measurement	is	based	on	the	linear	Schrödinger	evolution	of	the	wave	function
and	 the	 Born	 rule,	 which	 also	 hold	 true	 in	 the	 de	 Broglie-Bohm	 theory,	 its
implications,	especially	the	resulting	interpretation	of	the	wave	function,	are	still
valid	in	the	theory.
The	 realistic	 interpretation	 of	 the	 wave	 function	 poses	 another	 serious	 threat
against	 the	Bohmian-particles	 explanation	 of	 the	 guiding	 equation	 imposed	 by
the	 de	 Broglie-Bohm	 theory.	 The	 guiding	 equation	 is	 only	 a	 mathematical
transformation	of	the	relation	between	the	density	ρ	and	the	flux	density	j	for	the
wave	function;	the	relation	is	j	=	ρv,	while	the	guiding	equation	is	v=j/ρ.	Since
the	wave	function	of	a	quantum	system	is	not	merely	a	probability	amplitude	for
the	 predictions	 of	 measurement	 results,	 but	 also	 a	 realistic	 description	 of	 the
physical	 state	 of	 the	 system	 as	 implied	 by	 protective	 measurement[53],	 the
guiding	equation	already	has	a	physical	explanation	relating	only	to	the	realistic
wave	function.	Inasmuch	as	a	fundamental	mathematical	equation	in	a	physical
theory	 has	 a	 unique	 physical	 explanation,	 the	 additional	 explanation	 of	 the
guiding	 equation	 relating	 to	 the	 hypothetical	 Bohmian	 particles	 will	 be
improper[54].	 In	 addition,	 the	 positions	 of	 the	 Bohmian	 particles	 as	 added
(hidden)	 variables	 seem	 redundant	 too[55].	 In	 some	 sense,	 there	 are	 already
additional	 variables	 besides	 the	 wave	 function	 for	 the	 random	 discontinuous
motion	of	particles.	They	are	the	definite	position,	momentum	and	energy	of	the
particles	 at	 each	 instant.	 Though	 these	 variables	 are	 not	 continuous	 and
deterministic,	 their	 random	motion	might	 just	 lead	 to	 the	stochastic	collapse	of
the	 wave	 function	 and	 further	 account	 for	 the	 emergence	 of	 random
measurement	results.	We	will	discuss	this	possibility	in	detail	later	on.
Lastly,	we	 analyze	 the	 hypothetical	 interaction	 between	 the	Bohmian	 particles
and	 the	wave	 function	 in	 the	 de	Broglie-Bohm	 theory.	 It	 can	 be	 seen	 that	 the
guiding	responsibility	of	the	wave	function	assumed	by	the	theory	is	inconsistent
with	 the	 meaning	 of	 the	 wave	 function.	 As	 noted	 above,	 the	 wave	 function
represents	 the	property	of	particles	 that	determines	 their	 random	discontinuous
motion.	Accordingly,	the	wave	function	indeed	guides	the	motion	of	particles	in
some	sense.	However,	the	wave	function	guides	the	motion	of	the	particles	not	in
a	deterministic	and	continuous	way	as	assumed	by	the	de	Broglie-Bohm	theory,
but	 in	 a	 probabilistic	 and	 discontinuous	way;	 the	modulus	 square	 of	 the	wave
function	determines	the	probability	density	of	 the	particles	appearing	in	certain
positions	 in	 space.	 Moreover,	 the	 motion	 of	 these	 particles	 is	 ergodic.	 By
contrast,	 the	 motion	 of	 the	 Bohmian	 particles	 is	 not	 ergodic,	 and	 the	 time



averages	of	the	Bohmian	particles’	positions	typically	differ	remarkably	from	the
ensemble	averages	(Aharonov,	Erez	and	Scully	2004).
Although	one	may	assume	that	a	quantum	system	contains	additional	Bohmian
particles	besides	 its	non-Bohmian	particles	 that	undergo	 random	discontinuous
motion,	 the	 motion	 of	 the	 Bohmian	 particles	 cannot	 be	 guided	 by	 the	 wave
function	 of	 the	 system.	 For	 the	 wave	 function	 of	 the	 system	 represents	 the
property	 of	 the	 non-Bohmian	 particles	 of	 the	 system,	 and	 its	 efficiency	 is	 to
guide	the	motion	of	these	particles	in	a	probabilistic	way.	In	particular,	the	wave
function	is	neither	a	field-like	entity	distributing	throughout	space	nor	a	property
of	the	Bohmian	particles	that	may	guide	their	motion,	and	at	every	instant	there
are	only	non-Bohmian	particles	being	in	positions	that	are	usually	far	from	the
positions	of	the	hypothetical	Bohmian	particles.	Note	also	that	the	non-Bohmian
particles	 cannot	 have	 known	 interactions	 such	 as	 gravitational	 and
electromagnetic	 interactions	 with	 the	 Bohmian	 particles	 either;	 otherwise	 the
theory	 will	 contradict	 quantum	 mechanics	 and	 experiments.	 Without	 being
guided	 by	 the	 wave	 function	 in	 a	 proper	 way,	 the	 motion	 of	 the	 Bohmian
particles	will	be	unable	to	generate	the	right	measurement	results	in	conventional
impulse	measurements.
In	conclusion,	we	have	argued	 that	 the	de	Broglie-Bohm	theory	 is	 inconsistent
with	the	results	of	protective	measurement	and	the	meaning	of	the	wave	function
implied	by	them	when	considering	its	physical	contents.
4.1.2	Against	the	many-worlds	interpretation
Now	let's	turn	to	the	second	approach	to	avoid	wavefunction	collapse,	the	many-
worlds	interpretation.	Although	this	theory	is	widely	acknowledged	as	one	of	the
main	alternatives	 to	quantum	mechanics,	 its	many	 fundamental	 issues,	e.g.	 the
preferred	 basis	 problem	 and	 the	 interpretation	 of	 probability,	 have	 not	 been
completely	 solved	 yet	 (see	 Barrett	 1999,	 2011;	 Saunders	 et	 al	 2010	 and
references	 therein).	 In	 this	 subsection,	 we	 will	 mainly	 analyze	 whether	 the
existence	 of	 many	 worlds	 is	 consistent	 with	 the	 results	 of	 protective
measurement	and	the	picture	of	random	discontinuous	motion	of	particles.
According	 to	 the	 many-worlds	 interpretation,	 each	 component	 of	 the	 wave
function	 of	 a	 measuring	 device	 that	 represents	 a	 definite	 measurement	 result
corresponds	 to	each	world	among	 the	many	worlds	 (Barrett	2011).	This	means
that	in	one	world	there	is	only	one	component	of	the	superposed	wave	function
and	 the	 other	 components	 do	 not	 exist,	 and	 thus	 these	 components	 that
correspond	to	the	other	worlds	cannot	be	observed	in	this	world.	As	a	result,	in
every	world	the	whole	superposed	wave	function	of	the	measuring	device	cannot
be	measured.	 If	all	components	of	 the	superposed	wave	 function	of	 the	device
can	 be	 observed	 in	 one	 world,	 then	 they	 will	 all	 exist	 in	 this	 world,	 which



obviously	contradicts	the	many-worlds	interpretation.
It	is	unsurprising	that	the	existence	of	such	many	worlds	may	be	consistent	with
the	 results	 of	 conventional	 impulse	 measurements,	 as	 the	 many-worlds
interpretation	is	just	invented	to	explain	the	emergence	of	these	results,	e.g.	 the
definite	 measurement	 result	 in	 each	 world	 always	 denotes	 the	 result	 of	 a
conventional	 impulse	 measurement.	 However,	 this	 does	 not	 guarantee
consistency	 for	 all	 types	 of	 measurements.	 Indeed,	 it	 can	 be	 seen	 that	 the
existence	of	 the	many	worlds	 defined	 above	 is	 inconsistent	with	 the	 results	 of
protective	measurements.	The	reason	is	that	the	whole	superposed	wave	function
of	 a	 quantum	 system	 including	 a	 measuring	 device	 can	 be	 measured	 by	 a
protective	 measurement[56].	 The	 result	 of	 the	 protective	 measurement	 as
predicted	by	quantum	mechanics	indicates	that	all	components	of	the	superposed
wave	 function	 of	 the	 measuring	 device	 exist	 in	 the	 same	 world	 where	 the
protective	 measurement	 is	 made.	 Therefore,	 according	 to	 protective
measurement,	 the	components	of	 the	superposed	wave	function	of	a	measuring
device,	 each	 of	 which	 represents	 a	 definite	 measurement	 result,	 do	 not
correspond	to	many	worlds,	in	each	of	which	there	is	only	one	such	component
and	 a	 copy	 of	 the	 measuring	 device	 that	 obtains	 a	 definite	 result;	 rather,	 the
whole	superposed	wave	function	of	the	measuring	device,	if	it	exists,	only	exists
in	one	world,	namely	our	world,	and	in	this	world	there	is	only	one	measuring
device	 that	 obtains	 no	 definite	 result.	 In	 this	 way,	 protective	 measurement
provides	a	strong	argument	against	the	many-worlds	interpretation[57].
Four	points	are	worth	stressing.	First	of	all,	the	above	argument	does	not	depend
on	how	the	many	worlds	are	precisely	defined	in	the	many-worlds	interpretation.
For	 example,	 it	 is	 irrelevant	 to	 whether	 the	 many	 worlds	 are	 fundamental	 or
emergent,	and	in	particular,	it	also	applies	to	Wallace’s	formulation	of	the	many-
worlds	interpretation	based	on	a	structuralist	view	on	macro-ontology.	The	key
point	 is	 that	 all	 components	 of	 the	 superposed	 wave	 function	 of	 a	 measuring
device	 can	 be	 detected	 by	 protective	 measurement	 in	 one	 world,	 namely	 our
world,	and	 thus	 they	all	exist	 in	 this	world.	Therefore,	 it	 is	 impossible	 that	 the
superposed	wave	 function	of	 a	measuring	device	 corresponds	 to	many	worlds,
only	one	of	which	is	our	world[58].
Next,	 the	 above	 argument	 is	 not	 influenced	 by	 environment-induced
decoherence.	On	 the	 one	 hand,	 even	 if	 the	 superposition	 state	 of	 a	measuring
device	 is	 entangled	with	 the	 states	of	other	 systems,	 the	 entangled	 state	of	 the
whole	 system	 can	 also	 be	 measured	 by	 protective	 measurement	 in	 principle
(Anandan	1993).	The	method	 is	by	adding	appropriate	protection	procedure	 to
the	whole	system	so	that	its	entangled	state	is	a	nondegenerate	eigenstate	of	the



total	 Hamiltonian	 of	 the	 system	 together	 with	 the	 added	 potential.	 Then	 the
entangled	state	can	be	protectively	measured.	On	 the	other	hand,	environment-
induced	 decoherence	 is	 not	 an	 essential	 element	 of	 the	 many-worlds
interpretation.	Even	when	a	measuring	device	is	isolated	from	environment	(and
the	measured	particle	is	absorbed	by	the	device),	the	interpretation	also	requires
that	 each	 component	 of	 the	 wave	 function	 of	 the	 measuring	 device	 in	 which
there	 is	 a	 definite	 measurement	 result	 corresponds	 to	 each	 world	 among	 the
many	worlds;	otherwise	 the	many-worlds	 interpretation	will	not	give	 the	 same
predictions	of	measurement	 results	as	standard	quantum	mechanics	 (so	 long	as
the	latter	gives	unambiguous	predictions).
Thirdly,	the	above	argument	does	not	require	protective	measurement	to	be	able
to	 distinguish	 the	 superposed	 wave	 function	 of	 a	 measuring	 device	 (in	 each
component	 of	 which	 there	 is	 a	 definite	 measurement	 result)	 from	 one	 of	 its
components,	or	whether	the	superposed	wave	function	collapses	or	not	during	a
conventional	 impulse	 measurement.	 Since	 the	 determination	 demands	 the
distinguishability	of	two	non-orthogonal	states,	which	is	prohibited	by	quantum
mechanics,	 no	 measurements	 consistent	 with	 the	 theory	 including	 protective
measurement	 can	 do	 this.	What	 protective	measurement	 tells	 us	 is	 that	 such	 a
superposed	 wave	 function,	 which	 existence	 is	 assumed	 by	 the	 many-worlds
interpretation,	 does	 not	 correspond	 to	 the	 many	 worlds	 defined	 by	 the	 many-
worlds	 interpretation.	 In	 other	 words,	 protective	 measurement	 reveals
inconsistency	of	the	many-worlds	interpretation.	Lastly,	we	stress	again	that	the
principle	of	protective	measurement	is	irrelevant	to	the	controversial	process	of
wavefunction	collapse	and	only	depends	on	the	linear	Schrödinger	evolution	and
the	 Born	 rule.	 As	 a	 result,	 protective	 measurement	 can	 (at	 least)	 be	 used	 to
examine	the	internal	consistency	of	the	no-collapse	solutions	to	the	measurement
problem,	e.g.	 the	many-worlds	 interpretation,	 before	 experiments	 give	 the	 last
verdict.
In	the	following,	we	will	further	show	that	the	existence	of	many	worlds	is	not
consistent	with	the	picture	of	random	discontinuous	motion	of	particles	either.	In
order	to	examine	the	many-worlds	interpretation,	it	is	necessary	to	know	exactly
what	a	quantum	superposition	is.	No	matter	how	to	define	the	many	worlds,	they
correspond	 to	 some	 components	 of	 a	 quantum	 superposition	 after	 all	 (e.g.	 the
components	where	measuring	devices	obtain	definite	 results,	 and	 in	particular,
observers	 have	 definite	 conscious	 experience).	 According	 to	 the	 picture	 of
random	discontinuous	motion	of	 particles,	 a	 quantum	 superposition	 exists	 in	 a
form	of	time	division.	For	a	superposition	of	two	positions	A	and	B	of	a	quantum
system	 (e.g.	 the	 pointer	 of	 a	 measuring	 device),	 the	 system	 randomly	 and
discontinuously	 jumps	 between	 these	 two	 positions.	 At	 some	 random	 and



discontinuous	 instants	 the	system	is	 in	position	A,	and	at	other	 instants	 it	 is	 in
position	B.	 In	 this	picture	of	quantum	superposition,	 it	 is	obvious	 that	 there	 is
only	 one	 system	 all	 along,	 which	 randomly	 and	 discontinuously	 moves
throughout	 all	 components	 of	 the	 superposition,	 no	 matter	 the	 system	 is	 a
microscopic	particle	or	a	measuring	device	or	an	observer.	In	other	words,	there
is	only	one	world	whose	instantaneous	state	is	constantly	changing	in	a	random
and	discontinuous	way.
This	 conclusion	 is	 also	 supported	 by	 a	 comparison	 between	 discontinuous
motion	and	continuous	motion.	For	a	quantum	particle	undergoing	discontinuous
motion,	 the	 position	 of	 the	 particle	 changes	 discontinuously.	 For	 a	 classical
particle,	 its	 position	 changes	 continuously.	 There	 is	 no	 essential	 difference
between	these	two	kinds	of	changes.	For	both	cases	the	position	of	the	particle	is
always	 definite	 at	 each	 instant,	 and	 the	 positions	 of	 the	 particle	 at	 different
instants	 may	 be	 different.	 Moreover,	 the	 discontinuous	 change,	 like	 the
continuous	 change,	 does	 not	 create	 the	 many	 worlds,	 because,	 among	 other
reasons,	the	change	happens	all	the	while	but	the	creating	process	only	happens
once.	Therefore,	if	there	is	only	one	world	in	classical	mechanics,	then	there	is
also	 one	 world	 in	 quantum	 mechanics	 according	 to	 the	 picture	 of	 random
discontinuous	motion	of	particles,	no	matter	how	the	many	worlds	are	precisely
defined.
We	 have	 argued	 that	 there	 are	 no	 many	 (physical)	 worlds	 as	 claimed	 by	 the
many-worlds	interpretation,	and	in	particular,	even	if	the	physical	state	or	brain
state	 of	 an	 observer	 is	 in	 a	 quantum	 superposition,	 there	 is	 still	 one	 physical
observer.	 However,	 the	 argument	 does	 not	 exclude	 the	 variants	 of	 the	 many-
worlds	 interpretation	 that	 assume	 a	 distinct	 dynamics	 for	 the	 evolution	 of	 an
observer's	mental	 state,	e.g.	 the	many-minds	 theory	 (Albert	 and	Loewer	 1988)
[59].	For	example,	although	the	superposed	brain	state	of	an	observer	does	not
correspond	 to	 many	 physical	 observers,	 each	 of	 which	 has	 a	 definite
measurement	 record,	 it	 may	 correspond	 to	many	minds	 of	 a	 unique	 observer,
each	of	which	has	the	experience	of	a	definite	measurement	record,	as	assumed
by	 the	 many-minds	 theory.	 Since	 what	 we	 can	 immediately	 access	 is	 not	 the
position	 of	 the	 pointer	 of	 a	 measuring	 device,	 but	 our	 immediate	 conscious
experience,	 it	 is	 indeed	 necessary	 to	 analyze	 the	 conscious	 experience	 of	 an
observer	during	a	conventional	 impulse	measurement.	 In	 the	final	analysis,	 the
measurement	problem	is	the	problem	of	explaining	the	apparent	incompatibility
of	 our	 determinate	 experience	 and	 the	 existence	 of	 indeterminate	 quantum
superpositions.
According	 to	 our	 existing	 experience,	 when	 an	 observer	 makes	 an	 impulse



measurement	(by	or	not	by	a	measuring	device)	on	a	quantum	superposition	of
two	 states	 of	 a	 measured	 system,	 each	 of	 which	 can	 lead	 to	 a	 determinate
conscious	perception	of	the	observer,	his	conscious	perception	is	randomly	one
of	the	determinate	perceptions	corresponding	to	the	two	states	(with	probability
being	 equal	 to	 the	 objective	 probability	 of	 the	 respective	 state	 in	 the
superposition).	The	question	is	whether	an	observer	in	a	quantum	superposition
of	 definite	 brain	 states,	 which	may	 be	 called	 a	 quantum	 observer,	 can	 have	 a
determinate	conscious	perception	corresponding	to	one	of	these	brain	states	in	a
probabilistic	way	consistent	with	the	above	experience.	We	will	argue	below	that
the	answer	is	negative.
According	 to	 the	 picture	 of	 random	 discontinuous	 motion	 of	 particles,	 for	 a
quantum	observer	there	is	still	one	physical	observer	whose	brain	state	is	definite
at	 every	 instant	 but	 undergoes	 random	 discontinuous	 change.	 There	 are	 three
possibilities	for	 the	conscious	perception	of	such	a	quantum	observer.	The	first
possibility	is	that	the	conscious	perception	of	a	quantum	observer	is	irrelevant	to
his	 superposed	 brain	 state.	 Obviously	 this	 possibility	 is	 inconsistent	 with	 the
above	 experience.	The	 second	 possibility	 is	 that	 the	 conscious	 perception	 of	 a
quantum	observer	depends	on	his	 superposed	brain	 state,	 and	 the	observer	can
instantaneously	 be	 conscious	 of	 his	 brain	 state.	 In	 this	 case,	 the	 conscious
perception	of	a	quantum	observer,	parallel	 to	his	brain	 state,	will	 also	undergo
random	 and	 discontinuous	 change	 between	 the	 determinate	 conscious
perceptions	corresponding	to	the	brain	states	in	the	superposition[60].	This	is	not
consistent	with	the	above	experience	either.
The	 third	 possibility	 is	 that	 the	 conscious	 perception	 of	 a	 quantum	 observer
depends	on	his	superposed	brain	state,	and	the	observer	can	be	conscious	of	his
brain	state	only	during	a	 finite	 time	 interval.	Then	 the	conscious	perception	of
the	 quantum	 observer	 will	 not	 undergo	 random	 and	 discontinuous	 change
between	 the	 conscious	 perceptions	 corresponding	 to	 the	 brain	 states	 in	 the
superposition,	as	the	time	average	of	his	brain	state	during	a	finite	time	interval
contains	 no	 randomness.	 In	 other	words,	 his	 conscious	 perception	will	 be	 not
random	but	fixed[61].	This	is	also	inconsistent	with	the	above	experience.
To	sum	up,	 the	above	analysis	shows	 that	 the	de	Broglie-Bohm	theory	and	 the
many-worlds	interpretation	are	inconsistent	with	protective	measurement	and	the
resulting	 interpretation	of	 the	wave	 function	 in	 terms	of	 random	discontinuous
motion	of	particles.	If	 there	are	no	hidden	variables	besides	 the	wave	function,
then	 the	 state	 of	 a	 quantum	 system	 including	 a	 measuring	 device	 will	 be
represented	only	by	its	wave	function.	If	there	are	no	many	worlds	either,	then	a
definite	measurement	 result,	which	 is	usually	denoted	by	a	definite	position	of



the	pointer	of	a	measuring	device,	will	be	represented	by	a	local	wave	packet	of
the	pointer,	rather	than	by	a	superposition	of	local	wave	packets.	As	a	result,	the
transition	 from	 microscopic	 uncertainty	 to	 macroscopic	 certainty	 (e.g.	 the
emergence	of	definite	measurement	results)	can	only	be	achieved	by	the	collapse
of	 the	 wave	 function.	 In	 other	 words,	 wavefunction	 collapse	 will	 be	 a	 real
physical	process.
As	 noted	 earlier,	 however,	 the	 existing	 ontology	 of	 the	 dynamical	 collapse
theories	 that	 admit	 the	 reality	 of	wavefunction	 collapse,	 such	 as	mass	 density
ontology	and	flash	ontology	(Ghirardi,	Grassi	and	Benatti	1995;	Ghirardi	1997,
2008;	Allori	et	al	2008),	is	inconsistent	with	the	picture	of	random	discontinuous
motion	 of	 particles.	 Especially,	 the	 existence	 of	 the	 effective	mass	 and	 charge
density	of	a	quantum	system,	which	 is	measurable	by	protective	measurement,
seems	 to	 already	 exclude	 the	 mass	 density	 ontology.	 In	 addition,	 the	 existing
dynamical	collapse	theories	are	still	phenomenological	models,	and	they	are	also
plagued	by	some	serious	problems	such	as	energy	non-conservation	etc	(Pearle
2007,	 2009).	 In	 particular,	 the	 physical	 origin	 of	 the	 wavefunction	 collapse,
including	the	origin	of	the	randomness	of	the	collapse	process,	is	still	unknown,
though	 there	 are	 already	 some	 interesting	 conjectures	 (see,	 e.g.	 Di´osi	 1989;
Penrose	1996).	In	the	following	sections,	we	will	try	to	solve	these	problems	and
propose	a	new	dynamical	collapse	model	in	terms	of	the	random	discontinuous
motion	of	particles.	A	more	detailed	 review	of	 the	existing	dynamical	collapse
theories	will	be	given	in	the	last	section.
4.2	The	origin	of	wavefunction	collapse
It	is	well	known	that	a	‘chooser’	and	a	‘choice’	are	needed	to	bring	the	required
dynamical	collapse	of	the	wave	function	(Pearle	1999).	The	chooser	is	the	noise
source	 that	 collapses	 the	wave	 function,	 and	 the	 choices	 are	 the	 states	 toward
which	 the	 collapse	 tends.	 In	 this	 section,	 we	 will	 first	 analyze	 these	 two
relatively	 easier	 problems	 and	 then	 investigate	 the	more	 difficult	 problem,	 the
physical	origin	of	wavefunction	collapse.
4.2.1	The	chooser	in	discrete	time
To	 begin	 with,	 let’s	 analyze	 the	 chooser	 problem.	 In	 the	 existing	 dynamical
collapse	models,	 the	 chooser	 is	 generally	 assumed	 to	 be	 an	 unknown	classical
noise	 field	 independent	of	 the	 collapsed	wave	 function	 (Pearle	2007,	2009).	 If
what	 the	 wave	 function	 describes	 is	 the	 random	 discontinuous	 motion	 of
particles,	then	it	seems	natural	to	assume	that	the	random	motion	of	particles	is
the	appropriate	noise	source	to	collapse	the	wave	function.	This	has	three	merits
at	 least.	 First,	 the	 noise	 source	 and	 its	 properties	 are	 already	 known.	 For
example,	 the	 probability	 of	 the	 particles	 being	 in	 certain	 position,	momentum
and	energy	at	each	instant	is	given	by	the	modulus	square	of	their	wave	function



