Skip to main content
Log in

New insights into clinical trial for colostrinin™ in Alzheimer’s disease

  • JNHA: Clinical Trials and Aging
  • Published:
JNHA - The Journal of Nutrition, Health and Aging

Abstract

Background

The pathomechanism of Alzheimer’s disease (AD) is multifactorial although the most popular hypotheses are centered on the effects of the misfolded, aggregated protein, amyloid beta (Aβ) and on Tau hyperphosphorylation.

Objectives

Double blinded clinical trials were planned to demonstrate the effect of Colostrinin™ (CLN) on instrumental daily activities of AD patients. The potential molecular mechanisms by which CLN mediates its effects were investigated by gene expression profiling.

Methods

RNAs isolated from CLN-treated cells were analyzed by high-density oligonucleotide arrays. Network and pathway analyses were performed using the Ingenuity Pathway Analysis software.

Results

The Full Sample Analysis at week 15 showed a stabilizing effect of CLN on cognitive function in ADAS-cog (p = 0.02) and on daily function in IADL (p = 0.02). The overall patient response was also in favor of CLN (p = 0.03). Patients graded as mild on entry also showed a superior response of ADAS-cog compared to more advanced cases (p = 0.01). Data derived from microarray network analysis show that CLN elicits highly complex and multiphasic changes in the cells’ transcriptome. Importantly, transcriptomal analysis showed that CLN alters gene expression of molecular networks implicated in Aβ precursor protein synthesis, Tau phosphorylation and increased levels of enzymes that proteolitically eliminate Aβ. In addition, CLN enhanced the defense against oxidative stress and decreased expression of inflammatory chemokines and cytokines, thereby attenuating inflammatory processes that precede Alzheimer’s and other neurological diseases.

Conclusion

Together these data suggest that CLN has promising potential for clinical use in prevention and therapy of Alzheimer’s and other age-associated central nervous system diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Walton HS, Dodd PR. Glutamate-glutamine cycling in Alzheimer’s disease. Neurochem Int 2007;50(7–8):1052–1066.

    Article  PubMed  CAS  Google Scholar 

  2. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002;297(5580):353–356.

    Article  PubMed  CAS  Google Scholar 

  3. Kang DE, Pietrzik CU, Baum L et al. Modulation of amyloid beta-protein clearance and Alzheimer’s disease susceptibility by the LDL receptor-related protein pathway. J Clin Invest 2000;106(9):1159–1166.

    Article  PubMed  CAS  Google Scholar 

  4. Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 2001;81(2):741–766.

    PubMed  CAS  Google Scholar 

  5. Rogers J, Mastroeni D, Leonard B, Joyce J, Grover A. Neuroinflammation in Alzheimer’s disease and Parkinson’s disease: are microglia pathogenic in either disorder? Int Rev Neurobiol 2007;82:235–246.

    Article  PubMed  CAS  Google Scholar 

  6. Beal MF. Mitochondria take center stage in aging and neurodegeneration. Ann Neurol 2005;58(4):495–505.

    Article  PubMed  CAS  Google Scholar 

  7. Boldogh I, Kruzel ML. Colostrinin: an oxidative stress modulator for prevention and treatment of age-related disorders. J Alzheimers Dis 2008;13(3):303–321.

    PubMed  CAS  Google Scholar 

  8. Bilikiewicz A, Gaus W. Colostrinin (a naturally occurring, proline-rich, polypeptide mixture) in the treatment of Alzheimer’s disease. J Alzheimers Dis 2004;6(1):17–26.

    PubMed  CAS  Google Scholar 

  9. Leszek J, Inglot AD, Janusz M, Lisowski J, Krukowska K, Georgiades JA. Colostrinin: a proline-rich polypeptide (PRP) complex isolated from ovine colostrum for treatment of Alzheimer’s disease. A double-blind, placebo-controlled study. Arch Immunol Ther Exp (Warsz) 1999;47(6):377–385.

