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Abstract 
One of the primary goals of international large-scale assessments (ILSAs) in education is the com-
parison of country means in student achievement. The present article introduces a framework for 
discussing differential item functioning (DIF) for country comparisons in ILSAs. Three different 
linking methods are compared: concurrent calibration based on full invariance, concurrent calibra-
tion based on partial invariance using the MD or RMSD statistics, and separate calibration with 
subsequent nonrobust and robust linking approaches. Furthermore, we show analytically the bias in 
country means of different linking methods in the presence of DIF. In a simulation study, we show 
that partial invariance and robust linking approaches provide less biased country mean estimates 
than the full invariance approach in the case of biased items. Some guidelines are derived for the 
selection of cutoff values for the MD and RMSD statistics in the partial invariance approach. 
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One of the major goals of international large-scale assessments (ILSAs) in education is 
the comparison of country means in student achievement. For example, beginning in 
2000, every three years, the Programme for International Student Assessment (PISA) 
provides international comparisons of student performance for a large group of countries 
(72 countries in PISA 2015; OECD, 2017). These comparisons are reported for three 
content areas (reading, mathematics, and science; OECD, 2017) and receive considerable 
attention from educational researchers, policymakers, and the media. A major methodo-
logical challenge of these comparisons is that the items of the achievement tests can 
function differently (differential item functioning; DIF) in specific countries, and this can 
result in item parameters that are not invariant across countries. This could be the case, 
for example, if an item is relatively easier or more difficult for a specific country than at 
the international level (Camilli, 2006; Holland & Wainer, 1993). The existence and dis-
tribution of noninvariant item parameters across countries has been studied extensively 
in the ILSA literature (Kreiner & Christensen, 2014; Oliveri & von Davier, 2014, 2017), 
and it has been argued that ignoring country DIF in the calibration of item parameters 
has the potential to bias the estimation of country-specific means and standard deviations 
(Kankaras & Moors, 2014). 
In the present article, we distinguish three different strategies for conducting cross-
national comparisons in the presence of country DIF. In the first approach, DIF effects 
are completely ignored and common item parameters are estimated in a multiple-group 
item response theory (IRT) model. In this approach, country-specific item parameters are 
treated as if they were completely invariant across groups (full invariance approach) 
when estimating country-specific means and standard deviations. In the second ap-
proach, items with noninvariant parameters across countries are identified by using coun-
try-specific item fit statistics and cutoffs as screening criteria. In the current operational 
procedure of PISA, the mean deviation (MD) and root mean square deviation (RMSD) 
statistics are used to select items with country DIF (OECD, 2018; Oliveri & von Davier, 
2011). Based on this screening process, country-specific means and standard deviations 
are estimated in a multiple-group IRT model in which the parameters of items with no 
country DIF are constrained to be equal across countries, and the parameters of items 
with country DIF are allowed to be country-specific (partial invariance approach). In the 
third approach, no invariance assumptions are made for the group-specific item parame-
ters, and all country DIF effects are modeled when estimating country-specific means 
and standard deviations (noninvariance approach). More specifically, item parameters 
are calibrated separately and allowed to vary across groups. Linking methods for multi-
ple groups (e.g., Haberman or Haebara linking) are then used to obtain country means by 
linking the group-specific item parameters on a common metric. 
Although there is some evidence from secondary analyses of ILSAs that the results of 
country comparisons are quite robust against the choice of different statistical analysis 
models (Jerrim, Parker, Choi, Chmielewski, Sälzer, & Shure, 2018), simulation studies 
that compare the performance of the different approaches for treating country DIF are 
scarce. In the present study, we report the results of a comprehensive simulation study in 
which we manipulated the number of items, the sample sizes, and the amount and type of 
DIF effects (i.e., DIF variance and distribution) in order to investigate the accuracy of the 
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three different approaches when comparing country means in the presence of DIF ef-
fects. Our main goal was to better understand the conditions under which the partial 
invariance approach – which is currently used in the PISA study – results in more accu-
rate estimates of country means than the full invariance and noninvariance approaches. 
We focus on the 1PL model and address the extension to more complex IRT models 
(e.g., 2PL) in the Discussion section.  

Differential item functioning for multiple groups 

In the following, we discuss the concept of differential item functioning (DIF; Holland & 
Wainer, 1993; Millsap, 2011) for multiple countries (also referred to as groups). Let 
g = 1,…,G denote a collection of groups to which a test consisting of I items is adminis-
tered. It is assumed that a unidimensional item response model holds in each group with 
group-specific item response functions (IRF) Pig(), indicating the probability of a cor-
rect item response conditional on ability . For the sake of simplicity, we only consider 
the 1PL model (i.e., the Rasch model; Rasch, 1960), which is given as  

    θ Ψ θ  ig i igP b e ,  2θ ~ N μ ,σg g  , (1) 

where bi is the common item difficulty for item i (i = 1,…,I) and eig are group-specific 
item difficulty deviations with nonzero values indicating differential item functioning; Ψ 
denotes the logistic distribution function, and it is assumed that the abilities are normally 
distributed in group g. It is well known that the model given in Equation 1 is not identi-
fied and identification constraints among item parameters are needed to estimate the 
means g and the standard deviations g of the ability distributions for the G groups and 
the DIF effects eig (Bechger & Maris, 2015; Doebler, 2019; Soares, Goncalvez, & Gam-
erman, 2009; Strobl, Kopf, Hartmann, & Zeileis, 2018). In order to illustrate this identi-
fication problem, it is instructive to reparametrize Equation 1 as follows 
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where the group-specific item parameters big are identified without constraints and are 
composed into the common item difficulties bi of item i, the means of the ability distribu-
tions g, and the DIF effects eig. However, given the I G  group-specific item parame-
ters big, further constraints on the I G  DIF effects eig are needed to identify the G group 
means g 

3.To resolve the identification issue, the items for each group are partitioned 
into two distinct sets. More specifically, it is assumed that for each group g a subset of 
anchor items  , 1, ,  A g I   exists such that 
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3 The identification issue occurs because g is only identified up to group-specific constants cg. Identified 
parameters can be written as big = bi – μg + eig = bi – (μg + cg) + (eig + cg), which shows that group means 
g and DIF effects eig cannot be simultaneously computed without further constraints.  
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referred to as equal mean difficulty constraint; Kopf, Zeileis, & Strobl, 2015). The set of 
biased items is defined as , ,\B g A g    (Camilli, 2006). It is important to emphasize 

that DIF effects of biased items can differ from zero on average, i.e., 
,
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e


. In 

many simulation studies that investigate the consequences of DIF, the DIF effects eig of 
anchor items are chosen to be “small” (or even zero) compared to DIF effects of biased 
items. In this case, it is plausible to consider DIF effects of biased items as outliers (De 
Boeck, 2008; Magis & De Boeck, 2011). Furthermore, we denote a test to have balanced 
DIF if for all groups, the DIF effects sum to zero (within each group g). Because the DIF 
effects of anchor items sum to zero by definition, balanced DIF is equivalent to the con-
dition that DIF effects of biased items sum to zero (i.e., 
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test has unbalanced DIF if there exists at least one group g for which 
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One central argument in the DIF literature is that items with DIF effects bias the estimat-
ed group means and should, therefore, not be included in group comparisons (e.g., 
OECD, 2017, for arguments in PISA). Typically, biased estimates of group means can be 
expected in the case of unbalanced DIF. The reasoning behind this argument – and the 
DIF concept – is illustrated in three small fictitious data examples with three items and 
four groups.  
In the first dataset, we assume that the four true group means are −0.2, −0.2, −0.1, and 
0.5, and that the common item difficulties for the three items are given as −1, 0, and 1 
(see Table 1). We further assume that three out of 12 possible DIF effects are different 
from zero: item I1 is easier in group G2 (i.e., e12 = −1), item I2 is more difficult in group 
G3 (i.e., e23 = 1), and item I3 is more difficult in group G4 (i.e., e34 = 0.5). All three items 
I1, I2, and I3, serve as anchor items for the first group G1, while the remaining three 
groups have exactly one biased item (group G2: item I1; group G3: item I2; group G4: 
item I3). It can be seen that the set of anchor items differs among groups. Moreover, 
there is unbalanced DIF because the DIF effects of biased items do not sum to zero. 
In practice, one has to infer these true parameters from the “observed data” which are the 
12 group-specific parameters big that are identified from the item responses and are given 
in the upper right part of Table 1. Thus, the main goal is to determine the four group 
means μg and three common item parameters bi from the group-specific item parameters 
big, which are given by (see Equation 2) 4 

 μ  ig i g igb b e . (3) 

 

 

                                                                                                                         
4 For reasons of identification, the sum of group means is chosen to be zero, i.e., μ 0g

g
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Table 1:  
Illustrative Dataset 1: True DIF Effects, Identified Parameters, Estimated Group Means, and 

Estimated DIF Effects from Two-Way ANOVA Estimation (Using OLS and Robust 
Estimation) 

True DIF Effects (eig) Identified Parameters (big) 
Item bi G1 G2 G3 G4 G1 G2 G3 G4 
I1 −1 0 −1 0 0 −0.8 −1.8 −0.9 −1.5 
I2 0 0 0 1 0 0.2 0.2 1.1 −0.5 
I3 1 0 0 0 0.5 1.2 1.2 1.1 1.0 

μg −0.2 −0.2 −0.1 0.5 −  −  −  − 

Estimated DIF Effects (OLS) Estimated DIF Effects (Robust) 
I1 0.29 −0.37 −0.04 0.12 0.00 −1.00 0.00 0.00 
I2 −0.21 0.13 0.46 −0.38 0.00 0.00 1.00 0.00 
I3 −0.08 0.25 −0.42 0.25 0.00 0.00 0.00 0.50 

  μ̂g  −0.16 0.18 −0.39 0.37 −0.20 −0.20 −0.10 0.50 

Note. bi = common item parameter; μ g  = true group mean; μ̂ g  = estimated group mean; eig = DIF 
effects; DIF effects of biased items are printed in bold. Estimated DIF effects and estimated group means 
are printed in bold if the absolute bias exceeds 0.10. 
 