at	the	instant.	Next,	this	noise	source	is	not	a	classical	field,	and	thus	the	model
can	avoid	 the	problems	 introduced	by	 the	 field	such	as	 the	problem	of	 infinite
energy	etc	(Pearle	2009).	Last	but	not	least,	the	random	discontinuous	motion	of
particles	 can	 also	manifest	 itself	 in	 the	 equation	 of	motion	 by	 introducing	 the
collapse	evolution	of	 the	wave	function.	 In	 the	following,	we	will	give	a	more
detailed	argument	for	this	claim.
According	 to	 the	 suggested	 interpretation	 of	 the	 wave	 function,	 the	 wave
function	of	a	quantum	particle	 is	an	instantaneous	dispositional	property	of	 the
particle	 that	 determines	 its	 random	 discontinuous	motion.	 However,	 the	 wave
function	is	not	a	complete	description	of	the	instantaneous	state	of	the	particle.
The	instantaneous	state	of	the	particle	at	a	given	instant	also	includes	its	random
position,	momentum	and	energy	at	the	instant,	which	may	be	called	the	random
part	 of	 the	 instantaneous	 state	 of	 the	 particle.	 Although	 the	 probability	 of	 the
particle	being	 in	 each	 random	 instantaneous	 state	 is	 completely	determined	by
the	 wave	 function,	 its	 stay	 in	 the	 state	 at	 each	 instant	 is	 a	 new	 physical	 fact
independent	of	the	wave	function.	Therefore,	it	seems	natural	to	assume	that	the
random	stays	of	the	particle	may	have	certain	physical	efficiency	that	manifests
in	 the	 complete	 equation	 of	 motion[62].	 Since	 the	 motion	 of	 the	 particle	 is
essentially	 random,	 its	 stay	 at	 an	 instant	 does	 not	 influence	 its	 stays	 at	 other
instants	 in	 any	 direct	 way.	 Then	 the	 random	 stays	 of	 the	 particle	 can	 only
manifest	 themselves	 in	 the	 equation	 of	 motion	 by	 their	 influences	 on	 the
evolution	of	 the	wave	 function[63].	 This	 forms	 a	 feedback	 in	 some	 sense;	 the
wave	 function	 of	 a	 particle	 determines	 the	 probabilities	 of	 its	 stays	 in	 certain
position,	 momentum	 and	 energy,	 while	 its	 random	 stay	 at	 each	 instant	 also
influences	the	evolution	of	the	wave	function	in	a	stochastic	way[64].
However,	the	existence	of	the	stochastic	influences	on	the	evolution	of	the	wave
function	relies	on	an	important	precondition:	the	discreteness	of	time.	If	time	is
continuous	and	instants	are	durationless,	the	random	stays	of	a	particle	can	have
no	stochastic	influence	on	anything.	The	reason	is	as	follows.	First,	the	duration
of	 each	 random	 stay	 of	 the	 particle	 is	 zero	 in	 continuous	 time.	 Due	 to	 the
randomness	of	motion,	when	there	are	at	least	two	possible	instantaneous	states
a	particle	can	move	between,	the	particle	cannot	stay	in	the	same	instantaneous
state	throughout	a	finite	time.	For	the	joint	probability	of	the	particle	being	in	the
same	instantaneous	state	for	all	infinitely	uncountable	instants	in	the	finite	time
interval	is	obviously	zero,	and	the	total	probability	of	the	particle	being	in	other
instantaneous	states	is	not	zero	at	any	instant	in	between	either.	In	other	words,
in	order	that	a	particle	stays	in	the	same	instantaneous	state	for	a	finite	time,	the
probability	of	 the	particle	being	 in	 this	 instantaneous	 state	must	be	one	all	 the



while	during	 the	entire	 interval.	This	 is	possible	only	 for	 the	banal	case	where
there	 is	 only	 one	 instantaneous	 state	 the	 particle	 can	 stay	 and	 thus	 there	 is	 no
motion	and	its	randomness	at	all	throughout	the	duration[65].
Secondly,	the	influence	of	the	random	stay	of	a	particle	at	a	durationless	instant
is	zero.	This	can	be	readily	understood.	If	a	physical	influence	is	not	zero	at	each
durationless	instant,	then	it	may	accumulate	to	infinite	during	an	arbitrarily	short
time	 interval,	 which	 should	 be	 avoided	 in	 physics.	 Lastly,	 the	 accumulated
influence	 of	 the	 random	 stays	 during	 a	 finite	 time	 interval,	 even	 if	 it	 can	 be
finite[66],	 contains	 no	 randomness.	 For	 the	 discontinuity	 and	 randomness	 of
motion	exist	only	at	each	durationless	instant,	during	which	the	influence	of	the
random	stay	is	zero,	and	they	don’t	exist	during	a	finite	time	interval	or	even	an
infinitesimal	 time	 interval.	 For	 example,	 the	 state	 of	 random	 discontinuous
motion	in	real	space,	which	is	defined	during	an	infinitesimal	time	interval	at	a
given	instant,	is	described	by	the	position	density	and	position	flux	density,	and
they	are	continuous	quantities	that	contain	no	discontinuity	and	randomness.
Therefore,	 if	 time	 is	 continuous	and	 instants	 are	durationless,	 then	 the	 random
stays	 of	 a	 particle	 can	 have	 no	 stochastic	 effects.	 This	 also	 means	 that	 the
random	stays	of	a	particle	can	influence	the	evolution	of	its	wave	function	in	a
stochastic	way	only	when	instants	are	not	zero-sized	but	finite-sized,	i.e.,	when
time	is	discrete	or	quantized.	Once	the	duration	of	each	random	stay	of	a	particle
is	finite,	each	random	stay	can	have	a	finite	stochastic	influence	on	the	evolution
of	 the	wave	function.	 It	 is	worth	stressing	again	 that	 if	 time	 is	not	discrete	but
continuous,	 a	 particle	 cannot	 stay	 in	 one	 of	 the	 infinitely	many	 instantaneous
states	all	through	for	a	finite	time;	rather,	it	can	only	stay	there	for	one	zero-sized
instant.	 But	 if	 time	 is	 discrete	 and	 instants	 are	 not	 zero-sized	 but	 finite-sized,
even	if	a	particle	stays	in	an	instantaneous	state	only	for	one	instant,	the	duration
of	 its	 stay	 is	 also	 finite	 as	 the	 instant	 is	 finite-sized.	 In	 some	 sense,	 the
discreteness	 of	 time	 prevents	 a	 particle	 from	 jumping	 from	 its	 present
instantaneous	state	to	another	instantaneous	state	and	makes	the	particle	stay	in
the	 present	 instantaneous	 state	 all	 through	 during	 each	 finite-sized	 instant[67].
Since	 it	 has	 been	 conjectured	 that	 the	Planck	 scale	 is	 the	minimum	 spacetime
scale[68],	we	will	assume	that	the	size	of	each	discrete	instant	or	the	quantum	of
time	is	the	Planck	time	in	our	following	analysis[69].
To	sum	up,	the	realization	of	the	randomness	and	discontinuity	of	motion	in	the
laws	 of	 motion	 requires	 that	 time	 is	 discrete.	 In	 discrete	 time,	 a	 particle
randomly	stays	in	an	instantaneous	state	with	definite	position,	momentum	and
energy	 at	 each	 discrete	 instant,	 with	 a	 probability	 determined	 by	 the	modulus



square	of	its	wave	function	at	the	instant.	Each	random,	finite	stay	of	the	particle
may	have	 a	 finite	 influence	 on	 the	 evolution	 of	 its	wave	 function.	As	we	will
show	 in	 the	 next	 section,	 the	 accumulation	 of	 such	 discrete	 and	 random
influences	may	lead	to	the	correct	collapse	of	the	wave	function,	which	can	then
explain	 the	 emergence	 of	 definite	 measurement	 results.	 Accordingly,	 the
evolution	 of	 the	 wave	 function	 will	 be	 governed	 by	 a	 revised	 Schrödinger
equation,	which	includes	the	normal	linear	terms	and	a	stochastic	nonlinear	term
that	describes	the	discrete	collapse	dynamics.	Note	that	the	wave	function	(as	an
instantaneous	property	of	particles)	also	exists	in	the	discrete	time,	which	means
that	 the	 wave	 function	 does	 not	 change	 during	 each	 discrete	 instant,	 and	 the
evolution	of	the	wave	function	including	the	linear	Schrödinger	evolution	is	also
discrete.
4.2.2	Energy	conservation	and	the	choices
Now	let’s	investigate	the	choice	problem,	namely	the	problem	of	determining	the
states	toward	which	the	collapse	tends.	The	random	stay	of	a	particle	may	have	a
stochastic	influence	on	the	evolution	of	its	wave	function	at	each	discrete	instant.
Then	when	the	stochastic	influences	accumulate	and	result	in	the	collapse	of	the
wave	 function,	 what	 are	 the	 states	 toward	 which	 collapse	 tends?	 This	 is	 the
choice	 problem	 or	 preferred	 basis	 problem.	 It	 may	 be	 expected	 that	 the
stochastic	influences	of	the	motion	of	a	particle	on	its	wave	function	should	not
be	 arbitrary	 but	 be	 restricted	 by	 some	 fundamental	 principles.	 In	 particular,	 it
seems	 reasonable	 to	 assume	 that	 the	 resulting	 dynamical	 collapse	 of	 the	wave
function	should	also	satisfy	the	conservation	of	energy.	As	a	result,	the	collapse
states	or	 choices	will	be	 the	energy	eigenstates	of	 the	 total	Hamiltonian	of	 the
system[70].	 In	 the	 following,	 we	 will	 give	 a	 more	 detailed	 analysis	 of	 the
consequences	of	this	assumption.	Its	possible	physical	basis	will	be	investigated
in	the	next	subsection.
As	we	have	argued	in	the	last	section,	for	a	deterministic	evolution	of	the	wave
function	 such	 as	 the	 linear	 Schrödinger	 evolution,	 the	 requirement	 of	 energy
conservation	 applies	 to	 a	 single	 isolated	 system.	 However,	 for	 a	 stochastic
evolution	 of	 the	 wave	 function	 such	 as	 the	 dynamical	 collapse	 process,	 the
requirement	of	 energy	conservation	cannot	apply	 to	a	 single	 system	 in	general
but	 only	 to	 an	 ensemble	 of	 identical	 systems[71].	 It	 can	 be	 proved	 that	 only
when	 the	 collapse	 states	 are	 energy	 eigenstates	 of	 the	 total	 Hamiltonian	 of	 a
given	system,	can	energy	be	conserved	for	an	ensemble	of	identical	systems	for
wavefunction	collapse	(See	Pearle	2000	for	a	more	detailed	analysis).	Note	that
for	 the	 linear	 Schrödinger	 evolution	 under	 an	 external	 potential,	 energy	 is
conserved	but	momentum	is	not	conserved	even	at	the	ensemble	level,	and	thus



it	 is	 not	 momentum	 conservation	 but	 energy	 conservation	 that	 is	 a	 more
universal	restriction	for	wavefunction	collapse.
The	 conservation	 of	 energy	 can	 not	 only	 help	 to	 solve	 the	 preferred	 basis
problem,	 but	 also	 further	 determine	 the	 law	 of	 dynamical	 collapse	 to	 a	 large
extent.	For	each	system	in	the	same	quantum	state	in	an	ensemble,	in	order	that
the	probability	distribution	of	energy	eigenvalues	of	the	state	can	keep	constant
for	 the	 whole	 ensemble	 (i.e.	 energy	 is	 conserved	 at	 the	 ensemble	 level),	 the
random	stay	of	the	system	at	each	discrete	instant	can	only	change	its	(objective)
energy	probability	distribution[72],	and	moreover,	the	change	must	also	satisfy	a
certain	restriction.	Concretely	speaking,	the	random	stay	in	a	definite	energy	Ei
will	 increase	 the	 probability	 of	 the	 energy	 branch	 |Ei>	 and	 decrease	 the
probabilities	 of	 all	 other	 energy	 branches	 pro	 rata.	 Moreover,	 the	 increasing
amplitude	 must	 be	 proportional	 to	 the	 total	 probability	 of	 all	 other	 energy
branches,	and	the	coefficient	is	related	to	the	energy	uncertainty	of	the	state.	We
will	demonstrate	this	result	in	the	next	subsection.
A	more	important	problem	is	whether	this	energy-conserved	collapse	model	can
explain	 the	 emergence	 of	 definite	 measurement	 results	 and	 our	 macroscopic
experience.	At	first	sight	the	answer	appears	negative.	For	example,	the	energy
eigenstates	 being	 collapse	 states	 seems	 apparently	 inconsistent	 with	 the
localization	 of	macroscopic	 objects.	However,	 a	 detailed	 analysis	 given	 in	 the
following	 subsections	 will	 demonstrate	 that	 the	 model	 can	 be	 consistent	 with
existing	experiments	and	our	macroscopic	experience.	The	key	is	to	realize	that
the	energy	uncertainty	driving	the	collapse	of	the	entangled	state	of	a	many-body
system	is	not	the	uncertainty	of	the	total	energy	of	all	subsystems,	but	the	sum	of
the	 absolute	 energy	 uncertainty	 of	 every	 subsystem.	 As	 a	 result,	 the	 collapse
states	are	the	product	states	of	the	energy	eigenstates	of	the	Hamiltonian	of	each
subsystem	for	a	non-interacting	or	weakly-interacting	many-body	system.	This
provides	 a	 further	 collapse	 rule	 for	 the	 superpositions	 of	 degenerate	 energy
eigenstates	of	a	many-body	system.
4.2.3	In	search	of	a	deeper	basis
In	this	subsection,	we	will	 investigate	 the	possible	physical	basis	of	 the	energy
conservation	restriction	for	wavefunction	collapse.
It	 is	 well	 known	 that	 the	 conservation	 of	 energy	 and	momentum	 refers	 to	 an
ensemble	 of	 identical	 systems	 in	 standard	 quantum	mechanics.	 However,	 this
standard	view	seems	unnatural	when	assuming	an	objective	interpretation	of	the
wave	 function	of	 a	 single	 system,	e.g.	 our	 suggested	 interpretation	 in	 terms	of
random	discontinuous	motion	of	particles.	An	ensemble	is	not	an	actual	system
after	 all,	 and	 the	 conservation	 of	 something	 for	 an	 ensemble	 seems	 physically



meaningless.	Moreover,	since	a	single	system	in	the	ensemble	does	not	‘know’
the	 other	 systems	 and	 the	 whole	 ensemble,	 there	 must	 exist	 some	 underlying
mechanism	that	can	ensure	the	conservation	of	energy	for	an	ensemble.	Then	the
conservation	of	energy	for	an	ensemble	of	identical	systems	is	probably	a	result
of	the	laws	of	motion	for	individual	systems	in	the	ensemble.	Here	is	a	possible
scheme.	First	of	all,	energy	 is	conserved	for	 the	evolution	of	 individual	energy
eigenstates.	 Next,	 a	 superposition	 of	 energy	 eigenstates	 will	 dynamically
collapse	 to	one	of	 these	energy	eigenstates,	 and	 the	probability	of	 the	collapse
result	 satisfies	 Born’s	 rule.	 Then	 the	 wavefunction	 collapse	 will	 satisfy	 the
conservation	of	energy	for	an	ensemble	of	identical	systems.
In	 the	 following,	 we	 will	 further	 suggest	 a	 possible	 physical	 basis	 for	 this
scheme	of	energy-conserved	wavefunction	collapse.	According	to	the	picture	of
random	 discontinuous	 motion,	 for	 a	 particle	 in	 a	 superposition	 of	 energy
eigenstates,	 the	 particle	 stays	 in	 an	 instantaneous	 state	 with	 a	 definite	 energy
eigenvalue	 at	 a	 discrete	 instant,	 and	 at	 another	 instant	 it	may	 jump	 to	 another
instantaneous	state	with	another	energy	eigenvalue.	It	seems	to	be	a	reasonable
assumption	 that	 the	 particle	 has	 both	 the	 tendency	 to	 jump	 among	 the
instantaneous	 states	 with	 different	 energies	 and	 the	 tendency	 to	 stay	 in	 the
instantaneous	 states	 with	 the	 same	 energy,	 and	 their	 relative	 strength	 is
determined	 by	 the	 energy	 probability	 distribution	 of	 the	 particle.	 This	 is
satisfactory	 in	 logic,	 as	 there	 should	 exist	 two	 opposite	 tendencies	 in	 general,
and	their	relative	strength	is	determined	by	certain	condition.	In	some	sense,	the
two	tendencies	of	a	particle	are	related	to	the	two	parts	of	its	instantaneous	state;
the	jumping	tendency	is	related	to	the	wave	function,	and	it	is	needed	to	manifest
the	 superposition	of	different	 energy	eigenstates,	while	 the	 staying	 tendency	 is
related	 to	 the	 random	 stays.	These	 two	opposite	 tendencies	 together	 constitute
the	complete	"temperament"	of	a	particle.
It	 can	 be	 argued	 that	 the	 tendency	 to	 stay	 in	 the	 same	 energy	 for	 individual
particles	 might	 be	 the	 physical	 origin	 of	 the	 energy-conserved	 wavefunction
collapse.	For	a	particle	in	a	superposition	of	energy	eigenstates,	the	particle	stays
in	 an	 instantaneous	 state	 with	 definite	 energy	 at	 a	 discrete	 instant,	 and	 the
staying	 tendency	 of	 the	 particle	 will	 increase	 its	 probability	 of	 being	 in	 the
instantaneous	states	with	the	present	energy	at	next	instant.	In	other	words,	 the
random	stay	of	a	particle	in	an	instantaneous	state	with	an	energy	eigenvalue	will
increase	the	probability	of	the	energy	eigenvalue	(and	correspondingly	decrease
the	probabilities	of	other	energy	eigenvalues	pro	rata).	Moreover,	the	increase	of
probability	may	 relate	 to	 the	energy	probability	distribution	of	 the	particle.	By
the	continuity	of	change	of	staying	tendency,	the	particle	will	jump	more	readily
among	 the	 instantaneous	 states	with	 small	 energy	uncertainty	 and	more	hardly



among	the	instantaneous	states	with	large	energy	uncertainty	(which	can	also	be
regarded	 as	 a	 restriction	 of	 energy	 change).	 Thus	 the	 larger	 the	 energy
uncertainty	of	the	superposition	is,	the	larger	the	increase	of	probability	is	during
each	 random	 stay.	 A	 detailed	 calculation,	 which	 will	 be	 given	 in	 the	 next
subsection,	 shows	 that	 such	 random	changes	of	 energy	probability	distribution
can	 continuously	 accumulate	 to	 lead	 to	 the	 collapse	 of	 the	 superposition	 of
energy	eigenstates	to	one	of	them.
It	 can	be	 further	 argued	 that	 the	 probability	 distribution	of	 energy	 eigenvalues
should	remain	constant	during	the	random	evolution	of	an	ensemble	of	identical
systems,	 and	 thus	 the	 resulting	wavefunction	 collapse	will	 satisfy	Born’s	 rule.
The	 reason	 is	 as	 follows.	When	 an	 initial	 superposition	 of	 energy	 eigenstates
undergoes	the	dynamical	collapse	process,	the	probability	distribution	of	energy
eigenvalues	should	manifest	 itself	 through	 the	collapse	 results	 for	an	ensemble
of	 identical	 systems.	At	a	deeper	 level,	 it	 is	very	 likely	 that	 the	 laws	of	nature
permit	 nature	 to	manifest	 itself,	 or	 else	we	will	 be	 unable	 to	 find	 the	 laws	 of
nature	and	verify	them	by	experiments,	and	our	scientific	investigations	will	be
also	pointless.	This	may	be	regarded	as	a	meta-law.	Since	the	collapse	evolution
of	 individual	 systems	 is	 completely	 random	 and	 irreversible,	 the	 diagonal
density	matrix	elements	for	an	ensemble	of	identical	systems	must	be	precisely
the	 same	 as	 the	 initial	 probability	 distribution	 at	 every	 step	 of	 the	 evolution.
Otherwise	 the	 frequency	 distribution	 of	 the	 collapse	 results	 in	 the	 ensemble
cannot	 reflect	 the	 initial	 probability	 distribution,	 or	 in	 other	 words,	 the
probability	information	contained	in	the	initial	state	will	be	completely	lost	due
to	 the	 random	 and	 irreversible	 collapse[73].	 As	 a	 consequence,	 the	 collapse
evolution	will	 conserve	 energy	 at	 the	 ensemble	 level,	 and	 the	 collapse	 results
will	also	satisfy	Born’s	rule	in	quantum	mechanics.
Certainly,	there	is	still	a	question	that	needs	to	be	answered.	Why	energy?	Why
not	 position	 or	 momentum?	 If	 there	 is	 only	 one	 property	 that	 undergoes	 the
random	discontinuous	motion	(e.g.	position),	then	the	above	tendency	argument
for	the	unique	property	may	be	satisfying.	But	if	there	are	many	properties	that
undergoes	 the	 random	discontinuous	motion,	 then	we	need	 to	 answer	why	 the
tendency	argument	applies	only	to	energy.	A	possible	answer	is	that	energy	is	the
property	 that	determines	 the	linear	evolution	of	 the	state	of	motion,	and	thus	 it
seems	 natural	 and	 uniform	 that	 energy	 also	 determines	 the	 nonlinear	 collapse
evolution.	Moreover,	energy	eigenstates	are	 the	states	of	motion	 that	no	 longer
evolve	(except	an	absolute	phase)	for	the	linear	evolution.	Then	by	analogy,	it	is
likely	 that	 energy	 eigenstates	 are	 also	 the	 states	 that	 no	 longer	 evolve	 for	 the
nonlinear	 collapse	 evolution,	 i.e.,	 that	 the	 energy	 eigenstates	 are	 the	 collapse



states.	However,	we	may	never	be	 able	 to	 reach	 (and	know	we	 reach)	 the	 end
point	of	explanation.	Another	important	task	is	to	develop	a	concrete	model	and
compare	it	with	experiments.	We	do	this	in	the	subsequent	sections.
4.3	A	discrete	model	of	energy-conserved	wavefunction	collapse
After	 giving	 a	 speculative	 analysis	 of	 the	 origin	 of	 wavefunction	 collapse	 in
terms	 of	 the	 random	 discontinuous	 motion	 of	 particles,	 we	 will	 propose	 a
discrete	 model	 of	 energy-conserved	 wavefunction	 collapse	 based	 on	 results
obtained	from	the	analysis.
Consider	a	multi-level	system	with	a	constant	Hamiltonian.	Its	initial	state	is:

where	 |Ei>	 is	 the	energy	eigenstate	of	 the	Hamiltonian	of	 the	 system,	Ei	 is	 the
corresponding	energy	eigenvalue,	and	ci(0)	satisfies	the	normalization	relation	Σi
|ci(0)|2	=	1.
According	 to	 our	 conjecture	 on	 the	 origin	 of	 wavefunction	 collapse,	 this
superposition	of	energy	eigenstates	will	collapse	to	one	of	the	eigenstates	after	a
discrete	dynamical	process,	and	the	collapse	evolution	satisfies	the	conservation
of	energy	at	the	ensemble	level.	The	physical	picture	of	the	dynamical	collapse
process	is	as	follows.	At	the	initial	discrete	instant	t0	=	tP	(where	tP	is	the	Planck
time),	the	system	randomly	stays	in	a	branch	|Ei	with	probability	Pi(0)	≡	|ci(0)|2.
[74]	This	finite	stay	slightly	increases	the	probability	of	the	staying	branch	and
decreases	 the	 probabilities	 of	 all	 other	 branches	 pro	 rata.	 Similarly,	 at	 any
discrete	instant	t	=	ntP	the	system	randomly	stays	in	a	branch	|Ei	with	probability
Pi(t)	≡	|ci(t)|2,	and	the	random	stay	also	changes	the	probabilities	of	the	branches
slightly.	Then	during	a	finite	time	interval	much	larger	than	tP,	the	probability	of
each	 branch	 will	 undergo	 a	 discrete	 and	 stochastic	 evolution.	 In	 the	 end,	 the
probability	 of	 one	 branch	 will	 be	 close	 to	 one,	 and	 the	 probabilities	 of	 other
branches	 will	 be	 close	 to	 zero.	 In	 other	 words,	 the	 initial	 superposition	 will
randomly	collapse	to	one	of	the	energy	branches	in	the	superposition.