    CAS  Google Scholar 

  10. Leszek J, Inglot AD, Janusz M et al. Colostrinin proline-rich polypeptide complex from ovine colostrum—a long-term study of its efficacy in Alzheimer’s disease. Med Sci Monit 2002;8(10):PI93–96.

    PubMed  CAS  Google Scholar 

  11. Schuster D, Rajendran A, Hui SW, Nicotera T, Srikrishnan T, Kruzel ML. Protective effect of colostrinin on neuroblastoma cell survival is due to reduced aggregation of beta-amyloid. Neuropeptides 2005;39(4):419–426.

    Article  PubMed  CAS  Google Scholar 

  12. Bacsi A, Woodberry M, Kruzel ML, Boldogh I. Colostrinin delays the onset of proliferative senescence of diploid murine fibroblast cells. Neuropeptides 2007;41(2):93–101.

    Article  PubMed  CAS  Google Scholar 

  13. Bacsi A, Stanton GJ, Hughes TK, Kruze M, Boldogh I. Colostrinin-driven neurite outgrowth requires p53 activation in PC12 cells. Cell Mol Neurobiol 2005;25(7):1123–1139.

    Article  PubMed  CAS  Google Scholar 

  14. Boldogh I, Hughes, TK., Georgiades, JA., Stanton, J. Antioxidant and nerve differentiating activity of colostrinine and related peptides. In: Georgiades J, editor; 2000 December 1, 2000; Lodz, Poland.

  15. Boldogh I, A. Bacsi, L. Agulera-Aguirre, P. German and M. Kruzel. Colostrinin™ Increases the Lifespan and Neurological Performance of Mice. Neurodegenerative Diseases 2007;4(Supplement):264.

    Google Scholar 

  16. Zimecki M, Janusz M, Staroscik K, Wieczorek Z, Lisowski J. Immunological activity of a proline-rich polypeptide from ovine colostrum. Arch Immunol Ther Exp (Warsz) 1978;26(1–6):23–29.

    CAS  Google Scholar 

  17. Zimecki M, Pierce A. Immunotropic properties of fractions isolated from human milk. Arch Immunol Ther Exp 1984;32(2):203–209.

    CAS  Google Scholar 

  18. Szaniszlo P, Wang N, Sinha M et al. Getting the right cells to the array: Gene expression microarray analysis of cell mixtures and sorted cells. Cytometry A 2004;59(2):191–202.

    Article  PubMed  Google Scholar 

  19. Szaniszlo P, German P, Hajas G, Saenz DN, Woodberry MW, Kruzel M, Boldogh I. Effects of Colostrinin on Gene Expression — Transcriptomal Network Analysis. International Immunopharmacology 2008;In Press.

  20. Brigelius-Flohe R, Banning A, Kny M, Bol GF. Redox events in interleukin-1 signaling. Arch Biochem Biophys 2004;423(1):66–73.

    Article  PubMed  CAS  Google Scholar 

  21. Ravaglia G, Forti P, Maioli F et al. Blood inflammatory markers and risk of dementia: The Conselice Study of Brain Aging. Neurobiol Aging 2007;28(12):1810–1820.

    Article  PubMed  CAS  Google Scholar 

  22. Brasier AR. The NF-kappaB regulatory network. Cardiovasc Toxicol 2006;6(2):111–130.

    Article  PubMed  CAS  Google Scholar 

  23. Tian B, Brasier AR. Identification of a nuclear factor kappa B-dependent gene network. Recent Prog Horm Res 2003;58:95–130.

    Article  PubMed  CAS  Google Scholar 

  24. Kaminska B. MAPK signalling pathways as molecular targets for anti-inflammatory therapy—from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta 2005;1754(1–2):253–262.

    PubMed  CAS  Google Scholar 

  25. Schindler JF, Monahan JB, Smith WG. p38 pathway kinases as anti-inflammatory drug targets. J Dent Res 2007;86(9):800–811.