 
This is a two-way analysis of variance (ANOVA) without repeated measurements with 
main effects b = (b1,…,bI) and  = (1,…,G), and interaction effects eig. Equation 3 corre-
sponds to a linear regression in which DIF effects eig are residuals. As pointed out by Ca-
milli (1993) and van der Linden (1994) DIF effects can be interpreted as interaction effects 
in a two-way ANOVA. The parameters of the two-way ANOVA can be determined by 
minimizing an estimation function      , ρ μ ρ    ig i g ig

ig ig
H b b eμ b , where  is a 

differentiable loss function (Fox, 2016; see also Davies, 2014, Ch. 6, for different loss 
functions). Using the estimation function H implies estimation constraints on the residuals, 

namely,  ρ ' 0
 

  ig
ig

H e


, where ρ  denotes the first derivative of For unbiased 

estimation of group means, it is vital that the estimation constraints on the residuals implied 
by the estimation function H coincide with the identification constraints on the DIF effects 
in the data-generating model (i.e., DIF effects sum to zero in the group-specific sets of 
anchor items). Applying ordinary least squares (OLS) estimation of the ANOVA model 
(using the loss function   2ρ / 2x x ) implies that the DIF effects eig sum to zero within 
the groups5. If there exist biased items (which imply unbalanced DIF), this estimation 
                                                                                                                         
5 In OLS estimation, it holds that  ρ x x , which results in  ρ 0  ig ig

i i

e e . 
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constraint violates the identification constraint for DIF effects in the data-generating model. 
Alternatively, if DIF effects of biased items are interpreted as outliers, robust regression 
methods can be used for estimating the two-way ANOVA parameters. One robust regres-
sion approach is the bisquare loss function, which depends on a tuning constant k and is 

defined as     322ρ / 6 1 1 /      
x k x k  for x k  and   2ρ / 6x k  for x k  

(Fox, 2016).  
In the left panel of Figure 1, the two loss functions are depicted. As can be seen, the 
bisquare loss function shows similar behavior as the least squares loss function for ob-
servations near to zero, but strongly differs for values substantially different from zero. 
In the robust approach using the bisquare loss function, residuals larger in absolute value 
than k do not contribute to the loss function, and large DIF effects will be down-
weighted in the estimation (see right panel in Figure 1). In contrast, all observations are 
equally weighted in OLS estimation. 
As can be seen in the left lower part of Table 1, when using least squares estimation, all 
items show DIF effects, and the estimated group means are biased. This is not surprising 
as the group comparisons also rely on the items with DIF. For example, the group mean 
of the second group, G2, is estimated as 0.18 while the true value is −0.20. This can be 
explained by the fact that item I1 in group G2 (with DIF effect e12 = –1) is included in 
the sum constraint and thus affects the estimation of G2’s group mean. In the right lower  
 
 

 
Figure 1: 

Properties of least squares loss function (dashed line) and bisquare loss function (solid line). 
Left panel: loss functions. Right panel: observation weights induced by the two loss functions. 
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part of Table 1, results of robust bisquare regression using k = .5 are displayed. It can be 
seen that large residuals (i.e., biased items with DIF effects) are automatically detected 
as outliers and do not bias group means. Hence, by applying robust regression, an esti-
mation constraint is only posed on those items in a group which are not considered to be 
outliers (i.e., they are detected as anchor items). 
In practice, it is not realistic to assume that the majority of DIF effects is exactly zero 
(i.e., eig = 0) as most items will at least slightly differ in their functioning across countries 
in ILSAs (Grisay, Gonzales, & Monseur, 2009; Kankaras & Moors, 2014; Robitzsch & 
Lüdtke, 2019; Sachse, Roppelt, & Haag, 2016). Thus, it is reasonable to assume that 
there are small DIF effects for anchor items that sum to zero (Weeks, von Davier, & 
Yamamoto, 2014; Strobl et al., 2018). In the upper part of Table 2, we present a second 
illustrative dataset, which includes the same set of group-specific biased items but also 
group-specific anchor items with small DIF effects that add to zero within groups.  
It is important to emphasize that in this scenario, not all anchor items need to show DIF 
(i.e., eig = 0), even though it would be possible as long as the DIF effects sum to zero 
within each group. As in the first dataset, the presence of biased items results in unbal-
anced DIF, and therefore estimates of the group means are biased if OLS estimation is 
employed (see lower left part of Table 2). Furthermore, the estimated DIF effects differ 
from the true DIF effects. This finding can be explained by the fact that OLS estimation 
implies a zero-sum constraint for all items within a group (biased items and anchor 
items), while the data-generating model involves the zero-sum constraint only for the set  
 
 

Table 2:  
Illustrative Dataset 2: True DIF Effects, Identified Parameters, Estimated Group Means, and 

Estimated DIF Effects from Two-Way ANOVA Estimation (Using OLS and Robust 
Estimation) 

True DIF Effects (eig) Identified Parameters (big) 
Item bi G1 G2 G3 G4 G1 G2 G3 G4 

I1 −1 0 −1 0.1 −0.1 −0.8 −1.8 −0.8 −1.6 
I2 0 −0.1 0 1 0.1 0.1 0.2 1.1 −0.4 
I3 1 0.1 0 −0.1 0.5 1.3 1.2 1 1 

μg −0.2 −0.2 −0.1 0.5 −  −  −  − 

Estimated DIF Effects (OLS) Estimated DIF Effects (Robust) 
I1 0.29 −0.37 0.06 0.02 0.00 −1.00 0.10 −0.10 
I2 −0.31 0.13 0.46 −0.28 −0.10 0.00 1.00 0.10 
I3 0.02 0.25 −0.52 0.25 0.10 0.00 −0.10 0.50 
μ̂g  −0.16 0.18 −0.39 0.37 −0.20 −0.20 −0.10 0.50 

Note. bi = common item parameter; μg  = true group mean; μ̂g  = estimated group mean; eig = DIF 
effects; DIF effects of biased items are printed in bold. Estimated DIF effects and estimated group means 
are printed in bold if the absolute bias exceeds 0.10. 
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of anchor items. However, when using robust estimation (lower right part of Table 2), 
estimated group means are again unbiased, and DIF effects of biased items are correctly 
detected as outliers. 
In the third illustrative dataset (upper part of Table 3), it is assumed that all items are 
anchor items (i.e., show DIF effects that sum to zero in each group). Hence, there is 
balanced DIF, and OLS estimation provides unbiased estimates of group means because 
the estimation constraint of OLS (i.e., DIF effects are assumed to sum to zero within 
each group) coincides with the identification constraint for the DIF effects in the data-
generating model (see lower left part of Table 3). In contrast, robust estimation, which 
treats large DIF effects as outliers, produces biased estimates of group means because the 
estimation constraint does not coincide with the identification constraints (see lower right 
part of Table 3). Thus, in the constellation of the third dataset, the removal of items with 
large DIF effects would have undesirable effects on the calculation of group means. 
At a more conceptual level, it is crucial to understand that the decision about whether an 
item with a DIF effect is classified as an anchor item or a biased item is not a primarily 
statistical question (see Camilli, 1993; Penfield & Camilli, 2007; Zwitser, Glaser, & 
Maris, 2017, for this argument). It needs to be emphasized that comparisons involving 
group g only rely on items from the set of anchor items ,A g and that biased items from 

the set ,B g  do not contribute to the group comparisons. Therefore, removing items 
from the anchor item set based solely on statistical criteria could result in construct un-
derrepresentation (i.e., removing items with DIF effects that are construct relevant; see  

 
Table 3:  

Illustrative Dataset 3: True DIF Effects, Identified Parameters, Estimated Group Means, and 
Estimated DIF Effects from Two-Way ANOVA Estimation (Using OLS and Robust 

Estimation) 

True DIF Effects (eig) Identified Parameters (big) 
Item bi G1 G2 G3 G4 G1 G2 G3 G4 
I1 −1 0.3 −0.2 0.1 −0.2 −0.5 −1 −0.8 −1.7 
I2 0 −0.3 0.6 0 −0.3 −0.1 0.8 0.1 −0.8 
I3 1 0 −0.4 −0.1 0.5 1.2 0.8 1 1 

μg −0.2 −0.2 −0.1 0.5 −  −  −  − 

Estimated DIF Effects (OLS) Estimated DIF Effects (Robust) 
I1 0.30 −0.20 0.10 −0.20 0.12 0.00 −0.04 −0.06 
I2 −0.30 0.60 0.00 −0.30 −0.25 1.02 0.08 0.06 
I3 0.00 −0.40 −0.10 0.50 0.03 0.00 −0.04 0.84 
μ̂g  −0.20 −0.20 −0.10 0.50 −0.38 −0.01 −0.25 0.63 

Note. bi = common item parameter; μ g  = true group mean; μ̂ g  = estimated group mean; eig = DIF 
effects; DIF effects of biased items are printed in bold. Estimated DIF effects and estimated group means 
are printed in bold if the absolute bias exceeds 0.10. 
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Camilli, 1993; Kane, 2006; Penfield & Camilli, 2007; Shealy & Stout, 1993). Construct 
underrepresentation could occur if relevant facets of a trait are not represented in the 
anchor item set (Camilli, 2006). For example, Wu (2010) mentioned significant DIF 
between Asian and Western countries for items on formal mathematics and items with  
real-life applications. In this example, the mean of DIF effects of a subset of items (so-
called item bundles) differs from zero (Gierl et al., 2001). This finding could empirically 
occur if unidimensionality holds, or it could be caused by secondary dimensions that 
show differences in group means (Shealy & Stout, 1993). However, eliminating particu-
lar items with DIF effects involving formal mathematics from country comparisons in 
PISA could be seen as a severe threat to validity because the secondary dimension in-
volving formal mathematics is interpreted as construct relevant. Thus, even if the catego-
rization of items according to their DIF effects into sets of anchor items and biased items 
seems to be purely statistical, the conclusion that some items with large DIF effects (e.g., 
formal mathematics items in Asia) are construct relevant implies that these items must be 
included in the anchor item set. Consequently, if one is quite confident that all items are 
construct relevant, no items with DIF effects should be removed from linking. Hence, all 
items serve as anchor items and an identification constraint (i.e., 0 ig

i
e ) has to be 

assumed. Only those items with DIF effects that are identified as construct irrelevant 
constitute the set of biased items. In contrast, in a purely statistical approach, DIF effects 
are identified as outliers in a statistical model, and the corresponding items are subse-
quently treated as construct irrelevant for group comparisons. 