Pi(t).	 Then	 we	 can	 work	 out	 the	 diagonal	 density	 matrix	 elements	 of	 the

evolution[75]:



Here	we	shall	introduce	the	first	rule	of	dynamical	collapse,	which	says	that	the
probability	 distribution	 of	 energy	 eigenvalues	 for	 an	 ensemble	 of	 identical
systems	is	constant	during	the	dynamical	collapse	process.	As	we	have	argued	in
the	last	subsection,	this	rule	is	required	by	the	principle	of	energy	conservation	at
the	 ensemble	 level,	 and	 it	 may	 also	 have	 a	 physical	 basis	 relating	 to	 the
manifestability	of	nature.	By	this	rule,	we	have	ρii(t	+	tP)	=	ρii(t)	for	any	i.	This
leads	to	the	following	set	of	equations:

By	 solving	 this	 equations	 set	 (e.g.by	 subtracting	 each	 other),	 we	 find	 the
following	relation	for	any	i:

where	 k	 is	 an	 undetermined	 dimensionless	 quantity	 that	 relates	 to	 the	 state	 |
ψ(t)>.
By	 using	 Eq.	 (4.6),	 we	 can	 further	 work	 out	 the	 non-diagonal	 density	 matrix
elements	of	 the	evolution.	But	 it	 is	more	convenient	 to	calculate	 the	 following
variant	of	non-diagonal	density	matrix	elements:



Since	the	usual	collapse	time,	τc,	is	defined	by	the	relation	ρij(τc)	=1/2ρ	ij(0),	we
may	use	a	proper	approximation,	where	k	is	assumed	to	be	the	same	as	its	initial
value	during	the	time	interval	[0,	τc],	to	simplify	the	calculation	of	the	collapse
time.	Then	we	have:

The	corresponding	collapse	time	is	in	the	order	of:

In	the	following,	we	shall	analyze	the	formula	of	k	defined	by	Eq.(4.6).	To	begin
with,	the	probability	restricting	condition	0	≤	Pi(t)≤1	for	any	i	requires	that	0	≤	k
≤	 1.	 When	 k	 =	 0,	 no	 collapse	 happens,	 and	 when	 k	 =	 1,	 collapse	 happens
instantaneously.	Note	that	k	cannot	be	smaller	than	zero,	as	this	will	lead	to	the
negative	value	of	Pi(t)	in	some	cases.	For	instance,	when	k	is	negative	and	Pi(t)<
|k|/(1+|k|),	 Pi(t	 +	 tP)	 =	 Pi(t)	 +	 k[1	 −	 Pi(t)]	 will	 be	 negative	 and	 violate	 the
probability	 restricting	 condition.	 That	 k	 is	 positive	 indicates	 that	 each	 random
stay	 increases	 the	 probability	 of	 the	 staying	 branch	 and	 decreases	 the
probabilities	of	other	branches,	which	is	consistent	with	the	analysis	given	in	the
last	subsection.
Next,	k	is	proportional	to	the	duration	of	stay.	The	influence	of	each	stay	on	the
probability	of	the	staying	branch	is	an	accumulating	process.	When	the	duration
of	 stay	 is	 zero	 as	 in	 continuous	 space	 and	 time,	 no	 influence	 exists	 and	 no
collapse	happens.	When	the	duration	of	stay,	tP,	is	longer,	the	probability	of	the
staying	branch	will	increase	more.	Thus	we	have	k	∝tP.
Thirdly,	k	 is	also	proportional	 to	 the	energy	uncertainty	of	 the	superposition	of
energy	eigenstates.	First,	from	a	dimensional	analysis	k	should	be	proportional	to
an	energy	 term	 in	order	 to	 cancel	out	 the	dimension	of	 time.	Next,	 the	 energy
term	 should	 be	 the	 energy	 uncertainty	 of	 the	 superposition	 defined	 in	 an
appropriate	 way	 according	 to	 the	 analysis	 of	 the	 last	 subsection.	 When	 the
energy	 uncertainty	 is	 zero,	 i.e.,	 when	 the	 state	 is	 an	 energy	 eigenstate,	 no
collapse	 happens.	When	 the	 energy	 uncertainty	 is	 not	 zero,	 collapse	 happens.
Moreover,	 the	 larger	 the	 energy	 uncertainty	 is,	 the	 larger	 the	 increase	 of	 the
probability	of	the	staying	branch	for	each	random	stay	is,	namely	the	larger	k	is.
Therefore,	k	will	be	proportional	to	the	energy	uncertainty	of	the	superposition.
How	to	define	the	energy	uncertainty	then?	Since	k	is	invariant	under	the	swap
of	any	two	branches	(Pi,	Ei)	and	(Pj,	Ej)	according	to	Eq.	(4.6),	the	most	natural



definition	 of	 the	 energy	 uncertainty	 of	 a	 superposition	 of	 energy	 eigenstates
is[76]:

For	the	simplest	two-level	system,	we	have

It	seems	a	little	counterintuitive	that	k	contains	the	energy	uncertainty	term	that
relates	to	the	whole	energy	distribution.	The	puzzle	is	two-fold.	First,	this	means
that	the	increase	of	the	probability	of	the	staying	branch	relates	not	to	the	energy
difference	between	the	staying	branch	and	all	other	branches,	but	to	the	energy
uncertainty	 of	 the	 whole	 state.	 This	 is	 reflected	 in	 the	 formula	 of	 ∆E	 in	 the
existence	of	 the	energy	difference	between	any	two	branches,	 |Ei−	Ej|	 for	any	 i
and	j.	Next,	 the	increase	of	the	probability	of	the	staying	branch	relates	also	to
the	energy	probability	distribution	that	determines	the	energy	uncertainty.	This	is
reflected	in	the	formula	of	∆E	in	the	existence	of	PiPj.	 In	fact,	 these	seemingly
puzzling	aspects	are	still	understandable.	The	first	feature	is	required	by	the	first
rule	 of	 dynamical	 collapse	 that	 ensures	 energy	 conservation	 at	 the	 ensemble
level.	This	can	be	clearly	seen	from	Eq.	(4.6).	If	the	increase	of	the	probability	of
the	 staying	 branch	 relates	 to	 the	 difference	 between	 the	 energy	 of	 the	 staying
branch	and	the	average	energy	of	all	other	branches,	then	Eq.	(4.6)	will	not	hold
true	because	the	swap	symmetry	of	k	will	be	violated,	and	as	a	result,	 the	first
rule	of	dynamical	collapse	will	be	broken.	The	second	feature	can	be	understood
as	 follows.	 In	 the	 picture	 of	 random	 discontinuous	 motion,	 the	 probability
distribution	 contains	 the	 information	 of	 staying	 time	 distribution.	 An	 energy
branch	 with	 small	 probability	 means	 that	 the	 system	 jumps	 through	 it	 less
frequently.	 Thus	 this	 energy	 branch	 only	 makes	 a	 small	 contribution	 to	 the
restriction	of	energy	change	or	the	increase	of	the	staying	tendency.	As	a	result,
k	or	the	increase	of	the	probability	of	the	staying	branch	will	relate	not	merely	to
energy	difference,	but	also	to	the	energy	probability	distribution.
Then	after	omitting	a	coefficient	in	the	order	of	unity,	we	can	get	the	formula	of
k	in	the	first	order:



This	 is	 the	second	rule	of	dynamical	collapse.	By	inputting	Eq.	(4.12)	 into	Eq.
(4.9),	we	can	further	get	the	collapse	time	formula:

where	EP	 =	 h/tP	 is	 the	Planck	 energy,	 and	∆E	 is	 the	 energy	uncertainty	 of	 the

initial	state[77].
Here	it	is	worth	pointing	out	that	k	must	contain	the	first	order	term	of	∆E.	For
the	second	order	or	higher	order	 term	of	∆E	will	 lead	 to	much	 longer	collapse
time	for	some	common	measurement	situations,	which	contradicts	experiments
(Gao	 2006a,	 2006b).	 Besides,	 a	 similar	 analysis	 of	 the	 consistency	 with
experiments	 may	 also	 provide	 a	 further	 support	 for	 the	 energy-conserved
collapse	model	in	which	the	collapse	states	are	energy	eigenstates.	First	of	all,	if
the	collapse	states	are	not	energy	eigenstates	but	momentum	eigenstates,	then	the
energy	 uncertainty	will	 be	 replaced	 by	momentum	 uncertainty	 in	 the	 collapse
time	 formula	Eq.	 (4.13),	 namely	 τc≈hEP/(∆pc)2.	 As	 a	 result,	 the	 collapse	 time
will	 be	 too	 short	 to	 be	 consistent	 with	 experiments	 for	 some	 situations.	 For
example,	for	the	ground	state	of	hydrogen	atom	the	collapse	time	will	be	about
several	days.	Note	that	the	second	order	or	higher	order	term	of	∆p	will	also	lead
to	much	longer	collapse	time	for	some	common	measurement	situations,	which
contradicts	experiments.
Next,	 if	 the	 collapse	 states	 are	 position	 eigenstates[78],	 then	 the	 collapse	 time
formula	Eq.	(4.13)	will	be	replaced	by	something	like	τc≈l2tP/(∆x)2	 ,	where	l	 is
certain	length	scale	relating	to	the	collapsing	state.	No	matter	what	length	scale	l
is,	 the	 collapse	 time	 of	 a	 momentum	 eigenstate	 will	 be	 zero	 as	 its	 position
uncertainty	 is	 infinite.	 This	 means	 that	 the	 momentum	 eigenstates	 of	 any
quantum	system	will	collapse	 instantaneously	 to	one	of	 its	position	eigenstates
and	 thus	 cannot	 exist.	 Moreover,	 the	 superposition	 states	 with	 very	 small
momentum	 uncertainty	 will	 also	 collapse	 very	 quickly	 even	 for	 microscopic
particles.	 These	 results	 are	 apparently	 inconsistent	 with	 quantum	 mechanics.
Although	 it	 may	 be	 possible	 to	 adjust	 the	 length	 scale	 l	 to	 make	 the	 model
consistent	 with	 experience,	 the	 collapse	 time	 formula	 will	 be	 much	 more
complex	 than	 that	 in	 the	 above	 energy-conserved	 collapse	model.	Let’s	 give	 a
little	 more	 detailed	 analysis	 here.	 There	 are	 two	 universal	 length	 scales	 for	 a
quantum	 system:	 its	 Compton	 wavelength	 λc	 and	 the	 Planck	 length	 lP.	 It	 is
obvious	 that	 both	 of	 them	 cannot	 be	 directly	 used	 as	 the	 length	 scale	 in	 the
collapse	 time	formula	τc≈l2tP/(∆x)2.	Then	 the	 formula	can	only	be	written	 in	 a



more	complex	form:	τc≈	(λc/lP)α·λc2tP/(∆x)2.	Moreover,	experiments	such	as	the
SQUID	experiments	and	our	everyday	macroscopic	experience	require	α	≈	8.	It
seems	very	difficult	 to	explain	 this	unusually	 large	exponent	 in	 theory.	To	sum
up,	 the	collapse	states	can	hardly	be	position	eigenstates	when	considering	 the
consistency	with	experiments	and	the	simplicity	of	theory.
Based	on	the	above	analysis,	the	state	of	the	multi-level	system	at	instant	t	=	ntP
will	be:

Besides	the	linear	Schrödinger	evolution,	the	collapse	dynamics	adds	a	discrete
stochastic	evolution	for	Pi(t)	≡	|ci(t)|2:

where	∆E	is	the	energy	uncertainty	of	the	state	at	instant	t	defined	by	Eq.	(4.10),
Es	 is	 a	 random	 variable	 representing	 the	 random	 stay	 of	 the	 system,	 and	 its
probability	of	assuming	Ei	at	instant	t	is	Pi(t).	When	Es	=	Ei,	δEsEi	=	1,	and	when
Es	=	Ei,	δEsEi	=	0.
This	 equation	of	 dynamical	 collapse	 can	be	directly	 extended	 to	 the	 entangled
states	of	a	many-body	system.	The	difference	only	 lies	 in	 the	definition	of	 the
energy	 uncertainty	 ∆E.	According	 to	 our	 analysis	 in	 the	 last	 subsection,	 for	 a
non-interacting	or	weakly-interacting	many-body	 system	 in	 an	 entangled	 state,
for	which	the	energy	uncertainty	of	each	subsystem	can	be	properly	defined,	∆E
is	the	sum	of	the	absolute	energy	uncertainty	of	all	subsystems,	namely

where	n	is	the	total	number	of	the	entangled	subsystems,	m	is	the	total	number	of
energy	branches	in	the	entangled	state,	and	Eli	is	the	energy	of	subsystem	l	in	the
i-th	 energy	 branch	 of	 the	 state.	 Correspondingly,	 the	 collapse	 states	 are	 the
product	states	of	the	energy	eigenstates	of	the	Hamiltonian	of	each	subsystem.	It
should	 be	 stressed	 here	 that	 ∆E	 is	 not	 defined	 as	 the	 uncertainty	 of	 the	 total
energy	 of	 all	 subsystems	 as	 in	 the	 energy-driven	 collapse	 models	 (see,	 e.g.
Percival	1995,	1998a;	Hughston	1996).	For	each	subsystem	has	its	own	energy
uncertainty	 that	 drives	 its	 collapse,	 and	 the	 total	 driving	 “force”	 for	 the	whole



entangled	state	 should	be	 the	sum	of	 the	driving	“forces”	of	all	 subsystems,	at
least	 in	 the	 first	 order	 approximation.	 Although	 these	 two	 kinds	 of	 energy
uncertainty	 are	 equal	 in	 numerical	 values	 in	 some	 cases	 (e.g.	 for	 a	 strongly-
interacting	many-body	 system),	 there	 are	 also	 some	 cases	 where	 they	 are	 not
equal.	 For	 example,	 for	 a	 superposition	 of	 degenerate	 energy	 eigenstates	 of	 a
non-interacting	 many-body	 system,	 which	 may	 arise	 during	 a	 common
measurement	 process,	 the	 uncertainty	 of	 the	 total	 energy	 of	 all	 subsystems	 is
exactly	 zero,	 but	 the	 absolute	 energy	 uncertainty	 of	 each	 subsystem	 and	 their
sum	 may	 be	 not	 zero.	 As	 a	 result,	 the	 superpositions	 of	 degenerate	 energy
eigenstates	 of	 a	many-particle	 system	may	 also	 collapse.	As	we	will	 see	 later,
this	 is	 an	 important	 feature	 of	 our	 model,	 which	 can	 avoid	 Pearle’s	 (2004)
serious	objections	to	the	energy-driven	collapse	models.
It	 can	 be	 seen	 that	 the	 equation	 of	 dynamical	 collapse,	 Eq.(4.15),	 has	 an
interesting	 property,	 scale	 invariance.	 After	 one	 discrete	 instant	 tP,	 the
probability	 increase	 of	 the	 staying	 branch	 |Ei>	 is	∆Pi	 =(1	 −	 Pi)∆E/EP,	 and	 the
probability	decrease	of	the	neighboring	branch	|Ei+1>	is	∆Pi+1	=Pi+1∆E/EP.	Then
the	probability	increase	of	these	two	branches	is

Similarly,	the	equation	∆P	=(1	−	P	)∆E/EP	holds	true	for	the	total	probability	of
arbitrarily	many	branches	(one	of	which	is	the	staying	branch).	This	property	of
scale	 invariance	may	 simplify	 the	 analysis	 in	many	 cases.	 For	 example,	 for	 a
superposition	 of	 two	 wavepackets	 with	 energy	 difference,	 ∆E12,	 much	 larger
than	 the	energy	uncertainty	of	each	wavepacket,	∆E1	=	∆E2	 ,	we	can	calculate
the	collapse	dynamics	 in	 two	steps.	First,	we	use	Eq.(4.15)	and	Eq.(4.11)	with
|E1−	E2|	=	∆E12	to	calculate	the	time	of	the	superposition	collapsing	into	one	of

the	 two	 wavepackets[79].	 Here	 we	 need	 not	 to	 consider	 the	 almost	 infinitely
many	 energy	 eigenstates	 constituting	 each	 wavepacket	 and	 their	 probability
distribution.	Next,	we	use	Eq.(4.15)	with	∆E	=	∆E1	 to	calculate	the	time	of	the
wavepacket	collapsing	into	one	of	its	energy	eigenstates.	In	general,	this	collapse
process	is	so	slow	that	its	effect	can	be	ignored.
Lastly,	we	want	to	stress	another	important	point.	As	we	have	argued	before,	the
discontinuity	of	motion	requires	 that	 the	collapse	dynamics	must	be	discrete	 in
nature,	and	moreover,	the	collapse	states	must	be	energy	eigenstates	in	order	that
the	collapse	dynamics	satisfies	the	conservation	of	energy	at	the	ensemble	level.
As	a	result,	the	energy	eigenstates	and	their	corresponding	eigenvalues	must	be



also	discrete	 for	any	quantum	system.	This	 result	 seems	 to	contradict	quantum
mechanics,	but	when	considering	that	our	universe	has	a	finite	size	(i.e.	a	finite
event	horizon),	 the	momentum	and	energy	eigenvalues	of	any	quantum	system
in	 the	 universe	 may	 be	 indeed	 discrete[80].	 The	 reason	 is	 that	 all	 quantum
systems	 in	 the	 universe	 are	 limited	 by	 the	 finite	 horizon,	 and	 thus	 no	 free
quantum	systems	exist	in	the	strict	sense.	For	example,	the	energy	of	a	massless
particle	(e.g.	photon)	can	only	assume

This	 indicates	 that	 the	probability	change	during	each	random	stay	 is	still	very
tiny.	Only	when	the	energy	uncertainty	is	larger	than	1023eV	or	10−5EP,	will	the
probability	 change	 during	 each	 random	 stay	 be	 sharp.	 Therefore,	 the	 collapse
evolution	 is	 still	 very	 smooth	 for	 the	 quantum	 states	 with	 energy	 uncertainty



much	smaller	than	the	Planck	energy.
4.4	On	the	consistency	of	the	model	and	experiments
In	this	section,	we	will	analyze	whether	the	discrete	model	of	energy-conserved
wavefunction	 collapse	 is	 consistent	 with	 existing	 experiments	 and	 our
macroscopic	experience.	Note	that	Adler	(2002)	has	already	presented	a	detailed
consistency	analysis	in	the	context	of	energy-driven	collapse	models,	and	as	we
will	see	below,	most	of	his	analysis	also	applies	to	our	model.
4.4.1	Maintenance	of	coherence
First	 of	 all,	 the	model	 satisfies	 the	 constraint	 of	predicting	 the	maintenance	of
coherence	when	this	 is	observed.	Since	 the	energy	uncertainty	of	 the	state	of	a
microscopic	 particle	 is	 very	 small	 in	 general,	 its	 collapse	 will	 be	 too	 slow	 to
have	 any	 detectable	 effect	 in	 present	 experiments	 on	 these	 particles.	 For
example,	the	energy	uncertainty	of	a	photon	emitted	from	an	atom	is	in	the	order
of	10−6eV	,	and	the	corresponding	collapse	time	is	1025s	according	to	Eq.	(4.13)
of	our	collapse	model,	which	is	much	longer	than	the	age	of	the	universe,	1017s.
This	means	that	the	collapse	states	(i.e.	energy	eigenstates)	are	never	reached	for
a	quantum	system	with	small	energy	uncertainty	even	during	a	time	interval	as
long	 as	 the	 age	 of	 the	 universe.	 As	 another	 example,	 consider	 the	 SQUID
experiment	 of	 Friedman	 et	 al	 (2000),	 where	 the	 coherent	 superpositions	 of
macroscopic	 states	 consisting	 of	 oppositely	 circulating	 supercurrents	 are
observed.	 In	 the	 experiment,	 each	 circulating	 current	 corresponds	 to	 the
collective	motion	of	about	109	Cooper	pairs,	and	the	energy	uncertainty	is	about
8.6	×	10−6eV	.	Eq.	(4.13)	predicts	a	collapse	time	of	1023s,	and	thus	maintenance
of	coherence	is	expected	despite	the	macroscopic	structure	of	the	state[81].	For
more	examples	see	Adler	(2002).
4.4.2	Localization	in	measurement	situations
In	 the	 following,	 we	 will	 investigate	 whether	 the	 discrete	 model	 of	 energy-
conserved	 wavefunction	 collapse	 can	 account	 for	 the	 emergence	 of	 definite
measurement	results.	Let’s	first	see	a	simple	position	measurement	experiment.
Consider	an	initial	state	describing	a	particle	in	a	superposition	of	two	locations
(e.g.	 a	 superposition	 of	 two	 Gaussian	 wavepackets	 separated	 by	 a	 certain
distance).	 After	 the	 measurement	 interaction,	 the	 position	 measuring	 device
evolves	to	a	superposition	of	two	macroscopically	distinguishable	states:
(c1ψ1	+	c2ψ2)ϕ0→	c1ψ1ϕ1	+	c2ψ2ϕ2,	(4.18)
where	ψ1,	ψ2	are	the	states	of	the	particle	in	different	locations,	ϕ0	 is	the	initial
state	of	the	position	measuring	device,	and	ϕ1,	ϕ2	are	the	different	outcome	states
of	the	device.	For	an	ideal	measurement,	the	two	particle/device	states	ψ1ϕ1	and



ψ2ϕ2	 have	 precisely	 the	 same	 energy	 spectrum.	 Then	 it	 appears	 that	 this
superposition	 will	 not	 collapse	 according	 to	 the	 energy-conserved	 collapse
model.
However,	this	is	not	the	case.	The	key	is	to	see	that	the	two	states	of	the	particle
in	the	superposition	are	detected	in	different	parts	of	the	measuring	device,	and
they	 interact	 with	 the	 different	 atoms	 or	 molecules	 in	 these	 parts.	 Thus	 we
should	 rewrite	 the	device	 states	explicitly	as	ϕ0	=	χA(0)χB(0),	ϕ1	 =	 χA(1)χB(0),
and	ϕ2	=	χA(0)χB(1),	where	χA(0)	and	χB(0)	denote	the	initial	states	of	the	device
in	the	parts	A	and	B,	respectively,	and	χA(1)	and	χB(1)	denote	the	outcome	states
of	the	device	in	the	parts	A	and	B,	respectively.	Then	we	have
(	c1ψ1+c2ψ2)χA(0)χB(0)	→	c1ψ1χA(1)χB(0)+c2ψ2χA(0)χB(1)	(4.19)
This	reformulation	clearly	shows	that	there	exists	energy	difference	between	the
subsystems	 in	 the	different	outcome	states	of	 the	device.	Since	 there	 is	always
some	 kind	 of	 measurement	 amplification	 from	 the	 microscopic	 state	 to	 the
macroscopic	outcome	in	 the	measurement	process,	 there	will	be	a	 large	energy
difference	between	the	states	χA(0),	χB(0)	and	χA(1),	χB(1).	As	a	result,	the	total
energy	difference	∆E	=	|∆EA|	+	|∆EB|	is	also	very	large,	and	it	will	result	in	the
rapid	collapse	of	 the	above	superposition	 into	one	of	 its	branches	according	 to
the	energy-conserved	collapse	model[82].
Let’s	 see	 a	 more	 realistic	 example,	 a	 photon	 being	 detected	 via	 photoelectric
effect	 (e.g.	 by	 a	 single-photon	 avalanche	 diode).	 In	 the	 beginning	 of	 the
detection,	the	spreading	spatial	wave	function	of	the	photon	is	entangled	with	the
states	of	a	large	number	of	surface	atoms	of	the	detector.	In	each	local	branch	of
the	 entangled	 state,	 the	 total	 energy	 of	 the	 photon	 is	 wholly	 absorbed	 by	 the
electron	 in	 the	 local	atom	interacting	with	 the	photon.	This	 is	clearly	 indicated
by	the	term	δ(Ef−	Ei−	ω)	in	the	transition	rate	of	photoelectric	effect.	The	state	of
the	ejecting	electron	is	a	(spherical)	wavepacket	moving	outward	from	the	local
atom,	 whose	 average	 direction	 and	momentum	 distribution	 are	 determined	 by
the	momentum	and	polarization	of	the	photon.	The	small	energy	uncertainty	of
the	photon	will	also	be	transferred	to	the	ejecting	electron[83].
This	 microscopic	 effect	 of	 ejecting	 electron	 is	 then	 amplified	 (e.g.	 by	 an
avalanche	process	of	atoms)	to	form	a	macroscopic	signal	such	as	the	shift	of	the
pointer	 of	 a	 measuring	 device.	 During	 the	 amplification	 process,	 the	 energy
difference	 is	 constantly	 increasing	 between	 the	 branch	 in	which	 the	 photon	 is
absorbed	 and	 the	 branch	 in	which	 the	 photon	 is	 not	 absorbed	 near	 each	 atom
interacting	with	 the	 photon.	This	 large	 energy	 difference	will	 soon	 lead	 to	 the
collapse	of	the	whole	superposition	into	one	of	the	local	branches,	and	thus	the