    Article  PubMed  CAS  Google Scholar 

  26. Saini SS, MacGlashan D. How IgE upregulates the allergic response. Curr Opin Immunol 2002;14(6):694–697.

    Article  PubMed  CAS  Google Scholar 

  27. Boldogh I, L. Aguilera-Aguirre, A. Bacsi, B.K. Choudhury, A. Saavedra-Molina, and M. Kruzel. Colostrinin decreases hypersensitivity and allergic responses to common allergens. International Archives of Allergy and Immunology 2008;146(1):298–306.

    Article  PubMed  CAS  Google Scholar 

  28. Xiang YY, Wang S, Liu M et al. A GABAergic system in airway epithelium is essential for mucus overproduction in asthma. Nat Med 2007;13(7):862–867.

    Article  PubMed  CAS  Google Scholar 

  29. Jin N, Narasaraju T, Kolliputi N, Chen J, Liu L. Differential expression of GABAA receptor pi subunit in cultured rat alveolar epithelial cells. Cell Tissue Res 2005;321(2):173–183.

    Article  PubMed  CAS  Google Scholar 

  30. Lanctot KL, Herrmann N, Mazzotta P, Khan LR, Ingber N. GAB Aergic function in Alzheimer’s disease: evidence for dysfunction and potential as a therapeutic target for the treatment of behavioural and psychological symptoms of dementia. Can J Psychiatry 2004;49(7):439–453.

    PubMed  Google Scholar 

  31. Guzik TJ, Mangalat D, Korbut R. Adipocytokines — novel link between inflammation and vascular function? J Physiol Pharmacol 2006;57(4):505–528.

    PubMed  CAS  Google Scholar 

  32. Calabro P, Yeh ET. Obesity, inflammation, and vascular disease: the role of the adipose tissue as an endocrine organ. Subcell Biochem 2007;42:63–91.

    Article  PubMed  Google Scholar 

  33. Mehlhorn G, Hollborn M, Schliebs R. Induction of cytokines in glial cells surrounding cortical beta-amyloid plaques in transgenic Tg2576 mice with Alzheimer pathology. Int J Dev Neurosci 2000;18(4–5):423–431.

    Article  PubMed  CAS  Google Scholar 

  34. Cheyne JE, Montgomery JM. Plasticity-dependent changes in metabotropic glutamate receptor expression at excitatory hippocampal synapses. Mol Cell Neurosci 2008;37(3):432–439.

    Article  PubMed  CAS  Google Scholar 

  35. Ure J, Baudry M, Perassolo M. Metabotropic glutamate receptors and epilepsy. J Neurol Sci 2006;247(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  36. Aizawa H, Kwak S. [ALS and excitatory amino acid]. Brain Nerve 2007;59(10):1117–1127.

    PubMed  CAS  Google Scholar 

  37. Fan MM, Raymond LA. N-methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington’s disease. Prog Neurobiol 2007;81(5–6):272–293.

    Article  PubMed  CAS  Google Scholar 

  38. Van der Schyf CJ, Gal S, Geldenhuys WJ, Youdim MB. Multifunctional neuroprotective drugs targeting monoamine oxidase inhibition, iron chelation, adenosine receptors, and cholinergic and glutamatergic action for neurodegenerative diseases. Expert Opin Investig Drugs 2006;15(8):873–886.

    Article  PubMed  Google Scholar 

  39. Brandt R, Leger J, Lee G. Interaction of tau with the neural plasma membrane mediated by tau’s amino-terminal projection domain. J Cell Biol 1995;131(5):1327–1340.

    Article  PubMed  CAS  Google Scholar 

  40. Maas T, Eidenmuller J, Brandt R. Interaction of tau with the neural membrane cortex is regulated by phosphorylation at sites that are modified in paired helical filaments. J Biol Chem 2000;275(21):15733–15740.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Boldogh.

Additional information

These authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szaniszlo, P., German, P., Hajas, G. et al. New insights into clinical trial for colostrinin™ in Alzheimer’s disease. J Nutr Health Aging 13, 235–241 (2009). https://doi.org/10.1007/s12603-009-0065-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-009-0065-2

Key words

Navigation