Approaches for multiple-group comparisons 

In the following, we discuss different approaches for comparing group means in the pres-
ence of DIF in the 1PL model. At a conceptual level, we distinguish three strategies for 
calibrating the item parameters, which differ with respect to the degree of invariance they 
assume for the item parameters (see also van de Vijver, 2019, for a recent overview). First, 
we discuss calibration approaches that assume full invariance of item parameters across 
groups. In this strategy, DIF effects are ignored and not modeled (i.e., DIF effects eig are 
not included as parameters in the statistical model) when estimating group means and 
standard deviations. Second, we discuss approaches that rely on partial invariance. In this 
approach, it is assumed that group-specific item parameters only need to be included for a 
subset of DIF effects (Rutkowski & Rutkowski, 2018; von Davier et al., 2019). Typically, 
the set of items with modeled DIF effects (which is aimed to match the set of biased items) 
is allowed to vary from group to group, and some statistical technique is needed to deter-
mine the set of biased items for each group. In most applications, there is only a minority of 
items for which DIF effects are modeled, and all other DIF effects are set to zero, indicat-
ing that there are no DIF effects for most items in each group (i.e., the anchor items). Third, 
we discuss approaches that do not make any invariance assumptions for item parameters 
(complete noninvariance). In these approaches, all DIF effects are allowed, and the group-
specific means and standard deviations are estimated under some identification constraint 
for the DIF effects (e.g., DIF effects sum to zero). 
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Concurrent calibration under full invariance 

In concurrent calibration under the assumption of full invariance of item parameters, 
maximum likelihood (ML) estimation is used to estimate a multiple-group model without 
including any DIF effects for item parameters. More specifically, the following log-
likelihood function is maximized with respect to the unknown model parameters 
 , ,μ σ b  for all item responses pgx  of person p = 1,…,Ng in group g = 1,…,G:  

        1
 

1 1 1
, , log θ; (1 θ; ) θ;μ ,σ dθ  ,

g
pgi pgi

NG I x x
pg i i i i g g g

g p i
l v P b P b f

  

  
   

   
 μ σ b  (4) 

where abilities in group g are assumed to be normally distributed (i.e.,  2θ N μ ,σ g g ), 

and all group means and standard deviations are collected in vectors μ  and σ , respec-
tively (marginal maximum likelihood estimation, MML; see Adams, Wu, & Carstensen, 
2007; von Davier & Sinharay, 2014)6. In addition, invariant item parameters b across 
groups are assumed, and the IRF is given as    θ; Ψ θ i i iP b b . As can be seen, con-
current calibration under full invariance estimates all common item parameters as well as 
country-specific means and standard deviations in one step. It is typically used with 
sampling weights vpg to accommodate the multistage sampling design in ILSAs.  
If the model is correctly specified, maximum likelihood estimates are consistent (White, 
1982). However, in general, the model in Equation 4 is misspecified as the true IRFs 

   θ Ψ θ  ig i igP b e  involve group-specific DIF effects, which are ignored in concur-

rent calibration under full invariance. For misspecified models, it has been shown that 
the ML estimate  ˆ , , ˆˆμ σ b  is still consistent and converges to the maximizer of the Kull-

back-Leibler information (White, 1982; see also Kuha & Moustaki, 2015). In this sense, 
ignoring DIF effects in the estimation of Equation 4 provides group mean estimates that 
are the best approximation of the group-specific distributions of item responses with 
respect to the Kullback-Leibler information. In the case of a misspecified model, model-
robust standard errors (also known as sandwich standard errors; White, 1982) have to be 
used for valid statistical inference. Given true data-generating parameters  , ,μ σ b , ML 

estimates of misspecified models are typically biased  ˆ , , ˆˆμ σ b  even in the case of infi-

nite sample sizes, that is, ˆ μ μ . Nevertheless, we can derive μ̂  as a function of the true 
parameters of interest  , ,μ σ b  and DIF effects e (see Kolenikov, 2011, for a similar 
technique for misspecified structural equation models). Assuming large group sample 

                                                                                                                         
6 In Equation 4, the log-likelihood function is formulated only for binary data without a multi-matrix 
design. The extension to polytomous responses and multi-matrix designs would result in only slight 
changes in notation. 
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sizes (see Appendices B and C), the bias of the estimator of the group mean μ̂g  can be 

approximated as a weighted combination of the DIF effects ige : 

 
1

μ̂ μ


 
I

g g ig ig
i

w e  , (5) 

where the weights  μ ,σ , ig ig g g iw w b  in ML estimation are primarily driven by the 

precision of the IRFs. As the IRFs of items with more extreme difficulties are less pre-
cisely estimated, DIF effects for items with extreme difficulties are down-weighted in 
Equation 5. Therefore, the bias of a group mean is mainly caused by items for which DIF 
effects eig are large, and their item difficulties are located close to the center of the distri-
bution, that is, μ g ib  is small. 

Alternatively, concurrent calibration under full invariance can be conducted with limited 
information methods such as diagonally weighted least squares (DWLS; Cai & 
Moustaki, 2018; see Rutkowski & Svetina, 2017, for an application in ILSAs). Using a 
probit IRF, only item thresholds and tetrachoric correlations are needed as input for a 
two-stage estimation procedure. In a first step, item thresholds and pairwise tetrachoric 
correlations are calculated for each group. In the second step, these statistics are used for 
estimating the parameter vector  , ,μ σ b  (Cai & Moustaki, 2018). Interestingly, the bias 
derivation in Equation 5 still holds for limited information estimation (see Appendix C). 
In DWLS, weights wig are given either by the precision of group-specific item thresholds 
or by user-defined values. In the special case of unweighted least squares estimation, 
weights are given as 1 /igw I . Typically, limited information methods are expected to 
be more robust in modeling violations than ML estimators (MacCallum, Browne, & 
Cudeck, 2007). 

To sum up, it can be expected that the concurrent calibration approach under full invari-
ance with fixed items only provides unbiased estimates in either the trivial case of no 
true DIF effects or if the constraint 0 ig ig

i
w e  is fulfilled in the data-generating model. 

If only anchor items and no biased items exist, the condition 1 0  ig
i

e
I

 is fulfilled, 

but it can be expected that for the precision weighted mean of DIF effects it holds that 
0 ig ig

i
w e  in the case of a test with many items. This property would imply approxi-

mately unbiased estimates7. 

                                                                                                                         
7 If items (or DIF effects of items in a group) would be treated as random (instead as fixed) and DIF 
effects would have a zero expected value (i.e.,   0i igE e ), one can show by using Equation 5 that group 

means are unbiased with the misspecified scaling model under full invariance. This finding has already 
been demonstrated in simulation studies (Sachse et al., 2016; Robitzsch & Lüdtke, 2019). 
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Concurrent calibration under partial invariance using DIF statistics 

In contrast to concurrent calibration under full invariance, which ignores DIF effects, 
concurrent calibration under partial invariance allows some of the item parameters with 
large DIF effects e to vary across groups. In this approach, country comparisons are 
based on a multiple-group IRT model in which, for some of the items, item-by-group 
interactions are specified (Glas & Jehangir, 2014; Oliveri & von Davier, 2011, 2014; von 
Davier et al., 2019). The decision about which item parameters obtain group-specific 
item parameters is usually based on DIF statistics that measure how strongly group-
specific item parameters deviate from common item parameters. The basic idea is to 
identify the set of biased items ,B g  for each group that obtain unique item parameters 
while the DIF effects in the set of anchor items ,A g  are set to zero. More specifically, a 
DIF statistic Tig of interest is selected and item i for group g is declared to be in the DIF 
item set ,B g  if |Tig| > c for some chosen cutoff value c. In the partial invariance ap-
proach, the estimation of country means is typically conducted using an iterative proce-
dure (OECD, 2017; von Davier et al., 2019). First, a multiple-group IRT model is esti-
mated under the assumption of full invariance to obtain estimates for the country means 
and standard deviations as well as for the common item parameters  , ,μ σ b . Based on 
these parameters, the DIF statistic Tig is calculated for every item in every group. In the 
next step, a multiple-group model is specified in which DIF effects eig are freely estimat-
ed if |Tig| > c in the previous step. From this model, parameter estimates for  , , ,μ σ b e  
are obtained where a subset of DIF effects in e  is set to zero. Furthermore, the calcula-
tion of the DIF statistic can be repeated and it can be checked whether, for some of the 
items, the DIF statistics are still not acceptable. If this is the case, more DIF effects can 
be freed in the estimation and the process can be iterated until no item shows any nonac-
ceptable DIF (e.g., Kopf et al., 2015, for a description of this purification process). A 
large variety of DIF statistics have been proposed in the literature (see Penfield & Camil-
li, 2007, for an overview). In the following, we will first discuss a DIF statistic that is 
based on item difficulties and was used in PISA until 2012 (OECD, 2014). Second, we 
will discuss the MD and RMSD statistics, which are currently used in the operational 
procedure of PISA (OECD; 2017; von Davier et al., 2019). 