photon	 is	 only	 detected	 locally.	 Take	 the	 single	 photon	 detector	 avalanche
photodiode	as	a	typical	example[84].	Its	energy	consumption	is	sharply	peaked
in	a	very	short	measuring	interval.	One	type	of	avalanche	photodiode	operates	at
105	 cps	 and	 has	 a	 mean	 power	 dissipation	 of	 4mW	 (Gao	 2006a).	 This
corresponds	 to	 an	 energy	 consumption	 of	 about	 2.5	 ×	 1011eV	 per	 measuring
interval	10−5s.	By	using	the	collapse	time	formula	Eq.	(4.13),	where	the	energy
uncertainty	is	∆E	≈	2.5	×	1011eV	,	we	find	the	collapse	time	is	τc≈	1.25	×	10−10s.
This	collapse	time	is	much	smaller	than	the	measuring	interval.
One	important	point	needs	to	be	stressed	here.	Although	a	measured	particle	is
detected	 locally	 in	a	detector	 (e.g.	 the	spatial	 size	of	 its	collapse	state	 is	 in	 the
order	of	the	size	of	an	atom),	its	wave	function	does	not	necessarily	undergo	the
position	 collapse	 assumed	 in	 an	 ideal	 position	 measurement	 by	 standard
quantum	 mechanics,	 and	 especially,	 energy	 can	 be	 conserved	 during	 the
localization	process	according	to	our	model.	The	reason	can	be	summarized	as
follows.	The	wave	function	of	the	measured	particle	is	usually	a	spherical	wave
(e.g.	 a	 spherically	 symmetric	 wave	 function)	 in	 three-dimensional	 space.	 Its
momentum	is	along	the	radial	direction,	but	the	local	and	random	measurement
result	distributes	along	the	sphere,	perpendicular	 to	the	radial	direction.	During
the	detection,	 the	measured	particle	interacts	with	a	single	atom	of	the	detector
by	an	ionizing	process	in	each	local	branch	of	the	entangled	state	of	the	whole
system	 including	 the	 particle	 and	 the	 atoms	 in	 the	 detector.	 The	 particle	 is
usually	 absorbed	 by	 the	 atom	 or	 bound	 in	 the	 atom,	 and	 its	 energy	 is	 wholly
transferred	 to	 the	 newly-formed	 atom	 and	 the	 ejecting	 electrons	 during	 the
ionizing	 process	 in	 each	 branch.	 Then	 the	 amplification	 process	 such	 as	 an
avalanche	process	of	atoms	introduces	very	large	energy	difference	between	the
detected	branch	and	the	empty	branch,	and	as	a	result,	 the	whole	superposition
will	soon	collapse	 into	one	of	 its	 local	branches	 in	a	random	way	according	 to
the	 energy-conserved	 collapse	 model[85].	 After	 the	 collapse,	 the	 state	 of	 the
measured	particle	is	localized	in	the	spatial	region	of	one	atom.	Moreover,	since
each	local	branch	of	the	entangled	state	of	the	particle	and	the	detector	has	the
same	 energy	 spectrum,	 the	 collapse	 process	 also	 conserves	 energy	 at	 the
individual	level.
4.4.3	Emergence	of	the	classical	world
Now	 let’s	 see	 whether	 the	 discrete	 model	 of	 energy-conserved	 wavefunction
collapse	is	consistent	with	our	macroscopic	experience.	It	seems	that	there	is	an
apparent	 inconsistency	 here.	 According	 to	 the	 model,	 when	 there	 is	 a
superposition	 of	 a	 macroscopic	 object	 in	 an	 identical	 physical	 state	 (an
approximate	energy	eigenstate)	at	two	different,	widely	separated	locations,	the



superposition	does	not	collapse.	The	reason	is	that	there	is	no	energy	difference
between	the	two	branches	of	the	superposition.	However,	 the	existence	of	such
superpositions	 is	 obviously	 inconsistent	 with	 our	 macroscopic	 experience;	 the
macroscopic	 objects	 are	 localized.	 This	 common	 objection	 has	 been	 basically
answered	 by	 Adler	 (2002).	 The	 crux	 of	 the	 matter	 lies	 in	 the	 influences	 of
environment.	 The	 collisions	 and	 especially	 the	 accretions	 of	 environmental
particles	will	quickly	increase	the	energy	uncertainty	of	the	entangled	state	of	the
whole	 system	 including	 the	 object	 and	 environmental	 particles,	 and	 thus	 the
initial	 superposition	 will	 soon	 collapse	 to	 one	 of	 the	 localized	 branches
according	 to	 our	 model.	 Accordingly,	 the	 macroscopic	 objects	 can	 always	 be
localized	due	 to	 the	environmental	 influences.	Note	 that	 the	energy	uncertainty
here	denotes	the	sum	of	the	absolute	energy	uncertainty	of	each	subsystem	in	the
entangled	state	as	defined	in	our	model[86].
As	a	typical	example,	we	consider	a	dust	particle	of	radius	a	≈	10−5cm	and	mass
m	≈	10−7g.	It	is	well	known	that	localized	states	of	macroscopic	objects	spread
very	slowly	under	 the	 free	Schrödinger	evolution.	For	 instance,	 for	a	Gaussian
wave	packet	with	initial	(mean	square)	width	∆,	the	wave	packet	will	spread	so
that	the	width	doubles	in	a	time	t	=	2m∆2/h.	This	means	that	the	double	time	is
almost	infinite	for	a	macroscopic	object.	If	the	dust	particle	had	no	interactions
with	environment	and	its	initial	state	is	a	Gaussian	wave	packet	with	width	∆	≈
10−5cm,	the	doubling	time	would	be	about	the	age	of	the	universe.	However,	if
the	dust	particle	is	in	interaction	with	environment,	the	situation	turns	out	to	be
very	different.	Although	the	different	components	that	couple	to	the	environment
will	be	individually	incredibly	localised,	collectively	they	can	have	a	spread	that
is	many	orders	of	magnitude	larger.	In	other	words,	the	state	of	the	dust	particle
and	the	environment	could	be	a	superposition	of	zillions	of	very	well	 localised
terms,	 each	with	 slightly	 different	 positions,	 and	which	 are	 collectively	 spread
over	a	macroscopic	distance	(Bacciagaluppi	2008).	According	 to	Joos	and	Zeh
(1985),	 the	 spread	 in	 an	 environment	 full	 of	 thermal	 radiation	 only	 is
proportional	 to	 mass	 times	 the	 cube	 of	 time	 for	 large	 times,	 namely	 (∆x)2≈
Λmτ3,	where	Λ	is	the	localization	rate	depending	on	the	environment,	defined	by
the	 evolution	 equation	 of	 density	 matrix	 ρt(x,	 x	 )	 =	 ρ0(x,	 x	 )e−Λt(x−x	 )2.	 For
example,	if	the	above	dust	particle	interacts	with	thermal	radiation	at	T	=	300K,
the	localization	rate	is	Λ	=	1012,	and	the	overall	spread	of	its	state	is	of	the	order
of	10m	after	a	second	(Joos	and	Zeh	1985).	If	the	dust	particle	interacts	with	air
molecules,	e.g.	floating	in	the	air,	the	spread	of	its	state	will	be	much	faster.
Let’s	 see	whether	 the	 energy-conserved	 collapse	 in	 our	model	 can	 prevent	 the



above	 spreading	 of	 the	 wave	 packet.	 Suppose	 the	 dust	 particle	 is	 in	 a
superposition	 of	 two	 identical	 localized	 states	 that	 are	 separated	 by	 10−5cm	 in
space.	The	 particle	 floats	 in	 the	 air,	 and	 its	 average	 velocity	 is	 about	 zero.	At
standard	 temperature	 and	 pressure,	 one	 nitrogen	molecule	 accretes	 in	 the	 dust
particle,	 which	 area	 is	 10−10cm2,	 during	 a	 time	 interval	 of	 10−14s	 in	 average
(Adler	2002).	Since	the	mass	of	the	dust	particle	is	much	larger	than	the	mass	of
a	 nitrogen	 molecule,	 the	 velocity	 change	 of	 the	 particle	 is	 negligible	 when
compared	with	the	velocity	change	of	the	nitrogen	molecules	during	the	process
of	 accretion.	Then	 the	kinetic	 energy	difference	between	 an	 accreted	molecule
and	a	freely	moving	molecule	is	about	∆E	=	3kT	≈	10−2eV	.	When	one	nitrogen
molecule	 accretes	 in	one	 localized	branch	of	 the	dust	 particle	 (the	molecule	 is
freely	 moving	 in	 the	 other	 localized	 branch),	 it	 will	 increase	 the	 energy
uncertainty	 of	 the	 total	 entangled	 state	 by	 ∆E	 ≈	 10−2eV	 .	 Then	 after	 a	 time
interval	of	10−4s,	the	number	of	accreted	nitrogen	molecules	is	about	1010,	and
the	 total	 energy	 uncertainty	 is	 about	 108eV	 .	 According	 to	 Eq.	 (4.13)	 in	 our
collapse	model,	 the	 corresponding	 collapse	 time	 is	 about	 10−4s.	 Since	 the	 two
localized	states	 in	 the	superposition	have	 the	same	energy	spectra,	 the	collapse
also	conserves	energy.
In	 the	 energy-conserved	 collapse	 model,	 the	 collapse	 states	 are	 energy
eigenstates,	and	 in	particular,	 they	are	nonlocal	momentum	eigenstates	 for	 free
quantum	 systems.	 Thus	 it	 is	 indeed	 counterintuitive	 that	 the	 energy-conserved
collapse	can	make	the	states	of	macroscopic	objects	local.	As	shown	above,	this
is	due	to	the	constant	influences	of	environmental	particles.	When	the	spreading
of	 the	 state	 of	 a	 macroscopic	 object	 becomes	 larger,	 its	 interaction	 with
environmental	 particles	 will	 introduce	 larger	 energy	 difference	 between	 its
different	local	branches,	and	this	will	then	collapse	the	spreading	state	again	into
a	more	 localized	state[87].	As	a	 result,	 the	 states	of	macroscopic	objects	 in	an
environment	will	never	reach	the	collapse	states,	namely	momentum	eigenstates,
though	they	do	continuously	undergo	the	energy-conserved	collapse.	To	sum	up,
there	are	two	opposite	processes	for	a	macroscopic	object	constantly	interacting
with	 environmental	 particles.	 One	 is	 the	 spreading	 process	 due	 to	 the	 linear
Schrödinger	 evolution,	 and	 the	 other	 is	 the	 localization	 process	 due	 to	 the
energy-conserved	 collapse	 evolution.	 The	 interactions	 with	 environmental
particles	 not	 only	 make	 the	 spreading	 more	 rapidly	 but	 also	 make	 the
localization	 more	 frequently.	 In	 the	 end	 these	 two	 processes	 will	 reach	 an
approximate	 equilibrium.	 The	 state	 of	 a	 macroscopic	 object	 will	 be	 a	 wave
packet	narrow	in	both	position	and	momentum,	and	this	narrow	wave	packet	will
follow	approximately	Newtonian	trajectories	(if	the	external	potential	is	uniform



enough	 along	 the	 width	 of	 the	 packet)	 by	 Ehrenfest’s	 theorem	 (See
Bacciagaluppi	2008	for	a	similar	analysis	in	the	context	of	decoherence)[88].	In
some	 sense,	 the	 emergence	 of	 the	 classical	world	 around	 us	 is	 "conspired"	 by
environmental	particles	according	to	the	energy-conserved	collapse	model.
Ultimately,	 the	energy-conserved	collapse	model	 should	be	able	 to	account	 for
our	 definite	 conscious	 experience.	According	 to	 recent	 neuroscience	 literature,
the	appearance	of	a	 (definite)	conscious	perception	 in	human	brains	 involves	a
large	 number	 of	 neurons	 changing	 their	 states	 from	 resting	 state	 (resting
potential)	to	firing	state	(action	potential).	In	each	neuron,	the	main	difference	of
these	 two	 states	 lies	 in	 the	 motion	 of	 106	 Na+s	 passing	 through	 the	 neuron
membrane.	 Since	 the	membrane	 potential	 is	 in	 the	 order	 of	 10−2V,	 the	 energy
difference	between	firing	state	and	resting	state	is	∆E	≈	104eV.	According	to	the
energy-conserved	collapse	model,	the	collapse	time	of	a	quantum	superposition
of	these	two	states	of	a	neuron	is
τc≈	hEP/(∆E)2	≈	(	2.8MeV/0.01MeV	)2≈	105s,	(4.20)
where	 the	 Planck	 energy	 EP≈	 1019GeV	 .	 When	 considering	 the	 number	 of
neurons	that	can	form	a	definite	conscious	perception	is	usually	in	the	order	of
107,	 the	collapse	 time	of	 the	quantum	superposition	of	 two	different	conscious
perceptions	will	be
τc≈	hEP/(∆E)2	≈	(	2.8MeV/100GeV	)2≈	10-9s,	(4.21)
Since	 the	 normal	 conscious	 time	 of	 a	 human	 being	 is	 in	 the	 order	 of	 several
hundred	 milliseconds,	 the	 collapse	 time	 is	 much	 shorter	 than	 the	 normal
conscious	 time.	 Therefore,	 our	 conscious	 perceptions	 are	 always	 definite
according	to	the	energy-conserved	collapse	model.
4.5	Critical	comments	on	other	dynamical	collapse	models
In	 this	 section,	 we	 will	 give	 a	 critical	 analysis	 of	 other	 dynamical	 collapse
models.	These	models	can	be	sorted	 into	 two	categories.	The	 first	one	may	be
called	 spontaneous	 collapse	 models,	 in	 which	 the	 dynamical	 collapse	 of	 the
wave	function	 is	assumed	to	happen	even	for	an	 isolated	system.	They	include
the	gravity-induced	wavefunction	collapse	model	 (Di´osi	1989;	Penrose	1996),
the	 GRW	 model	 (Ghirardi,	 Rimini	 and	 Weber	 1986)[89]	 etc.	 The	 second
category	may	be	called	interaction-induced	collapse	models,	which	assume	that
the	dynamical	collapse	of	 the	wave	function	of	a	given	system	results	 from	its
particular	interaction	with	a	noise	field.	One	typical	example	is	the	CSL	model
(Pearle	1989;	Ghirardi,	Pearle	and	Rimini	1990)[90].	 In	 the	following,	we	will
primarily	 analyze	 Penrose’s	 gravity-induced	 wavefunction	 collapse	model	 and
the	 CSL	 model,	 which	 are	 generally	 regarded	 as	 two	 of	 the	 most	 promising



models	of	wavefunction	collapse.
4.5.1	Penrose’s	gravity-induced	wavefunction	collapse	model
It	seems	very	natural	to	guess	that	the	collapse	of	the	wave	function	is	induced
by	 gravity.	 The	 reasons	 include:	 (1)	 gravity	 is	 the	 only	 universal	 force	 being
present	in	all	physical	interactions;	(2)	gravitational	effects	grow	with	the	size	of
the	objects	concerned,	and	it	is	in	the	context	of	macroscopic	objects	that	linear
superpositions	may	be	violated.	The	gravity-induced	collapse	conjecture	can	be
traced	back	to	Feynman	(1995)[91].	In	his	Lectures	on	Gravitation,	he	considers
the	philosophical	problems	in	quantizing	macroscopic	objects	and	contemplates
on	a	possible	breakdown	of	quantum	 theory.	He	said,	 "I	would	 like	 to	 suggest
that	 it	 is	possible	 that	quantum	mechanics	 fails	at	 large	distances	and	for	 large
objects,	 it	 is	not	 inconsistent	with	what	we	do	know.	If	 this	failure	of	quantum
mechanics	 is	 connected	 with	 gravity,	 we	 might	 speculatively	 expect	 this	 to
happen	for	masses	such	that	GM2/	c	=	1,	of	M	near	10−5	grams."
Penrose	(1996)	 further	proposed	a	concrete	gravity-induced	collapse	argument.
The	 argument	 is	 based	 on	 a	 profound	 and	 fundamental	 conflict	 between	 the
general	covariance	principle	of	general	relativity	and	the	superposition	principle
of	 quantum	 mechanics.	 The	 conflict	 can	 be	 clearly	 seen	 by	 considering	 the
superposition	 state	 of	 a	 static	mass	 distribution	 in	 two	 different	 locations,	 say
position	A	and	position	B.	On	 the	one	hand,	according	 to	quantum	mechanics,
the	valid	definition	of	 such	a	 superposition	 requires	 the	 existence	of	 a	definite
spacetime	background,	in	which	position	A	and	position	B	can	be	distinguished.
On	 the	 other	 hand,	 according	 to	 general	 relativity,	 the	 spacetime	 geometry,
including	 the	 distinguishability	 of	 position	 A	 and	 position	 B,	 cannot	 be
predetermined,	 and	 must	 be	 dynamically	 determined	 by	 the	 position
superposition	 state.	 Since	 the	 different	 position	 states	 in	 the	 superposition
determine	 different	 spacetime	 geometries,	 the	 spacetime	 geometry	 determined
by	the	whole	superposition	state	is	 indefinite,	and	as	a	result,	 the	superposition
and	 its	evolution	cannot	be	consistently	defined.	 In	particular,	 the	definition	of
the	 time-translation	operator	 for	 the	 superposed	 spacetime	geometries	 involves
an	 inherent	 ill-definedness,	 and	 this	 leads	 to	 an	 essential	 uncertainty	 in	 the
energy	 of	 the	 superposed	 state.	 Then	 by	 analogy	 Penrose	 argued	 that	 this
superposition,	 like	 an	 unstable	 particle	 in	 usual	 quantum	 mechanics,	 is	 also
unstable,	 and	 it	 will	 decay	 or	 collapse	 into	 one	 of	 the	 two	 states	 in	 the
superposition	 after	 a	 finite	 lifetime.	 Furthermore,	 Penrose	 suggested	 that	 the
essential	 energy	 uncertainty	 in	 the	 Newtonian	 limit	 is	 proportional	 to	 the
gravitational	self-energy	E∆	of	the	difference	between	the	two	mass	distributions,
and	the	collapse	time,	analogous	to	the	half-life	of	an	unstable	particle,	is



T	≈	h/E∆.	(4.22)
This	criterion	is	very	close	to	that	put	forward	by	Di´	osi	(1989)	earlier,	and	it	is
usually	 called	 the	 Di´osi-Penrose	 criterion.	 Later,	 Penrose	 (1998)	 further
suggested	that	the	collapse	states	are	the	stationary	solutions	of	the	Schrödinger-
Newton	equation.
Let’s	 now	 analyze	 Penrose’s	 argument.	 The	 crux	 of	 the	matter	 is	whether	 the
conflict	 between	 quantum	 mechanics	 and	 general	 relativity	 requires	 that	 a
quantum	superposition	of	two	spacetime	geometries	must	collapse	after	a	finite
time.	We	will	 argue	 in	 the	 following	 that	 the	 answer	 is	 negative.	 First	 of	 all,
although	 it	 is	 widely	 acknowledged	 that	 there	 exists	 a	 fundamental	 conflict
between	 the	 general	 covariance	 principle	 of	 general	 relativity	 and	 the
superposition	 principle	 of	 quantum	 mechanics,	 it	 is	 still	 a	 controversial	 issue
what	 the	exact	nature	of	 the	conflict	 is	 and	how	 to	 solve	 it.	For	 example,	 it	 is
possible	that	the	conflict	may	be	solved	by	reformulating	quantum	mechanics	in
a	way	 that	does	not	 rely	on	a	definite	 spacetime	background	 (see,	e.g.	Rovelli
2011).
Next,	 Penrose’s	 argument	 seems	 too	weak	 to	 establish	 a	 necessary	 connection
between	 the	 conflict	 and	 wavefunction	 collapse.	 Even	 though	 there	 is	 an
essential	 uncertainty	 in	 the	 energy	 of	 the	 superposition	 of	 different	 spacetime
geometries,	this	kind	of	energy	uncertainty	is	different	in	nature	from	the	energy
uncertainty	of	unstable	particles	or	unstable	states	 in	usual	quantum	mechanics
(Gao	2010).	The	 former	 results	 from	 the	 ill-definedness	of	 the	 time-translation
operator	for	 the	superposed	spacetime	geometries	(though	its	nature	seems	still
unclear),	while	the	latter	exists	in	a	definite	spacetime	background,	and	there	is	a
well-defined	 time-translation	 operator	 for	 the	 unstable	 states.	 Moreover,	 the
decay	 of	 these	 unstable	 states	 is	 a	 natural	 result	 of	 the	 linear	 Schrödinger
evolution,	 and	 the	 process	 is	 not	 random	 but	 deterministic.	 By	 contrast,	 the
hypothetical	 spontaneous	 decay	 or	 collapse	 of	 the	 superposed	 spacetime
geometries	is	nonlinear	and	random.	In	addition,	 the	decay	of	an	unstable	state
(e.g.	 excited	 state	 of	 an	 atom)	 is	 actually	 not	 spontaneous	 but	 caused	 by	 the
background	field	constantly	 interacting	with	 it.	 In	some	extreme	situations,	 the
state	may	not	decay	at	all	when	in	a	very	special	background	field	with	bandgap
(Yablonovitch	 1987).	 In	 short,	 there	 exists	 no	 convincing	 analogy	 between	 a
superposition	 of	 different	 spacetime	 geometries	 and	 an	 unstable	 state	 in	 usual
quantum	mechanics.	Accordingly,	one	cannot	argue	for	the	decay	or	collapse	of
the	superposition	of	different	spacetime	geometries	by	this	analogy.	Although	an
unstable	state	in	quantum	mechanics	may	decay	after	a	very	short	time,	this	does
not	 imply	 that	 a	 superposition	 of	 different	 spacetime	 geometries	 should	 also



decay	 -	 and,	 again,	 sometimes	 an	 unstable	 state	 does	 not	 decay	 at	 all	 under
special	 circumstances.	 To	 sum	 up,	 Penrose’s	 argument	 by	 analogy	 only	 has	 a
very	limited	force,	and	especially,	it	is	not	strong	enough	to	establish	a	necessary
connection	 between	 the	 conflict	 between	 quantum	 mechanics	 and	 general
relativity	and	wavefunction	collapse.
Thirdly,	it	can	be	further	argued	that	the	conflict	does	not	necessarily	lead	to	the
wavefunction	 collapse.	 The	 key	 is	 to	 realize	 that	 the	 conflict	 also	 needs	 to	 be
solved	before	the	wavefunction	collapse	finishes,	and	when	the	conflict	has	been
solved,	 the	wavefunction	collapse	will	 lose	 its	basis	relating	to	 the	conflict.	As
argued	by	Penrose,	the	quantum	superposition	of	different	spacetime	geometries
and	its	evolution	are	both	ill-defined	due	to	the	fundamental	conflict	between	the
general	covariance	principle	of	general	relativity	and	the	superposition	principle
of	 quantum	 mechanics.	 The	 ill-definedness	 seems	 to	 require	 that	 the
superposition	must	collapse	into	one	of	the	definite	spacetime	geometries,	which
has	 no	 problem	 of	 ill-definedness.	However,	 the	wavefunction	 collapse	 seems
too	 late	 to	 save	 the	 superposition	 from	 the	 "suffering"	 of	 the	 ill-definedness
during	 the	 collapse.	 In	 the	 final	 analysis,	 the	 conflict	 or	 the	 problem	 of	 ill-
definedness	 needs	 to	 be	 solved	 before	 defining	 a	 quantum	 superposition	 of
different	 spacetime	 geometries	 and	 its	 evolution.	 In	 particular,	 the	 possible
collapse	 evolution	 of	 the	 superposition	 also	 needs	 to	 be	 consistently	 defined,
which	again	indicates	that	the	wavefunction	collapse	does	not	solve	the	problem
of	 ill-definedness.	 On	 the	 other	 hand,	 once	 the	 problem	 of	 ill-definedness	 is
solved	 and	 a	 consistent	 description	obtained	 (however	 this	 is	 still	 an	 unsolved
issue	 in	 quantum	 gravity),	 the	 wavefunction	 collapse	 will	 completely	 lose	 its
connection	with	the	problem[92].	Therefore,	contrary	to	Penrose’s	expectation,	it
seems	that	 the	conflict	between	quantum	mechanics	and	general	relativity	does
not	entail	the	existence	of	wavefunction	collapse.
Even	 though	 Penrose’s	 gravity-induced	 collapse	 argument	 is	 debatable,	 the
wavefunction	 collapse	may	 still	 exist	 due	 to	 other	 reasons,	 and	 thus	Penrose’s
concrete	suggestions	for	the	collapse	time	formula	and	collapse	states	also	need
to	be	 further	examined	as	some	aspects	of	a	phenomenological	model.	First	of
all,	let’s	analyze	Penrose’s	collapse	time	formula	Eq.	(4.22),	according	to	which
the	 collapse	 time	 of	 a	 superposition	 of	 two	 mass	 distributions	 is	 inversely
proportional	 to	 the	 gravitational	 self-energy	 of	 the	 difference	 between	 the	 two
mass	 distributions.	 As	 we	 have	 argued	 above,	 the	 analogy	 between	 such	 a
superposition	 and	 an	 unstable	 state	 in	 quantum	mechanics	 does	 not	 exist,	 and
gravity	 does	 not	 necessarily	 induce	 wavefunction	 collapse	 either.	 Thus	 this
collapse	 time	 formula,	which	 is	based	on	a	 similar	application	of	Heisenberg’s