DIF in item difficulties 

DIF in a 1PL model (also referred to as uniform DIF, see Penfield & Camilli, 2007) can 
be directly quantified by the size of the DIF effects eig. Often, a group-specific 1PL mod-
el is fitted and item difficulties from this group-specific model are compared with the 
difficulties from a multiple-group 1PL model in which all item parameters are assumed 
to be equal across groups (i.e., full invariance assumption). In order to place the two sets 
of item parameters onto the same metric, either an identification constraint can be im-
posed on the two calibrations (i.e., sum of item difficulties equals zero) or a linking 
method can be used (e.g., mean-mean linking; Kolen & Brennan, 2014). Differences in 
item difficulties eig are classified to be large if absolute values exceed .64. Moderate DIF 
is said to exist for values between .43 and .64 (see Penfield & Camilli, 2007). 
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MD and RMSD statistics 

Since 2015, the mean deviation (MD) and root mean squared deviation (RMSD) statis-
tics are used in PISA to identify items with DIF (Oliveri & von Davier, 2011, 2014). In 
these statistics, the distance between a group-specific IRF Pig and a reference IRF Pi 
(which does not include group-specific item parameters) is measured in the probability 
metric: 

 
      

      2

MD θ θ θ dθ,

RMSD θ θ θ dθ.

ig ig i g

ig ig i g

P P f

P P f

 

 




 (6) 

The MD statistic measures the difference between an observed group mean based on the 
IRF Pig of group g and an expected group mean based on a common IRF Pi (see also 
Glas & Jehangir, 2014). The RMSD statistic quantifies the distance between the group-
wise IRF and the common IRF. It can be shown that RMSDig ≥ |MDig| (see Raju, van der 
Linden, & Fleer, 1995). Several benchmarks for interpreting DIF effects as large have 
been proposed for the MD and RMSD statistics: .055 (Buchholz & Hartig, 2019), .08 
(Köhler, Robitzsch, & Hartig, 2019), .10 (Oliveri & von Davier, 2011, 2014), .12 
(OECD, 2017, p. 151), .15 (OECD, 2017, p. 174; von Davier et al., 2019), and .20 
(OECD, 2015, p. 30). Because the absolute value of the MD statistic is bounded by the 
RMSD statistic, we use established effect sizes for the RMSD statistic also for the MD 
statistic. 
One desirable feature of the MD and RMSD statistics is that the magnitude of these 
statistics is influenced not only by the size of the DIF effect eig but also by the ability 
distribution in the specific groups (Wainer, 1993). To further illustrate this feature of the 
MD and RMSD statistics, we derived closed formulas by using a probit approximation of 
the logistic IRF in the 1PL multiple-group model. For Pig(θ) = Ψ(θ − bi – eig), 
Pi(θ) = Ψ(θ − bi), and a normal distribution  2N μ ,σ  g g for group g, it can be shown that 

(see Appendix D) 

 
2 2 2 2

μ μ
MD Φ Φ

σ σ

         
       

g i g i ig
ig

g g

b b e

D D
 for eig > 0 ,  (7) 

where D = 1.701 is the conversion factor from the logit to the probit link function. For 
eig < 0, the two terms in Equation 7 have to be exchanged. As can be seen, the magnitude 
of MD not only depends on the size of the DIF effect eig but is also affected by the dif-
ference g − bi. Thus, the same DIF effect eig (measured in the logit metric) provides 
different MD statistics (measured in the probability metric), depending on the magnitude 
|g − bi|. As a consequence, the MD statistic has a tendency to be smaller in very low- or 
very high-achieving countries as, in these countries, | g − bi | is expected to substantially 
differ from zero (see also DeMars, 2011). However, items with small absolute values of 
MD statistics are therefore expected to induce only a slight bias when ignoring DIF 
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effects in the calibration (see weights wig in Equation 5 for the full invariance approach). 
Hence, if only items with large |MD| statistics are declared to be non-invariant, only 
those items are eliminated from the set of anchor items that have the potential to induce 
large biases in the group comparisons. 
The computation of RMSD is slightly more complicated because bivariate normal inte-
grals are now needed: 

  
μ μ 2

2
2 2 22 2 2 2

μ μ

σ
RMSD , , d d for 0 ,

σσ σ

g i g i

g i ig g i ig

b b
g

ig ig
gb e b e g g

u v u v e
DD D


 

   

 
  
   

   (8) 

where 2 = 2(x,y,) is the bivariate normal density function. The lower and upper 
bounds of the integrals have to be exchanged for a negative eig. The integral in Equation 
8 can be interpreted as an integration over the two-dimensional rectangle [g − bi – eig, 
g − bi]2. Again, it turns out that the RMSD depends on the size of the DIF effect eig as 
well as on the difference g − bi (see Tijmstra, Liaw, Bolsinova, Rutkowski, & Rutkow-
ski, 2019, for an empirical demonstration). 
Another challenging aspect in the interpretation of the MD and RMSD statistics is that 
their definitions involve an unknown group-specific IRF and an unknown ability distri-
bution (see Equation 6). Both need to be estimated from sample data and this can result 
in biased estimates of the population MD and RMSD statistics. More specifically, the 
IRF and the ability distribution are reconstructed from the output of the MML estimation 
of a multiple-group IRT model (assuming fully invariant item parameters) and are based 
on aggregating individual posterior distributions (Köhler et al., 2019; see also van Rijn, 
Sinharay, Haberman, & Johnson, 2016). The group-specific IRF  θigP  is replaced by a 

sample-based empirical IRF  ˆ θigP  and the density gf  is replaced by an empirical dis-

tribution ˆ  gf , resulting in a sample-based definition of the RMSD 

        
2

RMSD  θ θˆ θ dˆ θ  ˆig ig i gP P f   (9) 

Given the large overall sample size in the multiple-group ILSA context, we can assume 
that the common IRF is reliably und unbiasedly estimated, that is,    ˆ θ θi iP P . How-
ever, it can be shown that the sample RMSD, in general, is a biased estimator of the 
population RMSD (see Appendix E and Köhler et al., 2019, for similar arguments and an 
empirical illustration) 

        2
2

1, 2, 3, M ˆD ˆR S ,        ig ig g g ig i g gE RMSD B n B f f B P P f f  (10) 

Three main sources of bias for the empirical RMSD must be distinguished. First, as îgP  
relies on a finite sample size n, some sampling variability always contributes to the esti-
mation of the RMSD and can only be reduced when the sample size goes to infinity (but 
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see Köhler et al., 2019, for attempts to correct the bias). Thus, the first biasing term 
B1,+(n) that is a function of the sample size (see Appendix E), is always positive and only 
vanishes in large samples. As a consequence, higher RMSD values can be expected in 
smaller samples. Second, DIF effects in all items of group g can bias the estimates of 
individual posterior distributions, which, in turn, bias the group distribution fg (i.e., 
ˆ g gf f ). If such a bias is present, the empirical IRF îgP  does not converge (samples 

sizes tending to infinity) to the true IRF igP , but rather to a function * ig igP P . The posi-

tive second bias term  2,
ˆ

 g gB f f  reflects the distance *| |ig igP P . The third bias term 

3,B  can be positive or negative and only vanishes if the group distribution is not biased-

ly estimated (i.e., ˆ g gf f ) or in the case of no DIF effect (i.e., ig iP P )8. Using the 
same proof strategy, it can also be shown that the bias of the MD statistic is only affected 
by a biased estimation of the group distribution (i.e., ˆ g gf f ) and that the sampling 

fluctuation of îgP  does not bias the MD statistic. 

Overall, the partial invariance approach has the potential to remove bias in estimated 
group means if the items with large DIF statistics belong to the set of biased items. In 
this case, the biased items are correctly removed from group comparisons9. However, if 
items from the set of anchor items show large DIF statistics, bias could be introduced by 
removing those anchor items from group mean comparisons. Furthermore, even if no 
bias is introduced by removing items from the anchor item set (e.g., items with large 
positive and large negative DIF effects are removed from the identification of group 
means), efficiency losses in group mean comparisons could be expected because group 
comparisons now rely on a smaller number of items (see Sachse et al., 2016; Robitzsch 
& Lüdtke, 2019).  

Linking with separate calibrations under full noninvariance 

In the third approach, no invariance assumptions are made for the group-specific item 
parameters. In this approach, group comparisons are based on a two-step procedure that 

                                                                                                                         
8 As it is shown in Appendix E (Equation A14), the third bias term 3,B  is computed as a weighted 

integral of the product       θ θ θ P P B
ig i g

, where Bg(θ) denotes the bias in estimated abilities. If 

the product is mostly negative for θ values, then an underestimation of the RMSD statistic can be ex-
pected. This case could occur when a 2PL model is fitted and the data had been generated from a 3PL 
model. 
9 Note that some items in a group are removed from the computation of the respective group mean. 
Hence, these items are practically removed from linking (and the subsequent group comparisons). How-
ever, this has the consequence that in the case of more than two groups, the difference between group 
means does not involve a full set of common item parameters. 
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combines the separate calibration of item parameters within groups and linking methods 
(see Kolen & Brennan, 2014; Lee & Lee, 2018, for overviews). In a first step, an item 
response model is fitted separately for each group, resulting in item parameter estimates 
ˆ  gb (g = 1,…,G). Hence, item parameters are calibrated separately and allowed to vary 

across groups. In a second step, the parameters of the group-specific ability distributions 
(i.e., group means g) are obtained by placing the group-specific item parameters onto a 
common metric (Battauz, 2017). In the following, we discuss the Haberman and the 
Haebara linking methods, which are suited for linking multiple groups. 

Haberman linking 

In Haberman linking, the group-specific item parameters big are used to simultaneously 
estimate common item parameters bi and group means g. In the 1PL model with DIF 
effects, it holds that eig = big – (bi – g). Haberman (2009) proposed a regression ap-
proach to estimate group means  and common item parameters b by minimizing the 
variation of residuals eig 

    
1 1

, ρ μ  ˆ ,
 

  
G I

ig i g
g i

H b bμ b  (11) 

where  is a loss function (Fox, 2016), and the identification constraint 1 = 0 is used. It 
should be emphasized that Equation 11 corresponds to a two-way ANOVA (see Equa-
tion 3 in section “Differential item functioning for multiple groups”). Haberman (2009) 
proposed the squared loss function   2ρ / 2x x , which results in a linear regression 
model estimated by OLS (i.e., L2 regression). Because DIF effects are often characterized 
as outlying observations, robust loss functions should be preferred for the unbiased esti-
mation of group means (Fox, 2016). Here, we use the bisquare loss function which de-
pends on a tuning parameter k. Using this robust loss function, residuals larger in abso-
lute value than k do not contribute to the loss function (Fox, 2016)10. Alternative loss 
functions are  ρ x x  (median regression or L1 regression) or  ρ x x  (used in 

invariance alignment; see Muthen & Asparouhov, 2014). It can be shown that the estima-
tion constraints implied by Haberman linking are given as11 (see Appendix F) 
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1 1
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
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  
I I

ig
ig ig ig ig

i ig ig
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e

 (12) 

Unbiased estimates of group means are provided if the identification constraints for DIF 
effects coincide with the estimation constraints that are given by Equation 12. Note that 
                                                                                                                         
10 As pointed out by an anonymous reviewer, robust linking can also be conceptualized as a variant of 
partial invariance (see also He, Cui, & Osterlind, 2015, for such a view). 
11 In the case of a nondifferentiable loss function , either the derivative can be interpreted as a subdiffer-
ential (Hastie et al., 2015) or the loss function is replaced by a differentiable approximating function. 
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for a squared loss function, it holds that wig = 1 and the condition 0 ig
i

e  is obtained12 

for each group g. The weights for the bisquare loss function are given as 

  22
1 / ig igw e k  for |eig| < k and zero for DIF effects |eig| ≥ k. Hence, outlying DIF 

effects receive a value of zero and do not contribute to the linking.  

Haebara linking 

It is known that Haberman linking can be unstable in small sample sizes because item 
parameter estimates can be imprecisely estimated. However, estimates of IRFs can be 
quite stable even in the case of unstable item parameters (Ogasawara, 2002). The Haeba-
ra linking method relies on linking IRFs across groups (Kolen & Brennan, 2014) and, 
hence, has the potential to provide more stable group mean estimates than Haberman 
linking. A generalization of Haebara linking to multiple groups is based on distances of 
estimated IRFs and IRFs assuming common item parameters across groups. The estima-
tion of group means  relies on the minimization of the function (using the constraint 
1 = 0) 
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, ρ Ψ θ Ψ θ μ ωˆ θ dθ
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g i
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with a loss function  and a weighting function ω . Haebara (1980) proposed a quadratic 
loss function   2ρ / 2x x . Alternatively, He and colleagues (He et al., 2015; He & Cui, 
2019) proposed a robust version of Haebara linking using  ρ x x , which should be 
superior to a quadratic loss function if there are only a few outlying biased items. The 
following nonlinear estimation constraint is fulfilled (see Appendix F): 
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Purpose 

Until PISA 2012, concurrent calibration under full invariance had been used and items 
with DIF effects were only excluded from country comparisons if they could be ex-
plained by translation issues (Adams, 2003). Hence, the scaling model was – to some 
extent – misspecified because DIF effects were ignored. Beginning with PISA 2015, a 
concurrent calibration under partial invariance was established in which model refine-
ment was based on the RMSD as DIF statistic (OECD, 2017). It was argued that this 

                                                                                                                         
12 Concurrent calibration under full invariance estimated by unweighted least squares (which sets all 
weights in DWLS equal to one) for a probit version of the 1PL model is equivalent to Haberman linking 
with a quadratic loss function. 
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approach should lead to better model fit and to more stable and less biased estimates 
when a few item-by-country interactions were included to deal with the presence of DIF 
(Oliveri & von Davier, 2011, 2014; von Davier et al., 2019). However, to the best of our 
knowledge, simulation studies that evaluate the performance of this approach in the 
context of ILSAs are still lacking. In this article, we investigate the conditions under 
which concurrent calibration under partial invariance (using DIF statistics) is superior to 
a misspecified concurrent calibration that assumes full invariance and to separate calibra-
tion with a subsequent linking step. We expect that the performance of the different 
approaches depends on the type and amount of DIF effects and on the sample size.  
A recent methodological case study that used the PISA 2015 data showed that concurrent 
calibration under full invariance and partial invariance resulted in very similar country 
means (Jerrim et al., 2018). This finding is consistent with research showing that concur-
rent calibration under full invariance did not result in biased estimates if there were DIF 
effects with some variation, but all items belonged to the anchor item set (Sachse et al., 
2016; Robitzsch & Lüdtke, 2019)13. However, even in conditions with moderate sample 
sizes, concurrent calibration under full invariance was outperformed by a separate cali-
bration approach with subsequent linking. These results are in line with findings from the 
linking literature that separate calibration approaches are superior to the concurrent cali-
bration approach in the case of model violations (Kolen & Brennan, 2014; Kang & Pe-
tersen, 2012; Lee & Lee, 2018). In our simulation study, we expected the performance of 
the partial invariance approach to depend on the proportion and type of DIF effects of 
biased items. In the case of balanced DIF (i.e., DIF effects of biased items cancel out), 
efficiency losses of estimated group means can be expected when items are removed 
from country comparisons in the partial invariance approach (Sachse et al., 2016; see 
also DeMars, 2020). Furthermore, in this case, it could be expected that concurrent cali-
bration under full invariance and the linking approach are superior to the partial invari-
ance approach. In the case of unbalanced DIF (i.e., DIF effects in biased items are of the 
same sign), DeMars (2020) showed that a robust linking approach provided less biased 
group mean estimates than scaling approaches that rely on DIF statistics. Thus, we ex-
pected that concurrent calibration under partial invariance would not outperform separate 
calibration approaches when appropriate robust linking methods were used in which 
items with large DIF effects were down-weighted. However, the question of whether 
concurrent calibration has some advantages in small samples remains open. 

Simulation study 

The main goal of the simulation study was to evaluate different methods for comparing 
country means in the presence of country DIF. To this end, we assumed a 1PL model for 
G = 20 countries. For each country, abilities were normally distributed with mean g and 

                                                                                                                         
13 In these studies, DIF effects of the anchor items were treated as random. This means that DIF effects 
vanished on average. In the DIF definition of this paper, it is assumed that DIF effects are fixed and that 
these effects exactly sum to zero.  
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standard deviation g. Across all conditions of the simulation, the country means and 
standard deviations were held fixed and ranged between −0.92 and 0.81 for means (with 
an average of 0.00), and 0.82 and 1.06 for standard deviations (with an average of 0.91). 
The population containing all students in all countries had a mean of zero and a standard 
deviation of one. Country-specific item parameters ig were generated according to 
ig = bi + eig, where bi is the common item parameter and eig is the country-specific DIF 
effect. In each country, the sets of biased and anchor items were held fixed across condi-
tions with a fixed proportion of biased items. For a fixed proportion B  of biased items, 
a discrete variable Zig was defined for each item in each group, which had values of 0 (if 
the item was an anchor item), +1 (biased item with a positive DIF effect), and −1 (biased 
item with a negative DIF effect). Furthermore, standardized effects ig were specified 
which were nonzero for anchor items and zero for biased items. These effects fulfilled 
the conditions ε 0 ig

i
 (i.e., DIF effects of anchor items sum to zero) and 

 
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1
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 (SD of DIF effects of anchor items equals one). In the case of bal-

anced DIF, DIF effects were computed as  1 ε δ  ig ig A ig ige Z SD Z , where SDA was 

the prespecified standard deviation of DIF effects for the anchor items. Hence, half of the 
biased items received a DIF effect of and for the other half, the DIF effect was set to –
. In the case of unbalanced DIF, all biased items within a country received a DIF effect 
of either or –. This property was implemented by defining a variable Dg with equally 
frequent values +1 and −1 for each country. The DIF effects for unbalanced DIF were 
defined as  1 ε δ  ig ig A ig ig ge Z SD Z D . All data generating parameters can be down-

loaded from https://osf.io/53vqr/. 
For each condition of the simulation design, 200 replications were generated. More spe-
cifically, we manipulated the following six factors in our simulation design: number of 
persons (N = 200, 500, and 1000), number of items (I = 20, and 40), proportion of biased 
items (0%, 10%, and 30%), DIF effect size for the biased items ( = 0, .3, .6, and 1), 
standard deviation of DIF effects for anchor items (SDA = 0, .1, .2, and .3), and type of 
DIF effects for biased items (balanced vs. unbalanced). It needs to be mentioned that we 
did not implement a multi-matrix design, but we would not expect different findings by 
adopting such a design. 
We used three different scaling strategies to obtain country means in each replication. 
First, we specified a multiple-group 1PL model with invariant item parameters across 
countries (full invariance approach; FI). Second, we implemented a partial invariance 
approach in which DIF statistics were used to identify items with DIF. Two different DIF 
statistics were applied: DIF in item difficulties in the logit metric, and the MD statistic. 
In the partial invariance approach based on item difficulties (PI-DIF), absolute values of 
.4 or .6 were used as cutoff values for declaring country-specific DIF. In the partial in-
variance approach based on the MD statistic (PI-MD), items in a country with absolute 
MD values larger than .05, .08, or .12 received country-specific parameters. Third, we 
used two linking approaches (Haberman method and Haebara method) in which no in-
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variance assumptions were made for the item parameters. In both approaches, a robust 
version (RHAB and RHAE) or a nonrobust version (HAB and HAE) was used to link the 
item parameters that were obtained from separate calibrations within each country. For 
all analyses, the R software (R Core Team, 2019) and the R packages sirt (Robitzsch, 
2019) and TAM (Robitzsch, Kiefer, & Wu, 2019) were used. 
In each scaling strategy, the mean of the first country was set to zero and the standard 
deviation was set to one. For the country comparisons, country means were linearly 
transformed so that the total population of students across countries had a mean of zero 
and a standard deviation of one. We used two criteria to evaluate the different approach-
es: average absolute bias and average root mean square error (RMSE) across countries. 
Average absolute bias was determined by calculating the average of the absolute bias of 
each country mean (i.e., absolute deviation of estimated country mean from true country 
mean) across countries. Average absolute biases greater than .03 were considered as 
substantial because standard errors of country means in ILSAs are usually about that size 
(e.g., OECD, 2017). The average RMSE was calculated by averaging the RMSEs across 
countries; this indicates how stably the country means were estimated.  