uncertainty	 principle	 to	 unstable	 states,	will	 lose	 its	 original	 physical	 basis.	 In
particular,	the	appearance	of	the	gravitational	self-energy	term	in	the	formula	is
in	want	of	a	reasonable	explanation.	In	fact,	it	has	already	been	shown	that	this
gravitational	 self-energy	 term	 does	 not	 represent	 the	 ill-definedness	 of	 time-
translation	 operator	 (or	 the	 fuzziness	 of	 the	 identification	 between	 two
spacetimes)	 in	 the	 strictly	Newtonian	 regime	 (Christian	 2001).	 In	 this	 regime,
the	 time-translation	 operator	 can	 be	 well	 defined,	 but	 the	 gravitational	 self-
energy	 term	 is	 not	 zero.	 In	 addition,	 as	 Di´osi	 (2007)	 pointed	 out,	 the
microscopic	 formulation	 of	 the	 collapse	 time	 formula	 is	 unclear	 and	 still	 has
some	problems	(e.g.	the	cut-off	difficulty).
Next,	 let’s	 examine	 Penrose’s	 suggestion	 for	 the	 collapse	 states.	According	 to
Penrose	 (1998),	 the	 collapse	 states	 are	 the	 stationary	 solutions	 of	 the
Schrödinger-Newton	 equation,	 namely	 Eq.	 (2.31)	 given	 in	 Chapter	 2.	 The
equation	describes	the	gravitational	self-interaction	of	a	single	quantum	system,
in	which	the	mass	density	m|ψ(x,	t)|2	 is	 the	source	of	the	classical	gravitational
potential.	As	we	have	argued	in	Chapter	2,	although	a	quantum	system	has	mass
density	that	is	measurable	by	protective	measurement,	the	density	is	not	real	but
effective,	and	it	is	formed	by	the	ergodic	motion	of	a	localized	particle	with	the
total	 mass	 of	 the	 system.	 Therefore,	 there	 does	 not	 exist	 a	 gravitational	 self-
interaction	of	the	mass	density.	This	conclusion	can	also	be	reached	by	another
somewhat	 different	 argument.	 Since	 charge	 always	 accompanies	 mass	 for	 a
charged	particle	such	as	an	electron[93],	 the	existence	of	 the	gravitational	self-
interaction,	 though	which	 is	 too	weak	 to	 be	 excluded	 by	 present	 experiments,
may	further	entail	 the	existence	of	a	remarkable	electrostatic	self-interaction	of
the	 particle[94],	 which	 already	 contradicts	 experiments	 as	 we	 have	 shown	 in
Chapter	 2.	 This	 analysis	 poses	 a	 serious	 objection	 to	 the	 Schrödinger-Newton
equation	and	Penrose’s	suggestion	for	the	collapse	states[95].
Lastly,	we	briefly	discuss	another	 two	problems	of	Penrose’s	 collapse	 scheme.
The	first	one	is	the	origin	of	the	randomness	of	collapse	results.	Penrose	did	not
consider	this	issue	in	his	collapse	scheme.	If	the	collapse	is	indeed	spontaneous
as	 implied	 by	 his	 gravity-induced	 collapse	 argument,	 then	 the	 randomness
cannot	result	from	any	external	influences	such	as	an	external	noise	field,	and	it
can	 only	 come	 from	 the	 studied	 quantum	 system	 and	 its	 wave	 function.	 The
second	 problem	 is	 energy	 non-conservation.	 Although	 Penrose	 did	 not	 give	 a
concrete	 model	 of	 wavefunction	 collapse,	 his	 collapse	 scheme	 requires	 the
collapse	 of	 superpositions	 of	 different	 positions,	 while	 this	 kind	 of	 space
collapse	 inevitably	 violates	 energy	 conservation[96].	 Since	 the	 gravitational



energy	 of	 a	 quantum	 system	 is	 much	 smaller	 than	 the	 energy	 of	 the	 system,
Penrose’s	 collapse	 scheme	 still	 violates	 energy	 conservation	 even	 if	 the
gravitational	 field	 is	 counted[97].	 As	 we	 have	 noted	 earlier,	 for	 an	 isolated
system	only	the	collapse	states	are	energy	eigenstates	can	energy	conserve	(at	the
ensemble	level)	during	the	collapse.	If	the	principle	of	conservation	of	energy	is
indeed	universal	 as	widely	 thought,	 then	 the	 spontaneous	 collapse	models	 that
violate	energy	conservation	will	have	been	excluded.	By	contrast,	although	the
interaction-induced	collapse	models	such	as	the	CSL	model	also	violate	energy
conservation	in	their	present	formulations,	there	is	still	hope	that	when	counting
the	 energy	 of	 external	 noise	 field	 the	 total	 energy	may	 be	 conserved	 in	 these
models	(Pearle	2000;	Bassi,	 Ippoliti	and	Vacchini	2005).	Let’s	 turn	 to	 the	CSL
model	now.
4.5.2	The	CSL	model
In	 the	 CSL	model,	 the	 collapse	 of	 the	wave	 function	 of	 a	 quantum	 system	 is
assumed	to	be	caused	by	its	interaction	with	a	classical	scalar	field,	w(x,	t).	The
collapse	states	are	the	eigenstates	of	the	smeared	mass	density	operator,	and	the
mechanism	leading	to	the	suppression	of	 the	superpositions	of	macroscopically
different	 states	 is	 fundamentally	 governed	 by	 the	 integral	 of	 the	 squared
differences	of	 the	mass	densities	associated	 to	 the	superposed	states.	 It	may	be
expected	that	 the	introduction	of	 the	noise	field	can	help	to	solve	the	problems
plagued	by	 the	spontaneous	collapse	models,	e.g.	 the	problems	of	 energy	non-
conservation	and	the	origin	of	randomness	etc.	However,	one	must	first	answer
what	 field	 the	 noise	 field	 is	 and	 especially	 why	 it	 can	 collapse	 the	 wave
functions	 of	 all	 quantum	 systems.	 The	 validity	 of	 the	 CSL	 model	 strongly
depends	on	the	existence	of	this	hypothetical	noise	field.	In	this	subsection,	we
will	mainly	analyze	this	important	legitimization	problem	of	the	CSL	model[98].
Whatever	 the	 nature	 of	 the	 noise	 field	w(x,	 t)	 is,	 it	 cannot	 be	 quantum	 in	 the
usual	 sense	 since	 its	 coupling	 to	 a	 quantum	 system	 is	 not	 a	 standard	 coupling
between	two	quantum	systems.	The	coupling	is	anti-Hermitian	(Bassi	2007),	and
the	equation	of	the	resulting	dynamical	collapse	is	not	the	standard	Schrödinger
equation	 with	 a	 stochastic	 potential	 either.	 According	 to	 our	 current
understandings,	 the	 gravitational	 field	 is	 the	 only	 universal	 field	 that	might	 be
not	quantized,	though	this	possibility	seems	extremely	small	in	the	view	of	most
researchers.	 Therefore,	 it	 seems	 natural	 to	 identify	 this	 noise	 field	 with	 the
gravitational	field.	In	fact,	it	has	been	argued	that	in	the	CSL	model	the	w-field
energy	density	must	have	a	gravitational	interaction	with	ordinary	matter	(Pearle
and	Squires	1996;	Pearle	2009).	The	argument	of	Pearle	and	Squires	(1996)	can
be	summarized	as	follows[99].



There	are	two	equations	which	characterize	the	CSL	model.	The	first	equation	is
a	modified	Schrödinger	equation,	which	expresses	the	influence	of	an	arbitrary
field	w(x,	 t)	on	 the	quantum	system.	The	second	equation	 is	a	probability	 rule
which	gives	the	probability	that	nature	actually	chooses	a	particular	w(x,	t).	This
probability	 rule	 can	 also	 be	 interpreted	 as	 expressing	 the	 influence	 of	 the
quantum	system	on	the	field.	As	a	result,	w(x,	t)	can	be	written	as	follows:
w(x,	t)	=	w0(x,	t)+	<	A(x,	t)	>,	(4.23)
where	A(x,	t)	is	the	mass	density	operator	smeared	over	the	GRW	scale	a,	<	A(x,
t)	 >	 is	 its	 quantum	 expectation	 value,	 and	 w0(x,	 t)	 is	 a	 Gaussian	 randomly
fluctuating	field	with	zero	drift,	 temporally	white	noise	 in	character	and	with	a
particular	 spatial	 correlation	 function.	Then	 the	 scalar	 field	w(x,	 t)	 that	 causes
collapse	can	be	interpreted	as	the	gravitational	curvature	scalar	with	two	sources,
the	expectation	value	of	the	smeared	mass	density	operator	and	an	independent
white	noise	fluctuating	source.	This	indicates	that	the	CSL	model	is	based	on	the
semiclassical	 gravity,	 and	 the	 smeared	 mass	 density	 is	 the	 source	 of	 the
gravitational	potential.	Note	that	the	reality	of	the	field	w(x,	t)	requires	that	the
smeared	mass	density	of	a	quantum	system	is	real58.
According	to	our	previous	analysis,	however,	a	quantum	system	does	not	have	a
real	mass	density	distribution	in	space,	no	matter	it	is	smeared	or	not.	Moreover,
although	the	approach	of	semiclassical	gravity	may	be	consistent	in	the	context
of	dynamical	collapse	models	(Pearle	and	Squires	1996;	Ghirardi	2008),	it	may
have	been	excluded	as	implied	by	the	analysis.	Besides,	as	we	have	pointed	out
in	 Section	 2,	 protective	 measurement	 shows	 that	 a	 quantum	 system	 has	 an
effective	mass	density	proportional	to	the	modulus	square	of	its	wave	function.
Thus	the	assumed	existence	of	the	smeared	mass	density	in	the	CSL	model,	even
if	it	is	effective,	also	contradicts	protective	measurement.	Note	that	it	is	crucial
that	 the	 mass	 density	 be	 smeared	 over	 the	 GRW	 scale	 a	 in	 the	 CSL	 model;
without	 such	a	 smearing	 the	energy	excitation	of	particles	undergoing	collapse
would	 be	 beyond	 experimental	 constraints	 (Pearle	 and	 Squires	 1996).	 In
conclusion,	 it	 seems	 that	 the	 noise	 field	 introduced	 in	 the	 CSL	model	 cannot
have	 a	 gravitational	 origin	 required	 by	 the	 model,	 and	 this	 may	 raise	 strong
doubts	about	the	reality	of	the	field.
58	 Note	 that	 Ghirardi,	 Grassi	 and	 Benatti	 (1995)	 and	 Ghirardi	 (1997)	 already
explicitly	 proposed	 the	 so-called	 mass	 density	 ontology	 in	 the	 context	 of
dynamical	collapse	 theories.	According	 to	Ghirardi	 (2008),	"what	 the	 theory	 is
about,	 what	 is	 real	 ‘out	 there’	 at	 a	 given	 space	 point	 x,	 is	 just	 a	 field,	 i.e.	 a
variable	m(x,	t)	given	by	the	expectation	value	of	the	mass	density	operator	M(x)
at	x	obtained	by	multiplying	the	mass	of	any	kind	of	particle	times	the	number



density	 operator	 for	 the	 considered	 type	 of	 particle	 and	 summing	 over	 all
possible	types	of	particles.
On	 the	other	hand,	even	 though	 the	approach	of	semiclassical	gravity	 is	viable
and	the	noise	field	in	the	CSL	model	can	be	the	gravitational	field,	one	still	need
to	 answer	why	 the	gravitational	 field	has	 the	very	 ability	 to	 collapse	 the	wave
functions	 of	 all	 quantum	 systems	 as	 required	 by	 the	model.	 It	 is	worth	 noting
that	the	randomly	fluctuating	field	in	the	model,	w0(x,	t),	is	not	the	gravitational
field	of	the	studied	quantum	system	but	the	background	gravitational	field.	Thus
Penrose’s	 gravity-induced	wavefunction	 collapse	 argument,	 even	 if	 valid,	 does
not	apply	to	the	CSL	model,	which	is	essentially	an	interaction	induced	model	of
wavefunction	 collapse.	 The	 fluctuations	 of	 the	 background	 gravitational	 field
can	readily	lead	to	the	decoherence	of	the	wave	function	of	a	quantum	system,
but	it	seems	that	they	have	no	ability	to	cause	the	collapse	of	the	wave	function.
Lastly,	 let’s	 briefly	 discuss	 another	 two	 problems	 of	 the	CSL	model.	The	 first
one	is	the	well-known	problem	of	energy	non-conservation.	The	collapse	in	the
model	 narrows	 the	 wave	 function	 in	 position	 space,	 thereby	 producing	 an
increase	of	energy[100].	A	possible	solution	is	that	the	conservation	laws	may	be
satisfied	 when	 the	 contributions	 of	 the	 noise	 field	 w(x,	 t)	 to	 the	 conserved
quantities	are	 taken	 into	account.	 It	has	been	shown	that	 the	 total	mean	energy
can	be	conserved	(Pearle	2004),	and	the	energy	increase	can	also	be	made	finite
when	 further	 revising	 the	 coupling	 between	 the	 noise	 field	 and	 the	 studied
quantum	system	(Bassi,	Ippoliti	and	Vacchini	2005).	But	a	complete	solution	has
not	been	found	yet,	and	it	is	still	unknown	whether	such	a	solution	indeed	exists.
The	 second	 problem	 is	 to	 make	 a	 relativistic	 quantum	 field	 theory	 which
describes	 collapse	 (Pearle	 2009).	 Notwithstanding	 a	 good	 deal	 of	 effort,	 a
satisfactory	theory	has	not	been	obtained	at	present	(see	Bedingham	2011	for	a
recent	 attempt).	 The	 main	 difficulty	 is	 that	 the	 hypothetical	 interaction
responsible	 for	 collapse	 will	 produce	 too	 many	 particles	 out	 of	 the	 vacuum,
amounting	to	infinite	energy	per	sec	per	volume,	in	the	relativistic	extension	of
these	 interaction-induced	 collapse	 models.	 Note	 that	 the	 spontaneous	 collapse
models	without	collapse	 interaction	(e.g.	 the	energy-conserved	collapse	model)
don’t	face	this	difficulty.	We	will	discuss	the	problem	of	compatibility	between
wavefunction	collapse	and	the	principle	of	relativity	in	the	next	Chapter.



	
Chapter	5
On	the	Unification	of	Quantum	Mechanics	and	Special	Relativity
We	 have	 an	 apparent	 incompatibility,	 at	 the	 deepest	 level,	 between	 the	 two
fundamental	pillars	of	contemporary	theory	...	It	may	be	that	a	real	synthesis	of
quantum	 and	 relativity	 theories	 requires	 not	 just	 technical	 developments	 but
radical	conceptual	renewal.

—John	Bell
In	this	chapter,	we	will	briefly	analyze	random	discontinuous	motion	of	particles
and	 its	 collapse	evolution	 in	 the	 relativistic	domain[101].	 It	 is	 first	 shown	 that
the	Lorentz	transformation	seriously	distorts	the	picture	of	random	discontinuous
motion	of	particles,	and	the	distortion	results	from	the	relativity	of	simultaneity.
We	 then	argue	 that	absolute	simultaneity	 is	not	only	possible	 in	 the	 relativistic
domain,	but	also	necessitated	by	the	existence	of	random	discontinuous	motion
of	particles	and	its	collapse	evolution.	This	leads	to	the	existence	of	a	preferred
Lorentz	frame	when	combined	with	the	requirement	of	the	constancy	of	speed	of
light.	It	is	further	shown	that	the	collapse	dynamics	may	provide	a	way	to	detect
the	 frame	 according	 to	 the	 energy-conserved	 collapse	 model.	 If	 quantum
mechanics	 indeed	 describes	 random	 discontinuous	 motion	 of	 particles	 as
protective	measurement	suggests,	 then	 this	analysis	may	be	helpful	 for	solving
the	 problem	 of	 the	 incompatibility	 of	 quantum	 mechanics	 with	 special
relativity[102].
5.1	Distorted	picture	of	motion
Let’s	 first	 see	how	 the	picture	of	 random	discontinuous	motion	 is	 distorted	by
the	Lorentz	transformation	that	leads	to	the	relativity	of	simultaneity.
5.1.1	Single	particle	picture
For	the	random	discontinuous	motion	of	a	particle,	the	particle	has	a	propensity
to	be	in	any	possible	position	at	a	given	instant,	and	the	probability	density	of	the
particle	 appearing	 in	 each	 position	 x	 at	 a	 given	 instant	 t	 is	 determined	 by	 the
modulus	 square	 of	 its	wave	 function,	 namely	 ρ(x,	 t)	 =	 |ψ(x,	 t)|2.	 The	 physical
picture	 of	 the	 motion	 of	 the	 particle	 is	 as	 follows.	 At	 a	 discrete	 instant	 the
particle	randomly	stays	in	a	position,	and	at	the	next	instant	it	will	still	stay	there
or	 randomly	 appear	 in	 another	 position,	 which	 is	 probably	 not	 in	 the
neighborhood	of	the	previous	position.	In	this	way,	during	a	time	interval	much
larger	 than	 the	 duration	 of	 one	 instant,	 the	 particle	will	move	 discontinuously
throughout	 the	whole	 space	with	position	probability	density	ρ(x,	 t).	Since	 the
distance	 between	 the	 locations	 occupied	 by	 the	 particle	 at	 two	 neighboring
instants	may	 be	 very	 large,	 this	 jumping	 process	 is	 obviously	 nonlocal.	 In	 the



nonrelativistic	domain	where	 time	 is	 absolute,	 the	nonlocal	 jumping	process	 is
the	 same	 in	 every	 inertial	 frame.	 But	 in	 the	 relativistic	 domain,	 the	 jumping
process	 will	 look	 different	 in	 different	 inertial	 frames	 due	 to	 the	 Lorentz
transformation.	Let’s	give	a	concrete	analysis.
Suppose	a	particle	is	in	position	x1	at	instant	t1	and	in	position	x2	at	instant	t2	in
an	inertial	frame	S.	In	another	inertial	frame	S	with	velocity	v	relative	to	S,	the
Lorentz	transformation	leads	to:

Since	the	jumping	process	of	the	particle	is	nonlocal,	the	two	events	(t1,	x1)	and
(t2,	x2)	may	readily	satisfy	the	spacelike	separation	condition	|x2−	x1|	>	c|t2−	t1|.
Then	we	can	always	select	a	possible	velocity	(v	<	c)	that	leads	to	t2	=	t1:

But	obviously	the	two	positions	of	the	particle	in	frame	S	,	namely	x1	and	x2,	are
not	 equal.	 This	 means	 that	 in	 frame	 S	 the	 particle	 will	 be	 in	 two	 different
positions	x1	and	x2	at	 the	same	 time	at	 instant	 t1.	 In	other	words,	 it	 seems	 that
there	are	two	identical	particles	at	instant	t1	in	frame	S	.	Note	that	the	velocity	of
S	 relative	 to	 S	 may	 be	 much	 smaller	 than	 the	 speed	 of	 light,	 and	 thus	 the
appearance	of	the	two-particle	picture	is	irrelevant	to	the	high-energy	processes
described	by	relativistic	quantum	field	theory,	e.g.	the	creation	and	annihilation
of	particles.
The	above	result	shows	that	for	any	pair	of	events	 in	frame	S	that	satisfies	 the
spacelike	separation	condition,	there	always	exists	an	inertial	frame	in	which	the
two-particle	 picture	 will	 appear.	 Since	 the	 jumping	 process	 of	 the	 particle	 in



frame	S	 is	 essentially	 random,	 it	 can	 be	 expected	 that	 the	 two-particle	 picture
will	appear	in	the	infinitely	many	inertial	frames	in	an	even	way.	Then	during	an
arbitrary	finite	time	interval,	in	each	inertial	frame	the	measure	of	the	instants	at
which	 there	 are	 two	 particles	 in	 appearance,	 which	 is	 equal	 to	 the	 finite	 time
interval	divided	by	 the	 total	number	of	 the	frames	 that	 is	 infinite,	will	be	zero.
Moreover,	there	may	also	exist	situations	where	the	particle	is	at	arbitrarily	many
positions	at	the	same	time	at	an	instant	in	an	inertial	frame,	though	the	measure
of	these	situations	is	also	zero.	Certainly,	at	nearly	all	instants	which	measure	is
one,	 the	 particle	 is	 still	 in	 one	 position	 at	 an	 instant	 in	 all	 inertial	 frames.
Therefore,	the	many-particle	appearance	of	the	random	discontinuous	motion	of
a	particle	cannot	be	measured	in	principle.
However,	 for	 the	 random	 discontinuous	 motion	 of	 a	 particle,	 in	 any	 inertial
frame	different	from	S,	the	Lorentz	transformation	will	inevitably	make	the	time
order	 of	 the	 random	 stays	 of	 the	 particle	 in	 S	 reversal	 and	 disorder,	 as	 the
discontinuous	motion	of	 the	particle	 is	nonlocal	 and	most	neighboring	 random
stays	 are	 spacelike	 separated	 events.	 In	 other	 words,	 the	 time	 order	 is	 not
Lorentz	invariant.	Moreover,	the	set	of	the	instants	at	which	the	time	order	of	the
random	stays	of	the	particle	is	reversed	has	finite	measure,	which	may	be	close
to	one.	As	we	will	see	below,	this	reversal	and	disorder	of	time	order	will	lead	to
more	distorted	pictures	for	quantum	entanglement	and	wavefunction	collapse.
5.1.2	Picture	of	quantum	entanglement
Now	let’s	analyze	the	motion	of	two	particles	in	quantum	entanglement.	For	the
random	 discontinuous	 motion	 of	 two	 particles	 in	 an	 entangled	 state,	 the	 two
particles	 have	 a	 joint	 propensity	 to	 be	 in	 any	 two	 possible	 positions,	 and	 the
probability	density	of	the	two	particles	appearing	in	each	position	pair	x1	and	x2
at	a	given	instant	t	is	determined	by	the	modulus	square	of	their	wave	function	at
the	instant,	namely	ρ(x1,	x2,	t)	=	|ψ(x1,	x2,	t)|2.
Suppose	two	particles	are	in	an	entangled	state	ψuϕu+	ψdϕd,	where	ψu	and	ψd	are
two	spatially	separated	states	of	particle	1,	ϕu	and	ϕd	are	two	spatially	separated
states	of	particle	2,	and	particle	1	and	particle	2	are	also	separated	in	space.	The
physical	 picture	 of	 this	 entangled	 state	 is	 as	 follows.	 Particles	 1	 and	 2	 are
randomly	in	the	state	ψuϕu	or	ψdϕd	at	an	instant,	and	then	they	will	still	stay	in
this	state	or	jump	to	the	other	state	at	the	next	instant.	During	a	very	short	time
interval,	the	two	particles	will	discontinuously	move	throughout	the	states	ψuϕu
and	ψdϕd	with	 the	 same	probability	1/2.	 In	 this	way,	 the	 two	particles	 form	an
inseparable	 whole,	 and	 they	 jump	 in	 a	 precisely	 simultaneous	 way.	 At	 an
arbitrary	instant,	if	particle	1	is	in	the	state	ψu	or	ψd,	then	particle	2	must	be	in



the	state	ϕu	or	ϕd,	and	vice	versa.	Moreover,	when	particle	1	jumps	from	ψu	to	ψd
or	from	ψd	to	ψu,	particle	2	must	simultaneously	jump	from	ϕu	to	ϕd	or	from	ϕd
to	ϕu,	and	vice	versa.	Note	 that	 this	kind	of	 random	synchronicity	between	 the
motion	 of	 particle	 1	 and	 the	motion	 of	 particle	 2	 is	 irrelevant	 to	 the	 distance
between	them,	and	it	can	only	be	explained	by	the	existence	of	joint	propensity
of	the	two	particles	as	a	whole.
The	above	picture	of	quantum	entanglement	 is	assumed	 to	exist	 in	one	 inertial
frame.	 It	 can	 be	 expected	 that	 when	 observed	 in	 another	 inertial	 frame,	 this
perfect	picture	will	be	distorted	in	a	similar	way	as	for	the	single	particle	case.
Let’s	give	a	concrete	analysis	below.	Suppose	in	an	inertial	frame	S,	at	instant	ta
particle	1	is	at	position	x1a	and	in	state	ψu	and	particle	2	at	position	x2a	and	 in
state	ϕu,	and	at	instant	tb	particle	1	is	at	position	x1b	and	in	state	ψd	and	particle	2
at	position	x2b	and	in	state	ϕd.	Then	according	to	the	Lorentz	transformation,	in
another	inertial	frame	S	with	velocity	v	relative	to	S,	where	v	satisfies:

the	instant	at	which	particle	1	is	at	position	x1a	and	in	state	ψu	is	the	same	as	the
instant	at	which	particle	2	is	at	position	x2b	and	in	state	ϕd,	namely

This	means	that	in	S	there	exists	an	instant	at	which	particle	1	is	in	state	ψu	but
particle	 2	 is	 in	 state	 ϕd.	 Similarly,	 in	 another	 inertial	 frame	 S	with	 velocity	 v
relative	 to	S,	 there	also	exists	an	 instant	 t	at	which	particle	1	 is	 in	state	ψd	but
particle	2	is	in	state	ϕu,	where	v	and	t	satisfy	the	following	relations:

Note	 that	 since	 the	 two	 particles	 are	 well	 separated	 in	 space,	 the	 above	 two
velocities	can	readily	satisfy	the	restricting	conditions	v	<	c	and	v	<	c	when	the
time	interval	|ta−	tb|	is	very	short.