Results 

Table 4 shows the average absolute bias for the conditions with 40 items and a sample 
size of N = 1,000 in the case of balanced DIF (i.e., DIF effects of biased items sum to 
zero within each country). As can be seen, the FI as well as the HAB and HAE ap-
proaches, which did not remove items from country comparisons, produced approxi-
mately unbiased estimates of country means. Furthermore, the partial invariance ap-
proaches (PI-DIF and PI-MD) performed only slightly worse than the FI, HAB, and 
HAE approaches and substantial differences were only observed in conditions with a 
large standard deviation for the DIF effects of the anchor items (i.e., SDA = .3). The 
robust linking approaches (RHAB and RHAE) performed similarly to the partial invari-
ance approaches. However, the RHAB approach produced substantially biased country 
comparisons when the SDA for the DIF effects of the anchor items was large.  
Table 5 shows the average RMSE for the same conditions (i.e., 40 items and a sample size 
of N = 1,000 for the balanced DIF condition). Overall, the results closely match the find-
ings for the bias. First, country mean estimates that were produced by the approaches that 
were based on separate calibrations of the item parameters (HAB and HAE) were not less 
stable than the estimates of the full invariance approach (FI), and even outperformed the 
partial invariance approaches when the SDA was large (i.e., strong variation of DIF effects 
in the anchor item set). Second, the partial invariance approaches that allowed country-
specific item parameters by using different cutoff values for DIF statistics only provided 
more stable estimates of country means than the FI approach when there were no DIF 
effects for anchor items (i.e., the SDA = 0). In addition, the performance of the partial invar-
iance approach depended on the choice of the specific cutoff value for the DIF statistic. For 
example, cutoff values of .05 and .08 for the MD statistic – which result in more country-
specific item parameters – outperform a cutoff value of .12. 
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Table 6 shows the average absolute bias for the conditions with 40 items and a sample 
size of N = 1,000 in the case of unbalanced DIF (i.e., all DIF effects of biased items were 
either positive with a value of  or negative with a value of – for each country). The 
country mean estimates produced by the FI and nonrobust linking approaches (HAB and 
HAE), which did not remove any items from the comparisons, were biased. This bias 
was substantially reduced with partial invariance approaches (PI-DIF and PI-MD) and 
robust linking approaches (RHAB and RHAE) if the DIF effect size  of biased items 
was large relative to the standard deviation SDA of the DIF effects of anchor items (e.g., 
for  = .6, conditions with SDA ≤ .2). It is interesting that the robust linking methods 
based on separate calibration even outperformed partial invariance approaches based on 
concurrent calibration in many conditions. However, robust Haberman linking had worse 
performance in the presence of strong DIF effects for anchor items (i.e., SDA = .3). It is 
also evident from Table 6 that the choice of cutoff values is crucial for partial invariance 
approaches. The partial invariance approach based on the MD statistic performed better 
with cutoff values of .05 or .08 than with .12. Overall, cutoff values have to be chosen 
that are smaller than the size of the absolute values of the DIF effects of biased items, in 
order to remove biased items from the comparison of country means. 
Figure 2 shows the influence of sample size on the performance of the selected linking 
methods in the case of unbalanced DIF. It can be concluded that the general findings for 
N = 1,000 can also be transferred to smaller sample sizes of N = 200 and N = 500. Con-
current calibration under full invariance (FI) and nonrobust linking (HAE) were also 
more biased than partial invariance approaches and robust linking (RHAE) in smaller 
samples. If there were no DIF effects in anchor items (SDA = 0), RHAE even outper-
formed partial invariance approaches based on the MD statistic (PI-MD), with cutoffs of 
.08 and .12. However, the PI-MD approach with a cutoff of .08 performed slightly better 
than the RHAE approach in the condition SDA = 0.2. Importantly, approaches based on 
separate calibration (HAE, RHAE) were not less stable than concurrent calibration (FI, 
PI) even with a small sample size of N = 200. Hence, the different performance of link-
ing methods with respect to average RMSE was mainly driven by average absolute bias. 

Empirical example: cross-sectional country comparisons for 
reading in PISA 2006 
In order to illustrate the different approaches to estimating country means, we analyzed 
the data from the PISA 2006 assessment. In this reanalysis, we included all 26 OECD 
countries that participated in 2006 and focused on the reading domain, which was a 
minor domain in PISA 2006. Thus, reading items were only administered to a subset of 
the participating students, and we included only those students who received a test book-
let with at least one reading item. This resulted in a total sample size of 110,236 students 
(ranging from 2,010 to 12,142 between countries). In total, 28 reading items nested with-
in eight testlets were used in PISA 2006. As some items were polytomous, a partial 
credit model (PCM) was used in the analysis and the item difficulty of the PCM was 
used for linking. We specified eight different linking methods to obtain estimates of  
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Figure 2: 

Average absolute bias (upper panels) and average root mean squared error (lower panels) for 
unbalanced DIF for 10 % biased items with a DIF effect size of .6, I = 40 items, for a standard 
deviation of DIF effects for anchor items of SDA = 0 (left panels) and SDA = 0.2 (right panels) 

as a function of sample size. 

 
 
country means: a full invariance approach (concurrent calibration with multiple groups), 
a partial invariance approach with DIF detection based on the MD statistic or the DIF 
effect size at the logit metric, and two nonrobust linking methods (Haberman and Haeba-
ra) as well as two robust linking methods (RHAB and RHAE). For all analyses, student 
weights within a country were normalized to a sum of 5,000, so that all countries con-
tributed equally to the analyses. Finally, all estimated country means were linearly trans-
formed such that the distribution containing all (weighted) students in all 26 countries 
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had a mean of 500 (points) and a standard deviation of 100. Note that this transformation 
is not equivalent to the one used in officially published PISA data.  
In Table 7, the country mean estimates obtained from the eight different linking methods 
are shown. Within a country, the range of country means differed between 3 and 17 
points (M = 9.1) across the different methods. These differences between the linking 
methods can be explained by different amounts of country DIF. Furthermore, there was a 
strong cross-country correlation of .75 between the standard deviation of the DIF statistic 
in the logit metric and the standard deviation of the MD statistic. It is instructive to first 
focus on the comparison of country means based on the assumption of full invariance in 
a concurrent calibration approach that ignores DIF (similar to the PISA method used 
until 2012) and the partial invariance approach based on the MD statistic with a cutoff of 
.12 (similar to the PISA method starting from 2015, but note that PISA used the 2PL 
model instead of the 1PL model). About 9.4 % of all items across countries exceeded an 
absolute value of .12 for the MD statistic and there was an average absolute difference of 
4.2 points between the two approaches, with a maximum discrepancy of 15 points (South 
Korea, KOR). As shown in Table 7, South Korea had four flagged DIF items with an 
MD statistic larger than .12, while there was no flagged DIF item with an MD statistic 
smaller than −.12. In the partial invariance approach, those four items that advantaged 
South Korea were excluded from the linking, which explains the drop of 15 points in the 
partial invariance approach (545 points) compared to the full invariance approach (560 
points). A number of countries also had many more flagged DIF items with negative MD 
statistics than with positive MD statistics (Spain, ESP; Estonia, EST; Island, ISL). In 
these cases, items that were disadvantageous for a country were removed from the link-
ing in the partial invariance approach. Overall, it can be concluded that the magnitude of 
the difference between the full and partial invariance approaches was similar to that of 
the standard errors caused by person sampling (about 3 points). Hence, the choice of a 
particular linking method is of practical relevance for at least some of the countries (but 
see Jerrim et al., 2018, for a similar analysis with the PISA 2015 data).  
Table 8 shows the average absolute differences and correlations of the country mean 
estimates for the different linking methods. First, it needs to be emphasized that even a 
high correlation of .991 of the country means, which was provided by different methods 
(full invariance and Haberman linking), can result in a nonnegligible average absolute 
difference of 2.3 points (with a maximum of 8 points for Finland, FIN). Second, based 
on the pattern of correlations, the linking methods can be summarized into different 
groups that produced similar results. Concurrent calibration under full invariance and 
nonrobust linking methods (Haberman and Haebara) performed relatively similarly (r 
= .991, .993, .995, respectively). This can be explained by the fact that neither approach 
removes items from the linking. Moreover, the partial invariance approaches based on 
the MD statistic with cutoffs of .12 and .08 performed similarly to the robust Haebara 
approach (r = .990, .988, .991, respectively). Finally, when interpreting the results, it 
needs to be taken into account that the observed discrepancies in country means could be 
smaller for more recent PISA assessments as the number of items in a domain has been 
substantially increased in the recent PISA assessments. 
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Table 8:  
Average Absolute Differences (Upper Diagonal) and Correlations (Lower Diagonal) for 
Different Linking Methods for Reading Domain in PISA 2006 for 26 Selected OECD 

Countries 

  1 2 3 4 5 6 7 8 
1: FI 4.2 3.5 3.6 2.3 2.2 6.6 4.3 
2: PI-MD .12 .968 2.6 3.7 3.2 3.6 3.7 3.0 
3: PI-MD .08 .981 .990 3.0 2.8 3.1 4.5 2.5 
4: PI-DIF .5 .982 .983 .987 3.7 4.0 5.2 3.2 
5: HAB .991 .985 .987 .982 1.8 5.5 3.2 
6: HAE .993 .975 .982 .980 .995 6.0 3.4 
7: RHAB .934 .975 .967 .964 .953 .941 4.1 
8: RHAE .975 .988 .991 .987 .985 .979 .973 
Note. FI = concurrent calibration (CC) assuming full invariance; PI-DIF = CC based on partial invariance 
with cutoffs for DIF statistic in logit metric; PI-MD = CC based on partial invariance with cutoffs for MD 
statistic; HAB = Haberman linking; HAE = Haebara linking; RHAB = robust Haberman linking; RHAE = 
robust Haebara linking. Absolute differences smaller than 3.0 and correlations larger than .990 are printed 
in bold. 

Discussion 

In this article, we compared different linking approaches for computing group means (or 
country means) in the presence of DIF effects. The main goal was to investigate the 
conditions under which the partial invariance approach produces more accurate estimates 
of country means than the full invariance and noninvariance approaches. First, we argued 
that it is instructive for the understanding of DIF to differentiate between two group-
specific item sets: anchor items and biased items. It was emphasized that the unbiased 
identification of group means can only be conducted based on the group-specific set of 
anchor items. Importantly, both anchor items, as well as biased items, are allowed to 
possess DIF effects, but the DIF effects of anchor items average to zero within a group. 
Furthermore, we discussed three different approaches for comparing country means in 
the presence of DIF (full invariance, partial invariance, and linking based on separate 
calibration) and showed analytically that these approaches place different constraints on 
the DIF effects for anchor items and biased items. Through a simulation study, it was 
shown that the performance of the different linking approaches depended on the nature 
of the DIF effects of anchor and biased items. If the DIF effects of biased items were not 
balanced, the concurrent calibration approach based on full invariance as well as the 
nonrobust linking methods (Haberman, Haebara) provided biased country means, where-
as the partial invariance approaches based on the DIF and MD statistics were able to 
reduce the bias in the country means. However, in several conditions of the simulation 
study, the cutoff value of .08 for the MD statistic performed better than a cutoff value of 
.12. Moreover, robust linking approaches (robust Haberman, robust Haebara) even out-
performed partial invariance approaches in some conditions. Thus, it could be questioned 



A review of different scaling approaches under full invariance... 265

whether the partial invariance approaches always produce more stable estimates of group 
means in the context of ILSAs than linking approaches based on separate calibration14. 
Interestingly, it has been shown that separate calibration with subsequent linking (i.e., 
noninvariance approach) can be reformulated as a concurrent scaling approach in a mul-
tiple-group IRT model with side conditions (von Davier & von Davier, 2007).  
As it is true for all simulation studies, conclusions are limited to the conditions which 
were investigated in our study. First, we restricted ourselves to 20 or 40 items, while 
ILSAs include a much larger item pool in general. Further studies could investigate 
larger numbers of items or could treat items as random instead as fixed. Second, we 
assumed that the maximum proportion of biased items was 30%. We would believe that 
the test construction was not successful if more than 30% of the items would be biased 
items (Magis & De Boeck, 2011). Third, we only chose two extreme conditions of DIF 
for biased items, namely, the case of balanced DIF in which the DIF effects of biased 
items sum to zero and the case of unbalanced DIF in which all items either have a joint 
positive or negative biasing DIF effect δ. In reality, DIF effects of biased items likely 
follow a distribution between these two extreme scenarios. These constellations should 
be investigated in future simulation studies, which should also provide more practical 
guidelines for choosing among different scaling approaches in the presence of biased 
items. Fourth, our simulation design intended to mimic data constellations that are char-
acteristic for the assessment of cognitive constructs. However, the assessment of DIF for 
non-cognitive constructs (e.g., student motivation) in ILSAs has received increasing 
attention (Avvisati, Le Donné, & Paccagnella, 2019; Buchholz & Hartig, 2019; Cieciuch 
et al., 2019; He, Barrera-Pedemonte, & Buchholz, 2019; Rutkowski & Svetina, 2017; 
Zieger, Jerrim, & Sims, 2019). It would be interesting to extend the design of our simula-
tion to conditions that are more realistic for non-cognitive constructs (for example, poly-
tomous item responses with four categories, and scales with three to ten items). 
When discussing the reasoning behind the DIF concept, we emphasized that the decision 
whether an item induces bias for country comparisons is not purely (or maybe even not 
primarily) a statistical question. As it was pointed out by Camilli (1993; see also Penfield 
& Camilli, 2007), DIF detection procedures should be accompanied by expert reviews of 
items showing DIF. Only those items should be removed from country comparisons for 
which it is defensible to argue that DIF was caused by construct irrelevant factors (see 
also El Masri & Andrich, 2020). Until PISA 2015, items with DIF effects were only 
declared as DIF items and omitted from scaling for a particular country if translation 
issues were confirmed (Adams, 2003; see also Kreiner & Christensen, 2014). This ap-
proach practically ignores DIF unless it could be demonstrated that DIF was construct 
irrelevant. On the other hand, a purely statistical approach (e.g., based on partial invari-
ance used since PISA 2015 or robust linking) ignores the fact that DIF items could be 
construct relevant. Including country-specific item parameters for construct relevant DIF 
items has the potential to result in construct underrepresentation for country compari-

                                                                                                                         
14 Note that in separate calibration estimated item parameters rely on smaller sample sizes. This increased 
uncertainty in estimated item parameters could, however, affect other parameters involving the ability 
distribution (e.g., quantiles or regression coefficients; see, e.g., Tsutakawa & Johnson, 1990). 
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sons. However, within-country analyses are not affected by this potential construct un-
derrepresentation because no items are removed from scaling. 
As the discussion of the concept of DIF for the 1PL model made clear, the identification 
of country means requires non-testable identification constraints. Hence, no analytical 
reasoning or simulation studies can be used to prove that partial invariance or robust 
linking methods (robust Haberman and robust Haebara) outperform a full invariance 
approach that practically ignores DIF effects in scaling in practical applications like 
PISA. Unfortunately, identification constraints and their ambiguous consequences are 
often neglected in the psychometric literature. For example, it is often argued that at least 
partial invariance for item intercepts is needed to allow meaningful (or valid) compari-
sons of group means (e.g., van de Vijver, 2019) in order to avoid the issue of the compar-
ison of apples and oranges. It is important to emphasize that the labels “meaningful” or 
“valid” are not clearly defined statistical terms and, hence, these labels are often con-
founded with the concept of statistical bias (see, for example, He et al., 2019). We 
showed analytically and through a simulation study that unbiased estimates of country 
means can be obtained if noninvariance does hold (i.e., all items have DIF effects, but 
are anchor items). Moreover, one critical aspect of the partial invariance approach (as 
well as other approaches that result in the inclusion of country-specific item parameters 
or a down-weighting of items in a country, such as robust linking approaches) is that 
comparisons of different groups do not rely on a full set of common item parameters as a 
subset of items receives unique item parameters which are not comparable across most 
groups. For example, the country mean comparison of Germany and Poland in PISA 
does not involve a full set of common item parameters for each country if the sets of 
country-specific noninvariant items – that receive country-specific item parameters – 
differ between the two countries. More critically, the determination of how a country 
comparison is conducted (i.e., which items are used as anchor items in a country) is – in 
the current operational use since PISA 2015 – defined by means of a model misfit in a 
psychometric model (see von Davier et al., 2019)15. Hence, we think that this property of 
the partial invariance approach does not resolve the problem of comparing apples and 
oranges because it is also a potential threat to validity (i.e., the construct is not properly 
represented; see also Kuha & Moustaki, 2015, and El Masri & Andrich, 2020). In con-
trast, approaches using full invariance or complete noninvariance (non-robust linking 
methods based on separate calibration; Haberman and Haebara methods) use the full set 
of common item parameters for country comparisons and are less affected by construct 
representation concerns. In more detail, the full invariance approach uses the full set of 
common item parameters. The non-robust linking approaches allow for country-specific 

                                                                                                                         
15 Brennan (1998, p. 8) argues: “[…] it is inappropriate to allow a scaling model to be the sole determiner 
of how content and formats are weighted in arriving at scores. To do so is to delegate to statistical models 
a responsibility that, at a minimum, should be shared with test developers and policymakers.” He pro-
ceeds: “the role of scaling in drawing inferences about test scores is one of the most neglected aspects of 
validation, and the notion that scaling is (or should be) solely a psychometric matter may be the single 
most widely held misconception about measurement”. This underlines the importance of the alignment of 
the test specification and the statistical methodology for test analysis. It seems that, in large-scale assess-
ments, these two goals are often disconnected. 
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item parameters but do not involve a down-weighting of items in particular countries as 
in robust linking approaches. 
However, it could be debated whether the application of the partial invariance approach 
could threaten the validity of country comparisons (as pointed out by an anonymous 
reviewer who disagreed with this statement). In the partial invariance approach, a small 
subset of items receives country-specific item parameters in the scaling model. Hence, 
these unique items are removed from the likelihood estimation for estimating common 
international item parameters but still provide additional information for ability estima-
tion at the level of countries. Therefore, one could argue that the inclusion of unique item 
parameters leads to a slightly decreased comparability of countries. However, this does 
not threaten the validity of cross-country comparisons as the full set of common item 
parameters is used in all countries, and the majority of these items receive common in-
ternational item parameters. 
Moreover, we think that it is informative to quantify the amount of noninvariance as an 
additional source of uncertainty in country comparisons. Linking errors are usually re-
ported for trend estimates of countries in large-scale assessments (OECD, 2017; Robi-
tzsch & Lüdtke, 2019; Wu, 2010). Because country DIF introduces decreased compara-
bility of countries, appropriate linking errors reflecting the extent of noninvariance could 
also be defined for country means and country mean differences. 
A significant limitation of our study is that we only considered the 1PL model. Since 
PISA 2015, a 2PL model is in operational use, and the generalizability of our findings to 
the 2PL model could be questioned. Two different cases of DIF have to be distinguished 
in the 2PL model. First, in the case of only uniform DIF, DIF is only allowed in item 
intercepts, and the IRFs are given as     θ Ψ θ  ig i i igP a b e . From an analytical 

point of view, the same arguments can be applied to the 2PL model in this case because 
the identification issues of the 1PL model (regarding the item difficulties) can be directly 
translated to the 2PL model. As only uniform DIF is present, the common item slopes ai 
can be estimated in the total sample comprising all countries. Moreover, it is shown in 
Appendix D that MD and RMSD formulas are quite similar when allowing common item 
slopes (by replacing group-specific standard deviations g by aig in the corresponding 
formulas). Therefore, it would be interesting whether our recommendation for a more 
stringent use of a cutoff of .05 or .08 (instead of .12) for the MD or RMSD statistic could 
also be generalized to the 2PL model in a future simulation study. Second, the case of 
nonuniform DIF (i.e., DIF is also present in item slopes) requires additional research, and 
we think that it is not apparent whether all of our findings can be generalized to this case. 
While one could use similar cutoff values for MD and RMSD statistics, the linking ap-
proaches need further consideration by the inclusion of item slope parameters (see Bat-
tauz, 2017, for discussion of different variants of Haberman linking in the 2PL model).  
We want to point out that the partial invariance approach has some similarity to regulari-
zation based estimation approaches for DIF (Tutz & Schauberger, 2015; see also Hastie 
et al., 2015, for a broad overview of regularized estimation). Both estimation approaches 
result in a small subset of DIF effects, which are estimated to be nonzero, while most of 
the items receive DIF effects of zero. However, regularization techniques do not rely on 
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DIF statistics but require the selection of additional tuning parameters. Furthermore, the 
invariance alignment procedure for multiple-group IRT item response models (Muthen 
& Asparouhov, 2014) could be regarded as an alternative linking method. The alignment 
method employs a loss function (i.e.,  ρ x x ) in the linking optimization function, 

which imposes sparsity on DIF effects. It would be interesting to compare the alignment 
method to the fused lasso regularization approach (Hastie et al., 2015), which uses a 
penalty function that is quite similar to the optimization function in the alignment proce-
dure. In the near future, we expect that regularization methods are more commonly ap-
plied in the psychometric literature because many of the problems that had been tackled 
with ad-hoc multi-step approaches could be handled in a much more principled way with 
regularization techniques (see for recent examples Bauer, Belzak, & Cole, 2020; Huang, 
2019; Schauberger & Mair, 2020). 