In	fact,	since	the	two	particles	in	the	above	entangled	state	are	separated	in	space
and	their	motion	is	essentially	random,	in	any	inertial	frame	different	from	S,	the
instantaneous	correlation	between	the	motion	of	the	two	particles	in	S	can	only
keep	half	the	time,	and	the	correlation	will	be	reversed	for	another	half	of	time,
during	which	the	two	particles	will	be	in	state	ψuϕd	or	ψdϕu	at	each	instant.	For	a
general	entangled	state	√aψuϕu	+	√bψdϕd,	the	proportion	of	correlation-reversed
time	will	 be	 2ab,	 and	 the	 proportion	 of	 correlation-kept	 time	will	 be	 a2	 +	 b2.
Moreover,	 the	 instants	 at	which	 the	original	 correlation	 is	kept	or	 reversed	are
discontinuous	 and	 random.	 This	 means	 that	 the	 synchronicity	 between	 the
jumpings	of	the	two	particles	is	destroyed	too.
To	 sum	up,	 the	 above	 analysis	 indicates	 that	 the	 instantaneous	 correlation	 and
synchronicity	 between	 the	 motion	 of	 two	 entangled	 particles	 in	 one	 inertial
frame	 is	destroyed	 in	other	 frames	due	 to	 the	Lorentz	 transformation[103].	As
we	 will	 see	 below,	 however,	 this	 distorted	 picture	 of	 quantum	 entanglement
cannot	be	measured	either.
5.1.3	Picture	of	wavefunction	collapse
We	 have	 shown	 that	 the	 picture	 of	 the	 instantaneous	 motion	 of	 particles	 is
distorted	by	the	Lorentz	transformation	due	to	the	nonlocality	and	randomness	of
motion.	 In	 the	 following,	 we	 will	 further	 show	 that	 the	 nonlocal	 and	 random
collapse	 evolution	of	 the	 state	 of	motion	 (defined	during	 an	 infinitesimal	 time
interval)	will	be	influenced	by	the	Lorentz	transformation	more	seriously.













ψuϕu	 +	 ψdϕd,	 can	 only	 obtain	 correlated	 results	 in	 every	 inertial	 frame.	 If	 a
measurement	on	particle	1	obtains	 the	 result	 u	or	d,	 indicating	 the	 state	of	 the
particle	 collapses	 to	 the	 state	 ψu	 or	 ψd	 after	 the	 measurement,	 then	 a	 second
measurement	on	particle	2	can	only	obtain	the	result	u	or	d,	indicating	the	state
of	particle	2	collapses	to	the	state	ϕu	or	ϕd	after	the	measurement.	Accordingly,
although	the	instantaneous	correlation	and	synchronicity	between	the	motion	of
two	 entangled	 particles	 is	 destroyed	 in	 all	 but	 one	 inertial	 frame,	 the	 distorted
picture	of	quantum	entanglement	cannot	be	measured.
5.2	On	the	absoluteness	of	simultaneity
The	 above	 analysis	 clearly	 demonstrates	 the	 apparent	 conflict	 between	 the
random	 discontinuous	 motion	 of	 particles	 and	 the	 Lorentz	 transformation	 in



special	relativity.	The	crux	of	the	matter	lies	in	the	relativity	of	simultaneity.	If
simultaneity	 is	 relative	 as	 required	 by	 the	 Lorentz	 transformation,	 then	 the
picture	of	 random	discontinuous	motion	of	particles	will	be	 seriously	distorted
except	in	one	preferred	frame,	though	the	distortion	is	unobservable	in	principle.
Only	 when	 simultaneity	 is	 absolute,	 can	 the	 picture	 of	 random	 discontinuous
motion	of	particles	be	kept	perfect	in	every	inertial	frame.	In	the	following,	we
will	show	that	absolute	simultaneity	is	not	only	possible,	but	also	necessitated	by
the	 existence	 of	 random	 discontinuous	 motion	 of	 particles	 and	 its	 collapse
evolution.
Although	 the	 relativity	 of	 simultaneity	 has	 been	 often	 regarded	 as	 one	 of	 the
essential	 concepts	 of	 special	 relativity,	 it	 is	 not	 necessitated	 by	 experimental
facts	 but	 a	 result	 of	 the	 choice	 of	 standard	 synchrony	 (see,	 e.g.	 Reichenbach
1958;	Gr¨unbaum	1973)[104].	As	Einstein	(1905)	already	pointed	out	in	his	first
paper	 on	 special	 relativity,	 whether	 or	 not	 two	 spatially	 separated	 events	 are
simultaneous	 depends	 on	 the	 adoption	 of	 a	 convention	 in	 the	 framework	 of
special	relativity.	In	particular,	the	choice	of	standard	synchrony,	which	is	based
on	 the	 constancy	 of	 one-way	 speed	 of	 light	 and	 results	 in	 the	 relativity	 of
simultaneity,	 is	 only	 a	 convenient	 convention.	 Strictly	 speaking,	 the	 speed
constant	 c	 in	 special	 relativity	 is	 two-way	 speed,	 not	 one-way	 speed,	 and	 as	 a
result,	 the	 general	 spacetime	 transformation	 required	by	 the	 constancy	of	 two-
way	 speed	 of	 light	 is	 not	 the	 Lorentz	 transformation	 but	 the	 Edwards-Winnie
transformation	(Edwards	1963;	Winnie	1970):





The	above	analysis	demonstrates	the	possibility	of	keeping	simultaneity	absolute
within	 the	 framework	 of	 special	 relativity.	 One	 can	 adopts	 the	 standard
synchrony	that	leads	to	the	relativity	of	simultaneity,	and	one	can	also	adopts	the
nonstandard	 synchrony	 that	 restores	 the	 absoluteness	 of	 simultaneity.	 This	 is
permitted	because	there	is	no	causal	connection	between	two	spacelike	separated
events	 in	 special	 relativity.	However,	 if	 there	 is	 a	 causal	 influence	 connecting
two	 distinct	 events,	 then	 the	 claim	 that	 they	 are	 not	 simultaneous	will	 have	 a
nonconventional	 basis	 (Reichenbach	 1958,	 123-135;	 Gr¨basis	 (Reichenbach
1958,	 123-135;	 Gr¨	 368).	 In	 particular,	 if	 there	 is	 an	 arbitrarily	 fast	 causal
influence	connecting	two	spacelike	separated	events,	then	these	two	events	will
be	 simultaneous.	 In	 the	 following,	 we	 will	 show	 that	 random	 discontinuous
motion	 and	 its	 collapse	 evolution	 just	 provide	 a	 nonconventional	 basis	 for	 the



absoluteness	of	simultaneity.
Consider	 a	 particle	 being	 in	 a	 superposition	 of	 two	 well	 separated	 spatial
branches.	According	to	the	picture	of	random	discontinuous	motion,	the	particle
jumps	 between	 these	 two	branches	 in	 a	 random	and	discontinuous	way.	At	 an
instant	the	particle	is	in	one	branch,	and	at	the	next	instant	it	may	be	in	the	other
spatially-separated	branch.	The	disappearance	of	 the	particle	 in	the	first	branch
can	be	 regarded	as	one	event,	and	 the	appearance	of	 the	particle	 in	 the	second
branch	 can	 be	 regarded	 as	 another	 event.	 Obviously	 there	 is	 an	 instantaneous
causal	connection	between	 these	 two	spacelike	separated	events;	 if	 the	particle
did	not	disappear	 in	 the	 first	branch,	 it	 could	not	appear	 in	 the	 second	branch.
Therefore,	 these	 two	events	should	be	regarded	as	simultaneous.	Note	 that	 this
conclusion	is	irrelevant	to	whether	the	two	events	and	their	causal	connection	are
observable.	 Furthermore,	 simultaneity	 cannot	 be	 relative	 but	 be	 absolute,
otherwise	 these	 two	 distinct	 events	 will	 be	 not	 simultaneous	 in	 all	 but	 one
inertial	frame[105].
Let’s	 further	 consider	 the	 collapse	 evolution	 of	 random	 discontinuous	 motion
during	a	measurement.	It	can	be	seen	that	the	measurement	on	one	branch	of	the
superposition	 has	 a	 causal	 influence	 on	 the	 other	 branch	 (as	 well	 as	 on	 the
measured	 branch)	 via	 the	 collapse	 process,	 and	 this	 nonlocal	 influence	 is
irrelevant	to	the	distance	between	the	two	branches.	Accordingly,	the	time	order
of	the	measurement	and	the	collapse	of	the	superposition	happening	in	the	two
separated	regions	cannot	be	conventional	but	must	be	unique.	Since	the	collapse
time	 can	 be	 arbitrarily	 short,	 the	 measurement	 and	 the	 collapse	 of	 the
superposition	 can	 be	 regarded	 as	 simultaneous.	Moreover,	 the	 collapses	 of	 the
superposition	in	the	two	regions,	which	are	spacelike	separated	events,	are	also
simultaneous[106].	 The	 simultaneity	 is	 irrelevant	 to	 the	 selection	 of	 inertial
frames,	which	again	means	that	simultaneity	is	absolute.
Certainly,	the	collapse	of	an	individual	superposition	cannot	be	measured	within
the	 framework	of	 the	existing	quantum	mechanics.	However,	on	 the	one	hand,
the	 above	 conclusion	 is	 irrelevant	 to	 whether	 the	 collapse	 events	 can	 be
measured	 or	 not,	 and	 on	 the	 other	 hand,	 the	 collapse	 of	 an	 individual
superposition	may	 be	 observable	when	 the	 quantum	dynamics	 is	 deterministic
nonlinear	 (Gisin	 1990),	 e.g.	 when	 the	 measuring	 device	 is	 replaced	 with	 a
conscious	observer	(Squires	1992;	Gao	2004).
5.3	Collapse	dynamics	and	preferred	Lorentz	frame
The	random	discontinuous	motion	of	particles	and	its	collapse	evolution	requires
that	 simultaneity	 is	 absolute.	 If	 the	 collapse	 of	 the	 wave	 function	 happens
simultaneously	 at	 different	 locations	 in	 space	 in	 every	 inertial	 frame,	 then	 the



one-way	speed	of	light	will	be	not	isotropic	in	all	but	one	inertial	frame.	In	other
words,	 if	 the	 absolute	 simultaneity	 is	 restored,	 then	 the	 non-invariance	 of	 the
one-way	speed	of	 light	will	 single	out	a	preferred	Lorentz	 frame,	 in	which	 the
one-way	speed	of	light	is	isotropic[107].	The	detectability	of	this	frame	seems	to
depend	 on	 the	 measurability	 of	 individual	 collapse.	 Once	 the	 collapse	 of	 an
individual	wave	 function	 can	 be	measured,	 the	 clocks	 at	 different	 locations	 in
space	 can	 be	 synchronized	 with	 the	 help	 of	 the	 instantaneous	 wavefunction
collapse	 in	 every	 inertial	 frame,	 and	 the	 preferred	 Lorentz	 frame	 can	 then	 be
determined	by	measuring	 the	one-way	speed	of	 light,	which	 is	 isotropic	 in	 the
frame.
However,	 even	 if	 the	 collapse	 of	 an	 individual	 wave	 function	 cannot	 be
measured,	the	preferred	Lorentz	frame	may	also	be	determined	by	measuring	the
(average)	 collapse	 time	 of	 the	 wave	 functions	 of	 identical	 systems	 in	 an
ensemble	according	to	our	energy-conserved	collapse	model[108].	The	reason	is
that	 the	 law	 of	 collapse	 dynamics	 in	 our	 model,	 like	 the	 time	 order	 of	 the
collapses	in	different	positions,	is	not	relativistically	invariant	either.	Let’s	give	a
more	detailed	analysis	below.
According	to	 the	energy-conserved	collapse	model,	 the	(average)	collapse	 time
formula	 for	 an	 energy	 superposition	 state,	 denoted	 by	 Eq.	 (4.13),	 can	 be
rewritten	as

where	tP	 is	the	Planck	time,	∆E	is	the	energy	uncertainty	of	the	state.	It	can	be
seen	 that	 this	 collapse	 time	 formula	 is	 not	 relativistically	 invariant,	 and	 thus
there	 exists	 a	 preferred	 Lorentz	 frame	 according	 to	 the	 collapse	 model.	 We
assume	the	formula	is	valid	in	the	preferred	Lorentz	frame,	denoted	by	S0,	in	the

relativistic	 domain[109].	 Then	 in	 another	 inertial	 frame	 the	 collapse	 time	will
depend	 on	 the	 velocity	 of	 the	 frame	 relative	 to	 S0.	 According	 to	 the	 Lorentz

transformation[110],	in	an	inertial	frame	S	with	velocity	v	relative	to	the	frame
S0	we	have:



Here	 we	 only	 consider	 the	 situation	 where	 the	 particle	 has	 very	 high	 energy,
namely	E	≈	pc,	and	thus	Eq.	(5.21)	holds.	Besides,	we	assume	the	Planck	time	tP
is	 the	minimum	 time	 in	 the	preferred	Lorentz	 frame,	 and	 in	 another	 frame	 the
minimum	 time	 (i.e.	 the	 duration	 of	 a	 discrete	 instant)	 is	 connected	 with	 the
Planck	time	tP	by	 the	 time	dilation	formula	required	by	special	 relativity.	Then
by	 inputting	 these	 equations	 into	 Eq.	 (5.22),	 we	 can	 obtain	 the	 relativistic
collapse	 time	 formula	 for	 an	 arbitrary	 experimental	 frame	 with	 velocity	 v
relative	to	the	frame	S0:

This	formula	contains	a	term	relating	to	the	velocity	of	the	experimental	frame
relative	 to	 the	 preferred	 Lorentz	 frame.	 It	 can	 be	 expected	 that	 this	 velocity-
dependent	 term	 originates	 from	 the	 relativistic	 equation	 of	 collapse	 dynamics.
Indeed,	the	equation	of	collapse	dynamics,	which	nonrelativistic	form	is	denoted
by	 Eq.	 (4.15),	 does	 contain	 a	 velocity	 term	 in	 order	 to	 be	 relativistic
invariant[111]:

where	f(v)	≈	1	+	v/c	when	E	≈	pc,	and	v	is	the	velocity	of	the	experimental	frame
relative	 to	 the	preferred	Lorentz	 frame.	From	 this	 equation	we	can	also	derive
the	above	relativistic	collapse	time	formula.
Therefore,	according	to	our	energy-conserved	collapse	model,	the	collapse	time
of	 a	 given	 wave	 function	 will	 differ	 in	 different	 inertial	 frames[112].	 For
example,	when	considering	the	maximum	difference	of	 the	revolution	speed	of
the	Earth	with	respect	to	the	Sun	is	∆v	≈	60km/s,	the	maximum	difference	of	the



collapse	 time	measured	 in	different	 times	 (e.g.	 spring	and	 fall	 respectively)	on
the	Earth	will	be	∆τc≈	4	×	10−4τc.	As	a	result,	the	collapse	dynamics	will	single
out	 a	 preferred	 Lorentz	 frame	 in	 which	 the	 collapse	 time	 of	 a	 given	 wave
function	 is	 longest,	 and	 the	 frame	 can	 also	 be	 determined	 by	 comparing	 the
collapse	 time	of	a	given	wave	function	 in	different	 frames.	 It	may	be	expected
that	 this	 preferred	 Lorentz	 frame	 is	 the	 CMB-frame	 in	 which	 the	 cosmic
background	 radiation	 is	 isotropic,	 and	 the	 one-way	 speed	 of	 light	 is	 also
isotropic	in	this	frame[113].
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Notes

[1]	 Note	 that	 the	 proponents	 of	 protective	 measurement	 did	 not	 give	 an
explanation	of	the	charge	density.	According	to	them,	this	type	of	measurement
implies	 that	 the	wave	 function	 of	 a	 single	 quantum	 system	 is	 ontological,	 i.e.,
that	it	is	a	real	physical	wave	(Aharonov,	Anandan	and	Vaidman	1993).
[2]	The	Hilbert	 space	 is	 a	compete	vector	 space	with	 scalar	product.	The	 state
vector	in	a	Hilbert	space	contains	proper	vectors	normalizable	to	unity	as	well	as
improper	 vectors	 normalizable	 only	 to	 the	 Dirac	 delta	 functions.	 The	 exact
nature	of	the	Hilbert	space	depends	on	the	system;	for	example,	the	state	space
for	position	and	momentum	states	is	the	space	of	square-integrable	functions.
[3]	For	a	continuous	property	such	as	position,	P(x)	=	|<x|ψ>|2	is	the	probability
density	 at	 x,	 and	 P(x)dx	 is	 the	 probability	 of	 obtaining	 	 measurement	 result
between	x	and	x	+	dx.
[4]	By	contrast,	in	a	conventional	impulse	measurement	the	initial	position	of	the
pointer	is	well	localized	around	zero,	and	thus	the	conjugate	momentum	P	has	a
very	large	uncertainty	which	leads	to	a	very	large	uncertainty	in	the	Hamiltonian
of	the	measurement	(2.1).
[5]	 In	 order	 to	 read	 the	 position	 of	 pointer,	 an	 impulse	 position	measurement
needs	 to	 be	made	 after	 the	weak	measurement,	 and	 this	 will	 lead	 to	 a	 partial
collapse	 of	 the	 measured	 wave	 function.	 For	 a	 helpful	 discussion	 see	 Miller
(2010).
[6]	For	a	 review	of	earlier	objections	 to	 the	validity	and	meaning	of	protective
measurements	 and	 the	 answers	 to	 them	 see	Aharonov,	 Anandan	 and	Vaidman
(1996),	Dass	and	Qureshi	(1999)	and	Vaidman	(2009).
[7]	The	change	 in	 the	 total	Hamiltonian	during	 these	processes	 is	 smaller	 than
PA=T,	 and	 thus	 the	 adiabaticity	 of	 the	 interaction	will	 not	 be	 violated	 and	 the
approximate	treatment	given	below	is	valid.	For	a	more	strict	analysis	see	Dass
and	Qureshi	(1999).
[8]	As	in	conventional	impulse	measurements,	there	is	also	an	issue	of	retrieving
the	 information	 about	 the	 center	 of	 the	wave	 packet	 of	 the	 pointer	 (Dass	 and
Qureshi	 1999).	 One	 strategy	 is	 to	 consider	 adiabatic	 coupling	 of	 a	 single
quantum	 system	 to	 an	 ensemble	 of	 measuring	 devices	 and	 make	 impulse
position	 measurements	 on	 the	 ensemble	 of	 devices	 to	 determine	 the	 pointer



position.	 For	 example,	 the	 ensemble	 of	 devices	 could	 be	 a	 beam	 of	 atoms
interacting	adiabatically	with	the	spin	of	the	system.	Although	such	an	ensemble
approach	inevitably	carries	with	it	uncertainty	in	the	knowledge	of	the	position
of	 the	 device,	 the	 pointer	 position,	which	 is	 the	 average	 of	 the	 result	 of	 these
position	 measurements,	 can	 be	 determined	 with	 arbitrary	 accuracy.	 Another
approach	is	to	make	repeated	measurements	(e.g.	weak	quantum	nondemolition
measurements)	 on	 the	 single	measuring	 device.	 This	 issue	 does	 not	 affect	 the
principle	 of	 protective	 measurements.	 In	 particular,	 retrieving	 the	 information
about	the	position	of	the	pointer	only	depends	on	the	Born	rule	and	is	irrelevant
to	 whether	 the	 wave	 function	 collapses	 or	 not	 during	 a	 conventional	 impulse
measurement.
[9]	 Anandan	 (1993)	 and	 Dickson	 (1995)	 gave	 some	 initial	 analyses	 of	 the
implications	of	 this	 result	 for	quantum	 realism.	According	 to	Anandan	 (1993),
protective	measurement	refutes	an	argument	of	Einstein	in	favor	of	the	ensemble
interpretation	 of	 quantum	 mechanics.	 Dickson’s	 (1995)	 analysis	 was	 more
philosophical.	 He	 argued	 that	 protective	 measurement	 provides	 a	 reply	 to
scientific	 empiricism	 about	 quantum	mechanics,	 but	 it	 can	 neither	 refute	 that
position	nor	confirm	scientific	realism,	and	the	aim	of	his	argument	 is	 to	place
realism	and	empiricism	on	an	even	score	in	regards	to	quantum	mechanics.
[10]	This	point	was	discussed	and	stressed	by	Dass	and	Qureshi	(1999).
[11]	Quoted	in	Moore	(1994),	p.148.
[12]	This	important	point	was	also	stressed	by	Aharonov,	Anandan	and	Vaidman
(1993).
[13]	 It	 is	 worth	 stressing	 that	 the	 added	 protection	 procedure	 depends	 on	 the
measured	 state,	 and	 different	 states	 need	 different	 protection	 procedures	 in
general.
[14]	 Whether	 the	 charge	 is	 real	 or	 effective	 will	 be	 investigated	 in	 the	 next
section.
[15]	 Any	 physical	 measurement	 is	 necessarily	 based	 on	 some	 interaction
between	 the	 measured	 system	 and	 the	 measuring	 system.	 One	 basic	 form	 of
interaction	is	the	electrostatic	interaction	between	two	electric	charges	as	in	our
example,	 and	 the	 existence	 of	 this	 interaction	during	 a	measurement,	which	 is
indicated	by	the	deviation	of	the	trajectory	of	the	charged	measuring	system	such
as	an	electron,	means	that	the	measured	system	also	has	the	charge	responsible
for	the	interaction.	If	one	denies	this	point,	then	it	seems	that	one	cannot	obtain
any	information	about	 the	measured	system	by	the	measurement.	Note	 that	 the
arguments	against	the	naive	realism	about	operators	and	the	eigenvalue	realism