Conclusion 

In this article, we investigated the performance of full invariance, partial invariance, and 
full noninvariance (nonrobust and robust linking) approaches for country comparisons in 
large-scale assessments depending on different assumptions about the nature of DIF 
effects in the 1PL model. We found that in the presence of biased items, and balanced 
DIF (i.e., DIF effects of biased items average to zero), the full invariance and nonrobust 
linking approaches provide (approximately) unbiased country means with similar varia-
bility. In this case, the partial invariance and robust linking approaches could introduce 
slight biases by incorrectly removing items from country comparisons. However, in the 
presence of biased items, and unbalanced DIF (i.e., DIF effects of biased items do not 
average to zero), the full invariance and nonrobust linking approaches were biased, 
whereas the partial invariance approach with an appropriate cutoff value (for the DIF 
statistic) as well as the robust linking approaches performed similarly and strongly re-
duced the bias. These findings clearly showed the potential of the partial invariance and 
the robust linking approaches to increase the accuracy of country mean comparisons in 
the case of unbalanced DIF. However, we would also argue that the decision of whether 
an item should be considered as an anchor item or biased item always needs to take into 
account whether the corresponding DIF effect is construct relevant or construct irrele-
vant. Thus, it is not possible to base the choice of a psychometric model solely on statis-
tical grounds. 
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Appendix 

Appendix A: preliminaries 

In this section, we introduce some notation and basic facts, which will be used in the 
following appendices. We assume that a multiple-group 1PL model holds with 
Pig(θ) = Ψ(θ – big) where the identified parameter big is given as big = bi − g – eig. The 
primary parameter of interest is the group mean μg. First, note that the logistic IRF can 
quite well be approximated by the probit IRF by Ψ(θ – b) = (D-1(θ – b)), where 
D = 1.701 and  denotes the standard normal distribution function. Assuming a normal 
distribution for ability θ, rules involving Gaussian integrals (Owen, 1980) can be applied 
to compute marginal item probabilities, thresholds, or tetrachoric correlations that pro-
vide closed forms of quantities of interest in which the latent variable θ has been inte-
grated out. For example, this advantage is used in limited information estimation meth-
ods of item response models that do not require numerical integration methods that in-
volve integrals of latent variables (Cai & Moustaki, 2018). In the following, we use real-
valued loss functions  = (e) for estimation (see Fox, 2016), which are symmetric, 
nonnegative, fulfilling  = , and are monotonically nondecreasing in |e|.  

Appendix B: maximum likelihood estimation for concurrent calibration under 
full invariance 

To derive the bias in the multiple-group concurrent calibration approach, we assume that 
the number of items tends to infinity. In this case, individual posterior distributions con-
verge to a point estimate, namely the individual maximum likelihood estimate. Moreo-
ver, it is assumed that the common item parameter bi can be consistently estimated. Let 
Pi(θ) = Ψ(θ – bi) be the common IRF and Wi(θ) = Pi(θ)(1 – Pi(θ)) be the corresponding 
information function. Now we compute the estimated ability θ1 for persons in group g for 
which data has been generated with ability θ0. More concretely, we seek to determine a 
function mg for which θ1 = mg(θ0) holds. If abilities are unbiasedly estimated, mg is the 
identity function. However, in the presence of DIF effects, the misspecified multiple-
group IRT model under full invariance has the potential to introduce bias. For a large 
number of items and a large number of persons with ability θ0, the estimated ability θ1 is 
given as the maximizer of the Kullback-Leibler information, which is given as 

            0 0
1

1θ θ log θ 1 θ log 1 θ  .


     
I

ig i ig i
i

l P P P P
I

 (A1) 

Setting the first derivative of l to zero, θ1 is given as the root of the nonlinear equation 

      1 0
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ig i
i

ll P P
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. (A2) 

We now can use two Taylor approximations of Pig and Pi in Equation A2 to determine 
mg. First, we obtain Pi(θ) = Ψ(θ – bi) ≈ Pi(θ0) + Wi(θ0)(θ − θ0) by using a linear Taylor 
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approximation with respect to θ. Second, we apply a linear Taylor approximation of 
Pig with respect to the DIF effect eig (see Kolenikov, 2011, for a similar strategy), 
resulting in Pig(θ) = Ψ(θ – bi – eig) ≈ Pi(θ) − Wi(θ)eig. Using the abbreviation 

     θ θ / θ 
i i u

u
W W W , we obtain θ1 by inserting the Taylor approximations in Equa-

tion A2: 

      1 0 0 0 0 0
1

θ θ θ θ θ θ
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I

g i ig g
i

m W e B , (A3) 

where Bg denotes the bias in estimated abilities. The estimated group mean for group g is 
then given as    μ θ dˆ θ θ g g gm f  where fg is the density of group g. Using Equation 
A3, this can be further simplified to 

 
1

μ μ  ,ˆ


 
I

g g ig ig
i

w e  (A4) 

where the weights wig are given as      μ ,σ , θ θ dθig ig g g i i gw w b W f    . 

Appendix C: limited information methods for concurrent calibration 

We now derive the bias of estimated group means if weighted least squares estimation is 
used. The estimated group means μ̂g  rely on estimated item thresholds τ̂ig  and pairwise 

tetrachoric correlations ρ̂ijg . For specified weights wig (assuming 1 ig
i

w  without loss 

of generality) and wijg in the weighted least squares estimation and known common item 
difficulties bi (obtained in a previous estimation step), estimated group means and stand-
ard deviations are given as the minimizers of 

      2 2

,
μ ,σ τ τ ρ ρˆ ,ˆ    g g ig ig ig ijg ijg ijg

i i j
H w w  (A5) 

where ig and ijg are model-implied item intercepts and tetrachoric correlations, respec-
tively. In large samples, the model-implied and estimated tetrachoric correlations coin-
cide, that is,  2 2 2ρ̂  ρ σ / σ  ijg ijg g gD . Hence, the group-specific standard deviation g 

can be consistently estimated from data and can be identified from tetrachoric correla-

tions only. Using   1/22 2σ σ


 g g gf D , we obtain  τ μ ig g g if b  and 

 τ μˆ   ig g g i igf b e . The estimated group mean as the minimizer of Equation A5 is 

then given as 
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Hence, estimated group means using weighted least squares are biased in general. Note 
that the general form in Equation A6 is the same as for concurrent calibration using ML, 
but with differently defined weights (see Equation A4). 

Appendix D: population MD and RMSD statistics 

Using the definition of the population MD statistic and the probit approximation of the 
logistic IRF (see Appendix A), the MD statistic is computed as 

         1 1 1MD Φ θ Φ θ σ  θ μ / σ dθig i ig i g g gD b e D b             . (A7) 

Using the rule for change of variables in integration, we rewrite Equation A7 as 

        1 1MD Φ σ μ Φ σ μ dig g g i ig g g iD u b e D u b u u             . (A8) 

Applying Formula (10,010.8) of Owen (1980) to Equation A8 results in 

 
2 2 2 2

μ μ
MD Φ Φ  .

σ σ

         
       

g i ig g i
ig

g g

b e b

D D
 (A9) 

The formula for the square of the RMSD statistic (in the following defined as MSD) 
relies on the bivariate normal distribution It holds that 

        
2

1 1MSD Φ σ μ Φ σ μ dig g g i ig g g iD u b e D u b u u             . (A10) 

Expanding the terms in Equation A10 leads to a representation MSDig = T1 + T2 − 2T3. 

Using  
2
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, it follows that T1 = T(g − bi –

 eig, g − bi – eig, g), T2 = T(g − bi, g − bi, g), and, T3 = T(g − bi, g − bi – eig, g) by 
applying Formula (20,010.3) of Owen (1980). Finally, for eig > 0, MSD can be equiva-
lently written as a two-dimensional integral with respect to the bivariate normal density 
2: 
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The case of eig < 0 can be handled by using redefined quantities   
i i igb b e and 

 ig ige e . 
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The formula of the MD statistic can similarly be derived for the case of non-uniform DIF 
in the 2PL model. Assume that    θ Ψ θ i i iP a b  is the joint IRF and 

   θ Ψ ( )θ   ig i ig i igP a u b e  is the group-specific IRF. The same computations as for 

Equation A9 provide the MD statistic 
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i gi ig g
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In the case of uniform DIF in the 2PL model, the DIF effect uig is zero and Equation A12 
coincides with Equation A9 if 2σg  is replaced by 2 2σi ga . The formula for the RMSD 
statistic for the 2PL model with uniform DIF can be obtained by applying the same rea-
soning to Equation A11. 

Appendix E: empirical MD and RMSD statistics 

In the following, we use the notation from the Section “MD and RMSD statistics”. As in 
Appendix B, we assume a large number of items. Then, the empirical IRF  ˆ θigP  con-

verges to an IRF     * 1θ θ ,ig ig gP P m  where    θ θ θ g gm B  denotes the transfor-

mation of true abilities into estimated abilities (see Appendix B)16. The estimated density 
for group g is given as       1 'ˆ θ θ θg g g gf f m m . The square of the expected value of 

the estimated RMSD statistic can be approximately written (by expanding the terms in 
Equation 9, but neglecting terms involving cross-products of *ˆ ig igP P , and applying the 
rule of change of variables in integration) as 
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 (A13) 

 
 
 

                                                                                                                         
16 We assume that the transformation function mg is (piecewise) monotone and differentiable in order to 
define 1

gm appropriately. 
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The first term in Equation A12 denotes the positive bias 

       
2

1, θ θ θ  ˆ dθig ig gB n E P P f
       caused by the finite sampling of persons. 

Again, we can apply a Taylor approximation         θ θ θ θ θ  i g i i gP B P W B  (see 

Appendix B). Inserting this simplification into Equation A13 and omitting cross-products 
results in 
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 (A14) 

By making use of the same proof strategy, it can be shown that the bias in the MD statis-
tic only depends on misestimated ability, that is, | | 0 ggf f . 

Appendix F: estimation constraints for Haberman and Haebara linking 
methods 

We first derive the estimating equation for Haberman linking. Taking the derivative of 
Equation 11 with respect to g provides 

  ˆρ μ 0
μ


   


 ig i g
ig

H b b  (A14) 

For large sample sizes, it holds that μˆ    ig ig i ig gb b b e . Inserting this quantity into 

Equation A14 results in  ρ 0 ig
i

e  (see Equation 12). In the case of Haberman link-

ing with OLS estimation (i.e., (x) = x2/2), the constraint 0 ig
i

e  is fulfilled, and we 

obtain μ μˆ  g g ig
i

e . 

The condition for Haebara linking can be obtained similarly by taking the first derivative 
of H in Equation 13 with respect to g and changing the order of integration and differen-
tiation. Again, the relation ˆ μ  ig i ig gb b e  is used to obtain Equation 14. 
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