in	the	quantum	context	are	irrelevant	here	(Daumer	et	al	1997;	Valentini	2010).
[16]	 Strictly	 speaking,	 the	 mass	 density	 is	 m|ψ(x)|2+ψ∗Hψ/c2	 in	 the
nonrelativistic	domain,	but	the	second	term	is	very	small	compared	with	the	first
term	and	can	be	omitted.
[17]	 Alternatively	 one	 might	 simply	 insist	 that	 even	 if	 the	 mass	 and	 charge
distributions	 of	 a	 charged	 quantum	 system	 are	 real,	 they	 still	 have	 no
gravitational	and	electrostatic	self-interactions.	One	may	further	argue	that	this	is
because	 the	 system	 is	 of	 quantum	nature	 (for	 a	 classical	 charged	 system	 these
self-interactions	do	exist),	and	the	superposition	principle	of	quantum	mechanics
prohibits	 the	 existence	 of	 these	 self-interactions.	 However,	 this	 view	 is
untenable.	On	the	one	hand,	even	if	 the	superposition	principle	may	be	used	to
explain	 the	 absence	 of	 self-interactions	 for	 a	 charged	 quantum	 system,	 it	 does
not	tell	us	whether	the	mass	and	charge	distributions	of	the	quantum	system	are
real	or	not.	One	cannot	simply	stipulate	that	these	distributions	are	real,	because
they	may	be	effective	and	formed	by	the	ergodic	motion	of	a	localized	particle
with	the	total	mass	and	charge	of	the	system,	and	especially,	the	effective	mass
and	charge	distributions	have	no	gravitational	and	electrostatic	self-interactions,
which	 is	 consistent	 with	 the	 superposition	 principle.	 Thus	 this	 view	 begs	 the
question	and	leaves	the	origin	of	mass	and	charge	density	as	a	mystery.	On	the
other	 hand,	 the	 assumption	 that	 real	 mass	 and	 charge	 distributions	 have
gravitational	 and	 electrostatic	 self-interactions	 has	 been	 confirmed	 not	 only	 in
the	 classical	 domain	 but	 also	 in	 the	 quantum	 domain	 for	many-body	 systems.
For	 example,	 two	 charged	 quantum	 systems	 such	 as	 two	 electrons,	 which
represent	two	real	charge	distributions,	do	have	electrostatic	interactions.	Thus	it
is	 reasonable	 to	 expect	 that	 this	 assumption	 also	 holds	 true	 for	 individual
quantum	systems.	Our	following	analysis	will	show	that	this	assumption,	when
combining	with	the	superposition	principle,	can	help	to	reveal	the	physical	origin
of	the	mass	and	charge	density	of	a	quantum	system.
[18]	It	has	been	argued	that	the	existence	of	a	gravitational	self-interaction	term
in	 the	 Schrödinger-Newton	 equation	 does	 not	 have	 a	 consistent	 Born	 rule
interpretation	(Adler	2007).	The	reason	is	that	the	probability	of	simultaneously
finding	a	particle	in	different	positions	is	zero.
[19]	By	contrast,	the	potential	strength	of	the	gravitational	self-interaction	for	a
free	electron	is	about	4	×	10−89.
[20]	Note	that	even	if	there	are	only	two	masses	and	charges	in	space	at	a	given
instant,	 the	 densities	 formed	 by	 their	 motion	 also	 have	 gravitational	 and
electrostatic	 interactions.	Therefore,	 the	mass	and	charge	density	of	a	quantum



system	can	only	be	formed	by	the	ergodic	motion	of	one	localized	particle	with
the	total	mass	and	charge	of	the	system.
[21]	At	a	particular	time	the	charge	density	is	either	zero	(if	 the	electron	is	not
there)	 or	 singular	 (if	 the	 electron	 is	 inside	 the	 infinitesimally	 small	 region
including	the	space	point	in	question).
[22]	Note	that	in	Nelson’s	stochastic	mechanics,	the	electron,	which	is	assumed
to	 undergo	 a	 Brownian	 motion,	 moves	 only	 within	 a	 region	 bounded	 by	 the
nodes	(Nelson	1966).	This	ensures	that	the	theory	can	be	equivalent	to	quantum
mechanics	 in	a	 limited	sense.	Obviously	 this	 sort	of	motion	 is	not	ergodic	and
cannot	generate	the	required	charge	density	distribution.	Likewise,	some	variants
of	 stochastic	mechanics	 (Bell	 1986b;	Vink	 1993;	 Barrett,	 Leifer	 and	 Tumulka
2005),	which	 assume	 that	 the	motion	 of	 particles	 is	 discrete	 random	 jump	but
still	 nonergodic,	 cannot	 be	 consistent	 with	 protective	 measurement	 either.	 In
addition,	 it	 has	 been	 argued	 that	 stochastic	 mechanics	 is	 inconsistent	 with
quantum	 mechanics	 (Glabert,	 H¨anggi	 and	 Talkner	 1979;	 Wallstrom	 1994).
Glabert,	H¨anggi	and	Talkner	(1979)	argued	that	the	Schrödinger	equation	is	not
equivalent	to	a	Markovian	process,	and	the	various	correlation	functions	used	in
quantum	mechanics	do	not	have	the	properties	of	the	correlations	of	a	classical
stochastic	process.	Wallstrom	(1994)	further	showed	that	one	must	add	by	hand	a
quantization	 condition,	 as	 in	 the	 old	 quantum	 theory,	 in	 order	 to	 recover	 the
Schrödinger	 equation,	 and	 thus	 the	 Schrödinger	 equation	 and	 the	 Madelung
hydrodynamic	equations	are	not	equivalent.	In	fact,	Nelson	(2005)	also	showed
that	 there	 is	 an	 empirical	 difference	 between	 the	 predictions	 of	 quantum
mechanics	 and	 his	 stochastic	 mechanics	 when	 considering	 quantum
entanglement	 and	 nonlocality.	 For	 example,	 for	 two	 widely-separated	 but
entangled	 harmonic	 oscillators,	 the	 two	 theories	 predict	 totally	 different
statistics;	stochastic	mechanics	predicts	that	measurements	of	the	position	of	the
first	one	at	time	T	(oscillation	period)	and	the	position	of	the	second	one	at	time
0	do	not	interfere	with	each	other,	while	quantum	mechanics	predicts	that	there
exists	a	strong	correlation	between	them.
[23]	The	word	"cause"	used	here	only	denotes	a	certain	instantaneous	condition
determining	 the	 change	 of	 position,	which	may	 appear	 in	 the	 laws	 of	motion.
Our	analysis	is	irrelevant	to	whether	the	condition	has	causal	power	or	not.
[24]	 This	 deterministic	 instantaneous	 condition	 has	 been	 often	 called	 intrinsic
velocity	(Tooley	1988).
[25]	In	discrete	space	and	time,	the	motion	will	be	a	discrete	jump	across	space
along	 a	 fixed	 direction	 at	 each	 time	 unit,	 and	 thus	 it	 will	 become	 continuous



motion	with	constant	velocity	in	the	continuous	limit.
[26]	 In	 the	 next	 chapter,	 we	 will	 derive	 this	 equation	 of	 free	 motion	 from
fundamental	physical	principles.	This	will	make	 the	argument	given	here	more
complete.	 Besides,	 the	 derivation	 itself	 may	 also	 provide	 an	 argument	 for
discontinuous	motion	that	does	not	resort	to	direct	experience,	as	the	equation	of
free	 motion	 does	 not	 permit	 the	 persisting	 existence	 of	 the	 local	 state	 of
continuous	motion.	For	details	see	Section	3.4.
[27]	However,	the	analysis	cannot	tell	us	the	precise	size	and	possible	structure
of	an	electron.
[28]	Recall	that	a	function	x(t)	is	continuous	if	and	only	if	for	every	t	and	every
real	number	ε	>	0,	there	exists	a	real	number	δ	>	0	such	that	whenever	a	point	t0
has	distance	less	than	δ	to	t,	the	point	x(t0)	has	distance	less	than	ε	to	x(t).
[29]	However,	there	is	an	exception.	When	the	probability	density	function	is	a
special	δ-function	such	as	δ(x	−	x(t)),	where	x(t)	 is	a	continuous	 function	of	 t,
the	motion	of	the	particle	is	deterministic	and	continuous.	In	addition,	even	for	a
general	probability	density	 function	 it	 is	 still	possible	 that	 the	 random	position
series	forms	a	continuous	trajectory,	though	the	happening	probability	is	zero.
[30]	The	existence	of	 this	 limit	 relies	on	 the	continuity	of	 the	evolution	of	 the
probabilistic	 instantaneous	condition	or	propensity	of	a	particle	that	determines
its	random	discontinuous	motion.
[31]	Note	 that	 the	 relation	between	 j(x,	 t)	 and	ψ(x,	 t)	 depends	on	 the	 concrete
evolution	 under	 an	 external	 potential	 such	 as	 electromagnetic	 vector	 potential.
By	contrast,	the	relation	ρ(x,	t)	=	|ψ(x,	t)|2	holds	true	universally,	independent	of
the	concrete	evolution.
[32]	For	a	many-particle	system	in	an	entangled	state,	the	propensity	property	is
possessed	 by	 the	 whole	 system.	 See	 Chapter	 5	 for	 a	 detailed	 analysis	 of	 the
physical	picture	of	quantum	entanglement.
[33]	Note	that	for	random	discontinuous	motion	the	properties	(e.g.	position)	of
a	quantum	system	in	a	superposed	state	are	indeterminate	in	the	sense	of	usual
hidden	variables,	though	they	do	have	definite	values	at	each	instant.	This	makes
the	theorems	that	restrict	hidden	variables	such	as	the	Kochen-Specker	theorem
(Kochen	and	Specker	1967)	irrelevant.
[34]	But	 if	 the	spin	state	of	a	particle	 is	entangled	with	its	spatial	state	and	the
branches	 of	 the	 entangled	 state	 are	 well	 separated	 in	 space,	 the	 particle	 in
different	 branches	 will	 have	 different	 spin,	 and	 it	 will	 also	 undergo	 random



discontinuous	motion	 between	 these	 different	 spin	 states.	 This	 is	 the	 situation
that	usually	happens	during	a	spin	measurement.
[35]	This	is	an	important	presupposition	in	our	derivation.	We	will	consider	the
possible	case	of	nonlinearity	of	H	in	the	next	section.
[36]	Different	 from	 the	 derivation	 given	 below,	most	 existing	 “derivations”	 of
the	energy-momentum	relation	are	based	on	the	somewhat	complex	analysis	of
an	 elastic	 collision	 process.	 Moreover,	 they	 resort	 to	 either	 some	 Newtonian
limit	 (e.g.	 p	=	mv)	or	 some	 less	 fundamental	 relation	 (e.g.	 p	=	Eu/c2)	 or	 even
some	mathematical	 intuition	 (e.g.	 four-vectors)	 (see	Sonego	 and	Pin	 2005	 and
references	therein).
[37]	Alternatively	we	can	obtain	 the	 transformations	of	momentum	and	energy
by	directly	requiring	the	relativistic	invariance	of	momentum	eigenstate	ei(px−Et),
which	leads	to	the	relation	px	−	Et	=	p0x0−	E0t0.	Note	that	any	superposition	of
momentum	 eigenstates	 is	 also	 invariant	 under	 the	 coordinates	 transformation.
The	 reason	 is	 that	 it	 is	 a	 scalar	 that	 describes	 the	 physical	 state	 of	 a	 quantum
system,	and	when	observed	in	different	 reference	frames	 it	should	be	 the	same
(except	 an	 absolute	 phase).	 This	 also	 means	 that	 the	 state	 evolution	 equation
must	be	relativistically	invariant	in	nature.	However,	if	the	relativistic	invariant
equation	 is	 replaced	 by	 the	 nonrelativistic	 approximation	 such	 as	 the
Schrödinger	equation,	the	state	will	no	longer	satisfy	the	relativistic	invariance.
[38]	According	 to	 the	 analysis	 here,	 it	 seems	 that	 we	 can	 in	 principle	 avoid
talking	about	mass	 in	modern	physics	 from	a	more	 fundamental	point	of	view
(cf.	Okun	2009).
[39]	 This	 also	 means	 that	 the	 Klein-Gordon	 equation	 can	 be	 derived	 in	 the
relativistic	domain	when	assuming	that	the	wave	function	is	a	number	function.
[40]	In	order	to	derive	the	complete	Schrödinger	equation	in	a	fundamental	way,
we	need	a	fundamental	theory	of	interactions	such	as	quantum	field	theory.
[41]	In	order	to	ensure	that	the	nonlinear	evolution	is	unitary	and	thus	the	total
probability	is	conserved	in	time,	the	Hamiltonian	H(ψ)	must	be	also	Hermitian.
Besides,	 this	 property	 is	 also	 required	 to	 ensure	 that	 the	 energy	 eigenvalues
(which	satisfy	the	equation	H(ψ)ψ(x)	=	Eψ(x))	are	real.	When	the	Hamiltonian
H(ψ)	is	Hermitian,	the	Ehrenfest	theorem	still	holds	true.
[42]	This	will	violate	the	relativistic	invariance	of	momentum	eigenstates.
[43]	For	more	discussions	about	the	arguments	for	linear	quantum	dynamics	see
Holman	(2006)	and	references	therein.



[44]	For	example,	 the	collapse	 to	a	position	eigenstate	during	an	 ideal	position
measurement	 is	 obviously	 unphysical,	 as	 the	 position	 eigenstate	 has	 infinite
average	energy.
[45]	 As	 we	 have	 shown	 in	 Chapter	 2,	 there	 are	 at	 least	 three	 levels	 of
implications.	 First,	 protective	 measurement	 can	 measure	 the	 mass	 and	 charge
density	of	a	quantum	system,	which	is	proportional	to	the	modulus	square	of	the
wave	 function	 of	 the	 system.	 This	 indicates	 that	 the	 mass	 and	 charge	 of	 a
quantum	 system	are	 attributes	 of	 its	wave	 function.	Next,	when	 assuming	 that
real	 mass	 and	 charge	 distributions	 have	 gravitational	 and	 electrostatic
interactions,	which	has	been	confirmed	not	only	in	the	classical	domain	but	also
in	 the	quantum	domain	 for	many-body	systems,	 it	 can	be	shown	 that	 the	mass
and	 charge	density	 of	 a	 quantum	 system	 is	 formed	by	 the	 time	 average	of	 the
ergodic	 motion	 of	 a	 localized	 particle	 with	 the	 total	 mass	 and	 charge	 of	 the
system.	 This	 indicates	 that	 the	 wave	 function	 is	 a	 description	 of	 the	 ergodic
motion	of	particles.	Lastly,	it	can	be	further	argued	that	the	ergodic	motion	is	not
continuous	 but	 discontinuous	 and	 random.	 This	 leads	 to	 our	 suggested
interpretation	 of	 the	 wave	 function,	 according	 to	 which	 the	 wave	 function	 in
quantum	 mechanics	 is	 a	 description	 of	 random	 discontinuous	 motion	 of
particles.	 Most	 of	 our	 critical	 analysis	 of	 the	 existing	 solutions	 to	 the
measurement	problem	only	depends	on	the	first	two	implications.
[46]	In	other	words,	the	principle	of	protective	measurement	and	its	implications
hold	 true	 in	 any	 formulation	 of	 quantum	 mechanics	 that	 keeps	 the	 linear
Schrödinger	 evolution	of	 the	wave	 function	 (for	microscopic	 systems)	 and	 the
Born	 rule,	 such	 as	 the	 de	 Broglie-Bohm	 theory	 and	 the	 many-worlds
interpretation.	Thus	it	is	legitimate	to	use	them	to	examine	these	alternatives	to
quantum	mechanics.	Note	that	the	possible	existence	of	very	slow	collapse	of	the
wave	 function	 for	 microscopic	 systems	 does	 not	 influence	 the	 principle	 of
protective	measurement	and	its	implications.
[47]	It	has	been	argued	that	the	wave	function	living	on	configuration	space	can
hardly	 be	 considered	 as	 a	 real	 physical	 entity	 due	 to	 its	 multi-dimensionality
(see,	e.g.	Monton	2002,	2006	and	references	therein).	However,	it	seems	that	this
common	objection	is	not	conclusive,	and	one	can	still	insist	on	the	reality	of	the
wave	function	living	on	configuration	space	by	resorting	to	some	metaphysical
arguments.	For	example,	a	general	strategy	is	to	show	how	a	many-dimensional
world	 can	 appear	 three-dimensional	 to	 its	 inhabitants,	 and	 then	 argue	 on	 that
basis	that	a	wavefunction	ontology	is	adequate	to	explain	our	experience	(Albert
1996;	Lewis	2004).	As	we	argued	earlier,	the	existence	of	the	effective	mass	and



charge	 density	 of	 a	 quantum	 system,	 which	 is	 measurable	 by	 protective
measurement,	 poses	 a	 more	 serious	 objection	 to	 the	 wavefunction	 ontology;
even	for	a	single	quantum	system	the	wave	function	cannot	be	taken	as	a	field-
like	 entity	 in	 three-dimensional	 space	 either.	 Moreover,	 the	 reason	 is	 not
metaphysical	 but	 physical,	 i.e.,	 the	 field-like	 interpretation	 contradicts	 both
quantum	mechanics	and	experimental	observations.
[48]	 Certainly,	 as	 Albert	 (1992)	 noted,	 no	 theory	 can	 have	 exactly	 the	 same
empirical	content	as	quantum	mechanics	does,	as	the	latter	(in	the	absence	of	any
satisfactory	account	of	wavefunction	collapse)	does	not	have	any	exact	empirical
content.
[49]	For	 a	 critical	 analysis	 of	 this	minimal	 formal	 interpretation	 see	Belousek
(2003).
[50]	Note	that	for	spin	1/2	particles	there	is	also	a	spin-dependent	term	(Holland
and	Philippidis	2003).
[51]	That	a	Bohmian	particle	has	no	properties	other	than	its	position	is	possible
only	when	the	mass	and	charge	terms	disappear	in	the	guiding	equation,	but	the
resulting	theory	will	contradict	quantum	mechanics	and	experiments.
[52]	 This	 conclusion	 relies	 on	 the	 common-sense	 assumption	 that	 an	 electron
indeed	has	 the	charge	of	 an	electron	 (and	 the	mass	of	 an	electron).	A	possible
way	to	avoid	the	inconsistency	is	to	assume	that	an	electron	has	twice	the	charge
of	an	electron:	one	for	its	wave	function	and	the	other	for	its	Bohmian	particle.
In	this	case,	since	what	protective	measurement	measures	is	the	mass	and	charge
distributions	 relating	 to	 the	wave	 function,	 not	 the	masses	 and	 charges	 of	 the
Bohmian	particles,	the	above	inconsistency	can	be	avoided.	However,	this	theory
seems	 too	 clumsy	 and	 unnatural	 to	 be	 true.	Moreover,	 it	 will	 introduce	 more
problems.	For	one,	there	is	a	dilemma	concerning	the	electromagnetic	interaction
between	 the	wave	function	and	 the	Bohmian	particle	of	an	electron.	 If	 they	do
have	usual	electromagnetic	interaction,	then	the	theory	will	be	inconsistent	with
quantum	 mechanics	 and	 experiments.	 If	 they	 have	 no	 electromagnetic
interaction,	then	this	will	add	more	problems.	For	instance,	the	manifestation	of
the	charge	of	a	Bohmian	particle	will	be	much	stranger;	it	is	not	only	passive	but
also	 selective.	 One	 needs	 to	 explain	 why	 the	 charged	 Bohmian	 particle	 of	 an
electron	 responds	 not	 to	 the	magnetic	 vector	 potential	 generated	 by	 the	 wave
function	of	 this	electron,	but	 to	 the	magnetic	vector	potential	generated	by	 the
wave	function	of	another	electron.	As	we	will	see	later,	a	more	serious	objection
concerns	the	guiding	responsibility	of	the	wave	function.
[53]	This	is	also	admitted	by	most	interpretations	of	the	de	Broglie-Bohm	theory.



[54]	This	conclusion	may	not	hold	true	if	the	guiding	equation	is	not	exactly	the
same	 as	 the	 above,	 e.g.	 the	 guiding	 equation	 contains	 an	 additional	 stochastic
damping	 term	 (Valentini	 and	Westman	 2005).	 Although	 such	 revised	 theories
make	 predictions	 different	 from	 quantum	 mechanics,	 they	 may	 be	 consistent
with	existing	experiments.
[55]	The	reality	of	the	trajectories	of	the	Bohmian	particles	has	been	questioned
based	on	 analysis	 of	weak	measurement	 and	protective	measurement	 (Englert,
Scully,	Sussmann	and	Walther	1992;	Aharonov	and	Vaidman	1996;	Aharonov,
Englert	 and	 Scully	 1999;	 Aharonov,	 Erez	 and	 Scully	 2004).	 However,	 these
objections	may	be	answered	by	noticing	what	protective	measurement	measures
is	 the	wave	 function,	 not	 the	Bohmian	 particles	 (see	 also	Drezet	 2006).	 For	 a
comprehensive	 answer	 to	 these	 objections	 see	 Hiley,	 Callaghan	 and	Maroney
(2000).
[56]	 Note	 that	 protective	 measurement	 in	 general	 requires	 that	 the	 measured
wave	function	is	known	beforehand	so	that	an	appropriate	protective	interaction
can	 be	 added.	 But	 this	 requirement	 does	 not	 influence	 our	 argument,	 as	 the
superposed	wave	 function	 of	 a	measuring	 device	 can	 be	 prepared	 in	 a	 known
form	before	the	protective	measurement.
[57]	This	objection	does	not	apply	to	the	de	Broglie-Bohm	theory,	according	to
which	 the	wave	 function	of	a	measuring	device	does	not	collapse	either,	but	 it
exists	only	in	one	world.
[58]	Note	 that	 this	 objection	 is	more	 serious	 than	 the	 problem	of	 approximate
decoherence	 for	 the	many-worlds	 interpretation.	 The	 interference	 between	 the
nonorthogonal	components	of	a	quantum	state	can	not	be	detected	for	individual
states,	 but	 only	 be	 detected	 for	 an	 ensemble	 of	 identical	 states.	Moreover,	 the
presence	of	tiny	interference	terms	in	a	(local)	quantum	state	does	not	imply	that
all	components	of	the	state	wholly	exist	in	one	world.
[59]	 According	 to	 these	 theories,	 the	 physical	 state	 always	 evolves	 in	 a
deterministic	way	and	may	be	superposed	and	indefinite,	while	the	mental	state
is	 always	 definite	 but	 evolves	 randomly.	 In	 some	 sense,	 these	 theories	 can	 be
regarded	as	hidden-variable	theories	like	the	de	Broglie-Bohm	theory.	The	latter
assumes	 the	 definite	 positions	 of	 Bohmian	 particles	 provide	 observers	 with
definite	 measurement	 records,	 while	 the	 former	 assumes	 the	 definite	 mental
states	 of	 the	 observers,	 though	 which	 are	 non-physical	 parameters,	 directly
provide	observers	with	definite	measurement	records.
[60]	As	 in	 the	 many-worlds	 case,	 the	 random	 discontinuous	 motion	 does	 not
result	in	the	emergence	of	many	minds	either.	Since	the	brain	state	of	a	quantum



observer	 is	 definite	 and	only	 assumes	one	brain	 state	 in	 the	 superposition	 at	 a
given	instant,	even	if	there	are	many	minds	with	different	conscious	perceptions
at	the	instant,	these	perceptions	are	irrelevant	to	those	corresponding	to	the	brain
states	in	the	superposition	except	the	present	brain	state.	Thus	such	a	theory	of
many	 minds	 cannot	 be	 consistent	 with	 the	 above	 experience.	 In	 addition,
although	 the	 quantum	 observer	 has	 a	 dispositional	 property	 relating	 to	 his
superposition	state,	the	property	is	still	a	definite	property	of	the	unique	observer
and	thus	cannot	correspond	to	the	existence	of	many	minds.
[61]	Moreover,	it	can	be	expected	that	the	conscious	perception	of	the	observer
is	none	of	the	perceptions	corresponding	to	the	brain	states	in	the	superposition
because	these	states	have	the	same	status.
[62]	 This	 is	 distinct	 from	 the	 case	 of	 continuous	 motion.	 For	 the	 latter,	 the
position	 of	 a	 particle	 at	 each	 instant	 is	 completely	 determined	 by	 the
deterministic	instantaneous	condition	at	the	instant,	and	thus	the	position	of	the
particle	has	no	influence	on	the	deterministic	instantaneous	condition.
[63]	In	fact,	since	the	random	stays	of	a	particle	as	one	part	of	its	instantaneous
state	 are	 completely	 random,	 the	 complete	 evolution	 equation	 of	 the
instantaneous	 state	 of	 the	 particle	 is	 only	 about	 the	 evolution	 of	 the	 wave
function.	 Therefore,	 the	 random	 stays	 of	 the	 particle	 can	 only	 manifest
themselves	in	the	complete	equation	of	motion	by	their	stochastic	influences	on
the	evolution	of	the	wave	function.
[64]	 In	 other	 words,	 the	 wave	 function	 of	 a	 particle	 determines	 its	 random
discontinuous	 motion,	 while	 the	 motion	 also	 influences	 the	 evolution	 of	 the
wave	function	reciprocally.
[65]	Unfortunately,	this	banal	case	does	not	exist.	Due	to	the	uncertainty	relation
between	 position	 and	 momentum	 in	 quantum	 mechanics,	 there	 are	 always
infinitely	 many	 different	 instantaneous	 states	 (with	 definite	 position	 and
momentum)	where	a	particle	can	stay	at	any	time.
[66]	Our	analysis	of	a	concrete	model	 in	 the	next	section	will	show	that	under
some	 reasonable	 assumptions	 the	 accumulated	 influence	 of	 the	 random	 stays
during	a	finite	time	interval	is	still	zero	when	time	is	continuous.
[67]	This	means	that	the	minimum	duration	of	the	random	stay	of	a	particle	in	a
definite	position	or	momentum	or	energy	is	always	a	discrete	 instant.	 It	can	be
imagined	 that	 the	duration	of	 the	random	stay	of	a	particle	 in	an	eigenvalue	of
energy	is	a	discrete	instant,	but	the	duration	of	its	random	stay	in	each	position	is
still	 zero	 as	 in	 continuous	 space	 and	 time.	 In	 this	 case,	 however,	 the	 position
probability	distribution	of	the	particle	cannot	be	uniquely	determined	during	its



stay	 in	 the	 definite	 energy	 for	 a	 general	 state	 of	 motion	 where	 the	 energy
branches	 are	 not	 wholly	 separated	 in	 space.	Moreover,	 it	 seems	 that	 only	 the
duration	of	the	random	stay	of	a	particle	in	the	eigenvalue	of	every	property	is
the	 same	can	 the	 (objective)	probability	distributions	of	 all	 these	properties	be
consistent	 with	 those	 given	 by	 the	 modulus	 square	 of	 the	 wave	 function	 in
quantum	mechanics.
[68]	 Note	 that	 the	 existing	 arguments,	 which	 are	 based	 on	 some	 sort	 of
combination	of	quantum	theory	and	general	relativity	(see,	e.g.	Garay	1995	for	a
review),	 do	 not	 imply	 but	 only	 suggest	 that	 space	 and	 time	 are	 discrete.
Moreover,	 the	meanings	and	realization	of	discrete	spacetime	are	also	different
in	the	existing	models	of	quantum	gravity.
[69]	 It	 has	 been	 conjectured	 that	 a	 fundamental	 theory	 of	 physics	 may	 be
formulated	by	three	natural	constants:	the	Planck	time	(tP),	the	Planck	length	(lP)
and	 the	Planck	constant	 (h	 ),	 and	all	other	physical	constants	are	expressed	by
the	combinations	of	 them	 (Gao	2006b).	For	example,	 the	 speed	of	 light	 is	 c	=
lP/tP,	 and	 the	 Einstein	 gravitational	 constant	 is	 κ	 =	 8πlPtP/h.	 In	 this	 sense,	 the
quantum	 motion	 in	 discrete	 space	 and	 time,	 represented	 by	 the	 above	 three
constants,	is	more	fundamental	than	the	phenomena	described	by	the	special	and
general	 theory	 of	 relativity,	 represented	 by	 the	 speed	 of	 light	 and	 the
gravitational	constant,	respectively.	However,	even	if	this	conjecture	turns	out	to
be	right,	it	is	still	a	big	challenge	how	to	work	out	the	details	(see	Gao	2011c	for
an	initial	attempt).
[70]	For	the	superpositions	of	degenerate	energy	eigenstates	of	a	many-particle
system,	a	further	collapse	rule	is	needed.	We	will	discuss	this	issue	later	on.
[71]	As	we	will	see	 later,	 the	conservation	of	energy	may	also	hold	 true	at	 the
individual	level	for	the	collapse	evolution	of	some	special	wave	functions.
[72]	 If	 the	 phase	 of	 an	 energy	 eigenstate	 also	 changes	 with	 time,	 then	 the
probability	 distribution	 of	 energy	 eigenvalues	 will	 in	 general	 be	 changed	 for
each	 identical	 system	 in	 the	 ensemble,	 and	 as	 a	 result,	 energy	 will	 be	 not
conserved	even	at	the	ensemble	level.
[73]	Note	 that	 the	 reversible	 Schrödinger	 evolution	 conserves	 the	 information
even	for	individual	isolated	systems.
[74]	 Strictly	 speaking,	 the	 description	 “branch”	 should	 be	 replaced	 by
“instantaneous	 state”,	 e.g.	 the	 branch	 |Ei>	 should	 be	 replaced	 by	 the
instantaneous	 state	 with	 energy	 Ei.	 Yet	 the	 branch	 description	 may	 be	 more
succinct	and	visual,	and	we	will	use	it	in	the	following	discussions.



[75]	The	 density	matrix	 describes	 the	 ensemble	 of	 states	which	 arise	 from	 all
possible	random	stays.
[76]	Note	 that	 the	 common	RMS	 (mean	 square	 root)	 uncertainty	 also	 satisfies
the	swap	symmetry.	Thus	it	still	needs	to	be	studied	what	the	exact	form	of	k	is.
[77]	This	collapse	time	formula	indicates	that	there	is	no	wavefunction	collapse
in	 continuous	 time	 because	 tP→	 0	 leads	 to	 τc→	 ∞.	 One	 premise	 of	 this
conclusion	 is	 that	 the	 influence	 of	 each	 random	 stay	 is	 proportional	 to	 the
duration	of	stay.
[78]	 In	 continuous	 space	 and	 time,	 a	 position	 eigenstate	 has	 infinite	 average
energy	 and	 cannot	 be	 physically	 real.	But	 in	 discrete	 space	 and	 time,	 position
eigenstates	will	be	the	states	whose	spatial	dimension	is	about	the	Planck	length,
and	they	may	exist.
[79]	Note	that	most	collapse	states	in	an	ensemble	of	identical	systems	keep	the
shape	of	the	wavepacket	almost	precisely.
[80]	 There	 might	 exist	 a	 subtle	 connection	 here.	 It	 seems	 that	 the	 energy-
conserved	wavefunction	collapse	in	discrete	time	requires	a	finite	event	horizon
to	ensure	the	energy	eigenvalues	of	any	system	are	discrete.	On	the	other	hand,	it
seems	 that	discrete	spacetime	permits	 the	existence	of	dark	energy	as	quantum
fluctuations	of	 	spacetime	to	 lead	to	acceleration	and	finite	event	horizon	(Gao
2005).	 In	 any	 case,	 the	 existence	 of	 a	 cosmological	 constant	 also	 leads	 to	 the
existence	of	a	finite	event	horizon.
[81]	A	potentially	more	promising	case	is	provided	by	certain	long-lived	nuclear
isomers,	which	have	large	energy	gaps	from	their	ground	states	(see	Adler	2002
and	 references	 therein).	 For	 example,	 the	metastable	 isomer	 of	 180Ta,	 the	only
nuclear	isomer	to	exist	naturally	on	earth,	has	a	half-life	of	more	than	1015	years
and	an	energy	gap	of	75keV	from	the	ground	state.	According	 to	Eq.	 (4.13),	a
coherent	 superposition	of	 the	ground	 state	 and	metastable	 isomer	of	 180Ta	will
spontaneously	 collapse	 to	 either	 the	 isomeric	 state	 or	 the	 ground	 state,	with	 a
collapse	time	of	order	20	minutes.	It	will	be	a	promising	way	to	test	our	collapse
model	by	examining	the	maintenance	of	coherence	of	such	a	superposition.
[82]	Since	 the	uncertainty	of	 the	 total	energy	of	 the	whole	entangled	system	is
still	 zero,	 the	 energy-driven	 collapse	models	will	 predict	 that	 no	wavefunction
collapse	 happens	 and	 no	 definite	 measurement	 result	 appears	 for	 the	 above
measurement	 process,	 which	 contradicts	 experimental	 observations	 (Pearle
2004).



[83]	 In	 more	 general	 measurement	 situations,	 the	 measured	 particle	 (e.g.
electron)	is	not	annihilated	by	the	detector.	However,	in	each	local	branch	of	the
entangled	state	of	the	whole	system,	the	particle	also	interacts	with	a	single	atom
of	 the	 detector	 by	 an	 ionizing	 process,	 and	 its	 total	 energy	 is	 also	 wholly
transferred	to	the	atom	and	the	ejecting	electrons.
[84]	 We	 take	 the	 widely-used	 Geiger	 counter	 as	 another	 illustration	 of	 the
amplification	 process	 during	measurement.	 A	Geiger	 counter	 is	 an	 instrument
used	to	detect	particles	such	as	α	particles,	β	particles	and	γ	rays	etc.	It	consists
of	a	glass	envelope	containing	a	low-pressure	gas	(usually	a	mixture	of	methane
with	 argon	 and	 neon)	 and	 two	 electrodes,	 with	 a	 cylindrical	 mesh	 being	 the
cathode	and	a	fine-wire	anode	running	through	the	centre	of	the	tube.	A	potential
difference	 of	 about	 103V	 relative	 to	 the	 tube	 is	 maintained	 between	 the
electrodes,	 therefore	 creating	 a	 strong	 electric	 field	near	 the	wire.	The	 counter
works	on	the	mechanism	of	gas	multiplication.	Ionization	in	the	gas	is	caused	by
the	entry	of	a	particle.	The	ions	are	attracted	to	their	appropriate	electrode,	and
they	 gain	 sufficient	 energy	 to	 eject	 electrons	 from	 the	 gas	 atoms	 as	 they	 pass
through	the	gas.	This	further	causes	the	atoms	to	ionize.	Therefore,	electrons	are
produced	continuously	by	 this	process	and	 rapid	gas	multiplication	 takes	place
(especially	in	 the	central	electrode	because	of	 its	strong	electric	field	strength).
Its	effect	is	that	more	than	106	electrons	are	collected	by	the	central	electrode	for
every	 ion	 produced	 in	 the	 primary	 absorption	 process.	 These	 "electron
avalanches"	create	electric	pulses	which	then	can	be	amplified	electronically	and
counted	by	a	meter	 to	 calculate	 the	number	of	 initial	 ionization	events.	 In	 this
way,	a	Geiger	counter	can	detect	low-energy	radiation	because	even	one	ionized
particle	 produces	 a	 full	 pulse	 on	 the	 central	wire.	 It	 can	 be	 estimated	 that	 the
introduced	 energy	 difference	 during	 a	 detection	 is	 ∆E	 ≈	 109eV	 ,	 and	 the
corresponding	collapse	time	is	τc≈	10−5s	according	to	our	collapse	model.
[85]	In	a	similar	way,	a	spherically	symmetric	wave	function	will	be	detected	as
one	linear	track	in	a	cloud	chamber	(cf.	Mott	1929).
[86]	The	uncertainty	of	 the	 total	energy	of	 the	whole	system	is	still	very	small
even	if	the	influences	of	environment	are	counted.	Thus	no	observable	collapse
happens	for	the	above	situation	according	to	the	energy-driven	collapse	models
(Pearle	2004).
[87]	 It	 is	 interesting	 to	note	 that	 the	 state	of	 a	macroscopic	object	 can	 also	be
localized	by	the	linear	Schrödinger	evolution	via	interactions	with	environment,
e.g.	by	absorbing	an	environmental	particle	with	certain	energy	uncertainty.	For
example,	if	a	macroscopic	object	absorbs	a	photon	(emitted	from	an	atom)	with



momentum	uncertainty	of	∆p	≈	10−6eV/c,	the	center-of-mass	state	of	the	object,
even	 if	 being	 a	momentum	 eigenstate	 initially,	will	 have	 the	 same	momentum
uncertainty	 by	 the	 linear	 Schrödinger	 evolution,	 and	 thus	 it	 will	 become	 a
localized	wavepacket	with	width	about	0.1m.	Note	that	there	is	no	vicious	circle
here.	The	energy	spreading	state	of	a	microscopic	particle	can	be	generated	by
an	external	potential	(e.g.	an	electromagnetic	potential	in	general)	via	the	linear
Schrödinger	 evolution,	 and	 especially	 they	 don’t	 necessarily	 depend	 on	 the
localization	of	macroscopic	objects	such	as	measuring	devices.	Thus	we	can	use
the	existence	of	these	states	to	explain	the	localization	of	macroscopic	objects.
[88]	When	assuming	the	energy	uncertainty	of	an	object	is	in	the	same	order	of
its	thermal	energy	fluctuation,	we	can	estimate	the	rough	size	of	its	wavepacket.
For	instance,	for	a	dust	particle	of	mass	m	=	10−7g,	its	root	mean	square	energy
fluctuation	is	about	103eV	at	room	temperature	T	=	300K	(Adler	2002),	and	thus
the	width	of	its	wavepacket	is	about	10−10m.
[89]	The	GRW	model	was	originally	referred	to	as	QMSL	(Quantum	Mechanics
with	 Spontaneous	 Localizations).	 In	 this	 model,	 it	 is	 assumed	 that	 each
elementary	constituent	of	any	physical	system	is	subjected,	at	random	times,	to
random	and	spontaneous	localization	processes	(or	hittings)	around	appropriate
positions.	The	 random	hittings	 happen	much	 less	 frequently	 for	 a	microscopic
system,	e.g.	an	electron	undergoes	a	hitting,	on	average,	every	hundred	million
years.	 If	 these	hittings	are	assumed	to	be	brought	about	by	an	external	system,
then	 the	GRW	model	 should	be	 regarded	not	 as	 a	 spontaneous	collapse	model
but	as	an	interaction-induced	collapse	model.
[90]	If	 the	 involved	noise	 field	 in	 the	CSL	model	 is	not	 taken	as	 real,	 then	 the
model	should	be	regarded	as	a	spontaneous	collapse	model.
[91]	It	is	interesting	to	note	that	Feynman	considered	this	conjecture	even	earlier
at	the	1957	Chapel	Hill	conference	(see	DeWitt	and	Rickles	2011,	ch.22).
[92]	Note	that	if	the	problem	of	ill-definedness	cannot	be	solved	in	principle	for
the	superpositions	of	very	different	spacetime	geometries,	then	the	wavefunction
collapse	may	be	relevant	here.	Concretely	speaking,	if	the	superpositions	of	very
different	spacetime	geometries	cannot	be	consistently	defined	in	nature,	then	it	is
very	 likely	 that	 these	 superpositions	 cannot	 exist,	which	means	 that	 they	must
have	collapsed	into	one	of	the	definite	spacetime	geometries	before	formed	from
the	superpositions	of	minutely	different	 spacetime	geometries.	 In	 this	case,	 the
large	difference	of	the	spacetime	geometries	in	the	superposition	will	set	a	upper
limit	for	wavefunction	collapse.	Though	the	limit	may	be	loose,	it	does	imply	the
existence	 of	 wavefunction	 collapse.	 However,	 this	 possibility	 might	 be	 very



small,	as	it	seems	that	there	is	always	some	kind	of	approximate	sense	in	which
two	different	spacetimes	can	be	pointwise	identified.
[93]	 However,	 the	 concomitance	 of	 mass	 and	 charge	 in	 space	 for	 a	 charged
particle	 does	 not	 necessarily	 require	 that	 they	 must	 satisfy	 the	 same	 law	 of
interaction.	 For	 example,	 the	 fact	 that	 electromagnetic	 fields	 are	 quantized	 in
nature	 does	 not	 necessarily	 imply	 that	 gravitational	 fields	 must	 be	 also
quantized.
[94]	If	there	is	a	gravitational	self-interaction	but	no	electrostatic	self-interaction
for	a	charged	particle,	e.g.	an	electron,	then	the	charge	and	mass	of	an	electron
will	be	 located	 in	different	positions	and	have	different	density	distributions	 in
space,	 though	 they	 are	 described	 by	 the	 same	 wave	 function.	 Concretely
speaking,	 the	mass	density	of	an	electron	 is	me|ψ(x,	 t)|2	 as	 in	 the	Schrödinger-
Newton	equation,	whereas	its	charge	density	is	not	e|ψ(x,	t)|2	but	only	localized
in	a	single	position	(which	permits	no	electrostatic	self-interaction).	This	result
seems	very	unnatural	and	has	no	experimental	support	either.
[95]	Since	the	Schrödinger-Newton	equation	is	the	nonrelativistic	realization	of
the	 typical	 model	 of	 semiclassical	 gravity,	 in	 which	 the	 source	 term	 in	 the
classical	Einstein	equation	is	taken	as	the	expectation	of	the	energy	momentum
operator	 in	 the	 quantum	 state	 (Rosenfeld	 1963),	 our	 analysis	 also	 presents	 a
serious	objection	to	the	approach	of	semiclassical	gravity.	Although	the	existing
arguments	against	the	semiclassical	gravity	models	seem	so	strong,	they	are	still
not	 conclusive	 (Carlip	 2008;	 Boughn	 2009).	 This	 new	 analysis	 of	 the
Schrödinger-Newton	equation	may	shed	 some	new	 light	on	 the	 solution	of	 the
issue.
[96]	 Di´osi	 (2007)	 explicitly	 pointed	 out	 that	 the	 von-Neumann	 Newton
equation,	 which	 may	 be	 regarded	 as	 one	 realization	 of	 Penrose’s	 collapse
scheme,	obviously	violates	conservation	of	energy.	Another	way	 to	understand
this	 conclusion	 is	 to	 realize	 that	 the	 energy-conserved	 wavefunction	 collapse
cannot	result	from	the	spacetime	geometry	difference	between	the	branches	in	a
superposition	 as	 suggested	 by	 Penrose’s	 collapse	 scheme.	 The	 reason	 is	 that
there	 is	 no	 difference	 of	 spacetime	 geometries	 for	 two	 different	 momentum
eigenstates.	 A	 momentum	 eigenstate	 does	 not	 influence	 its	 background
spacetime	 geometry,	 as	 its	 energy	 density	 is	 zero	 throughout	 the	whole	 space.
Thus	if	a	superposition	of	two	momentum	eigenstates	does	collapse	into	one	of
them,	the	collapse	cannot	result	from	the	difference	of	spacetime	geometries	in
the	superposition.	As	a	result,	Penrose’s	gravity-induced	collapse	argument	does
not	 lead	 to	 the	 energy-conserved	wavefunction	 collapse,	 and	 if	 it	 does	 lead	 to



some	sort	of	wavefunction	collapse,	the	collapse	cannot	conserve	energy.
[97]	This	is	contrary	to	Penrose’s	own	expectation.	According	to	Penrose	(2004),
"There	is	the	advantage	with	the	gravitational	OR	scheme	put	forward	above	that
the	 energy	 uncertainty	 in	 EG	 would	 appear	 to	 cover	 such	 a	 potential	 non-
conservation,	 leading	 to	 no	 actual	 violation	 of	 energy	 conservation.	 This	 is	 a
matter	that	needs	further	study,	however.	It	would	seem	that	there	is	some	kind
of	 trade-off	between	the	apparent	energy	difficulties	 in	 the	OR	process	and	the
decidedly	nonlocal	(and	curiously	slippery)	nature	of	gravitational	energy...".
[98]	As	admitted	by	Pearle	(2009),	"When,	over	35	years	ago,	...	I	had	the	idea
of	introducing	a	randomly	fluctuating	quantity	to	cause	wave	function	collapse,	I
thought,	because	 there	are	 so	many	 things	 in	nature	which	 fluctuate	 randomly,
that	when	 the	 theory	 is	 better	 developed,	 it	would	become	clear	what	 thing	 in
nature	to	identify	with	that	randomly	fluctuating	quantity.	Perhaps	ironically,	this
problem	of	legitimizing	the	phenomenological	CSL	collapse	description	by	tying
it	in	a	natural	way	to	established	physics	remains	almost	untouched."	Related	to
this	 legitimization	problem	is	 that	 the	 two	parameters	which	specify	 the	model
are	 ad	 hoc	 (Pearle	 2007).	 These	 two	 parameters,	 which	 were	 originally
introduced	 by	 Ghirardi,	 Rimini	 and	 Weber	 (1986),	 are	 a	 distance	 scale,	 a	 ≈
105cm,	characterising	the	distance	beyond	which	the	collapse	becomes	effective,
and	 a	 time	 scale,	 λ−1≈	 1016sec,	 giving	 the	 rate	 of	 collapse	 for	 a	 microscopic
system.	 If	 wavefunction	 collapse	 is	 a	 fundamental	 physical	 process	 related	 to
other	 fundamental	 processes,	 the	 parameters	 should	 be	 able	 to	 be	 written	 in
terms	of	other	physical	constants.
[99]	 Pearle	 (2009)	 further	 argued	 that	 compatibility	 with	 general	 relativity
requires	 a	 gravitational	 force	 exerted	 upon	matter	 by	 the	w-field.	However,	 as
Pearle	(2009)	admitted,	no	convincing	connection	(for	example,	identification	of
metric	 fluctuations,	 dark	matter	 or	 dark	 energy	with	w(x,	 t))	 has	 yet	 emerged,
and	the	legitimization	problem	(i.e.	the	problem	of	endowing	physical	reality	to
the	noise	field)	is	still	in	its	infancy.
[100]	Note	 that	with	 appropriate	 choice	 for	 the	 parameters	 in	 the	CSL	model,
such	 a	 violation	 of	 energy	 conservation	 is	 very	 tiny	 and	 hardly	 detectable	 by
present	day	technology.
[101]	Our	analysis	is	in	the	low-energy	regime	and	does	not	consider	the	high-
energy	processes	described	by	relativistic	quantum	field	theory,	e.g.	the	creation
and	annihilation	of	particles.
[102]	There	 is	 no	 consensus	 among	 contemporary	 philosophers	 and	 physicists



concerning	 the	 solution	 to	 this	 incompatibility	 problem.	 For	 a	 comprehensive
discussion	of	this	issue	see	Maudlin	(2002)	and	references	therein.
[103]	 Certainly,	 in	 these	 frames	 there	 are	 still	 correlation	 and	 synchronicity
between	the	jumpings	of	the	two	particles	at	different	instants.	As	noted	above,
however,	 these	 instants	are	discontinuous	and	 random,	and	 thus	 the	correlation
and	synchronicity	can	hardly	be	identified.
[104]	 For	 more	 discussions	 about	 this	 issue	 see	 Janis	 (2010)	 and	 references
therein.
[105]	Why	does	each	instantaneous	jump	of	a	particle	in	one	inertial	frame	last
much	long	time	in	another	inertial	frame?	The	lapse	of	time	cannot	be	explained
in	physics,	and	it	can	only	result	from	the	inappropriate	synchrony	of	clocks	at
different	locations	in	the	later	frame.
[106]	Note	 that	 there	exists	no	causal	 influence	between	 these	 two	events,	and
they	both	result	 from	the	measurement	of	 the	 local	measuring	device,	which	 is
the	common	cause.
[107]	 Similarly,	 if	 the	 invariance	 of	 the	 one-way	 speed	 of	 light	 or	 standard
synchrony	 is	 assumed	 as	 by	 the	 Lorentz	 transformation,	 then	 the	 collapse
evolution	 of	 random	 discontinuous	 motion	 will	 also	 single	 out	 a	 preferred
Lorentz	 frame,	 in	 which	 the	 collapse	 of	 the	 wave	 function	 happens
simultaneously	at	different	locations	in	space,	no	matter	whether	the	frame	can
be	 actually	 determined.	 In	 the	 final	 analysis,	 the	 emergence	 of	 a	 preferred
Lorentz	 frame	 is	 the	 inevitable	 result	 of	 the	 combination	 of	 the	 constancy	 of
two-way	speed	of	light	and	the	existence	of	random	discontinuous	motion	and	its
collapse	evolution.	Thus,	no	matter	which	assumption	is	adopted,	 the	preferred
Lorentz	frame	can	always	be	defined	as	the	inertial	frame	in	which	the	one-way
speed	 of	 light	 is	 isotropic	 and	 the	 collapse	 of	 the	 wave	 function	 happens
simultaneously	in	the	whole	space.
[108]	 It	 has	 been	 argued	 that	 quantum	 nonlocality	 and	 special	 relativity	 are
incompatible,	and	a	consistent	description	of	wavefunction	collapse	demands	the
existence	 of	 a	 preferred	Lorentz	 frame	 (see,	 e.g.	 Bell	 1986a;	 Percival	 1998b).
But	 it	 is	widely	 thought	 that	 the	 preferred	 Lorentz	 frame	 cannot	 be	measured
even	within	the	framework	of	dynamical	collapse	theories.
[109]	 This	 assumption	 seems	 reasonable,	 as	 the	 collapse	 time	 formula	 in	 our
model	already	contains	the	speed	of	light	c	via	the	Planck	time	tp.	By	contrast,
the	 dynamical	 collapse	 theories	 in	 which	 the	 collapse	 time	 formula	 does	 not
contain	c	are	not	directly	applicable	in	the	relativistic	domain.



[110]	Here	we	still	use	the	standard	synchrony	for	the	convenience	of	practical
realization.
[111]	This	seems	to	be	an	inevitable	consequence	of	 the	requirement	of	energy
conservation	for	wavefunction	collapse.
[112]	In	general,	we	can	measure	the	collapse	time	of	a	wave	function	through
measuring	 the	 change	 of	 the	 interference	 between	 the	 corresponding	 collapse
branches	 for	 an	 ensemble	 of	 identical	 systems.	 The	 main	 difficulty	 of	 this
approach	is	to	exclude	the	influence	of	environmental	decoherence	(cf.	Marshall
et	al	2003).
[113]	A	further	analysis	is	needed	to	determine	whether	this	is	true	in	theory.
	


