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Introduction
Pituitary adenomas are fairly common benign tumors which 

may be found in up to 20% of the general population [1-3]. 
Categorization of pituitary adenomas is typically performed based 
on lesion size (microadenomas or macroadenomas) and hormon 
secretion status (functioning or nonfunctioning adenomas). 
While a considerable proportion of patients harboring these 
benign tumors may be asymptomatic, symptoms may arise due 
to the mass effect on critical neurovascular structures including 
the optic nerves and chiasm, cavernous sinus, and normally 
functioning pituitary gland or stalk. Occurring symptoms may 
profoundly deteriorate the affected patients’ health status and  

 
quality of life, and prompt management may be considered. 
Medical treatment, surgery, and radiation therapy (RT) are 
among the therapeutic options for management of pituitary 
adenomas. Surgery is a primary mode of treatment for pituitary 
adenomas, however, some lesions may not be amenable to 
complete surgical removal due to their intimate association 
with vital neurovascular structures. From this aspect, RT may 
be considered as an alternative or complementary treatment 
modality utilized after partial surgical removal of pituitary 
adenomas. Another typical utilization of RT is for management 
of recurrences which may occur in a considerable proportion of 
patients even after successful initial management. 
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Radiosurgery in the form of Stereotactic Radiosurgery 
(SRS), Fractionated Stereotactic Radiation Therapy (FSRT), 
Hypofractionated Stereotactic Radiation Therapy (HFSRT), 
and Stereotactic Body Radiation Therapy (SBRT) has been 
judiciously utilized for management of several benign and 
malign conditions throughout the human body with encouraging 
therapeutic outcomes [4-22]. For management of pituitary 
adenomas, several studies reported the safety and efficacy of 
radiosurgery [8,23,24]. Due to the critical location of pituitary 
adenomas in close vicinity of several vital structures, achieving 
a favorable toxicity profile is a pertinent goal of RT as well 
as surgery. Treatment planing for radiosurgery is typically 
performed by Computed Tomography (CT)-simulation, however, 
multimodality imaging may add to the accuracy of target 
contouring for pituitary adenomas. In this study, we evaluated 
the utility of multimodality imaging with CT and Magnetic 
Resonance Imaging (MRI) for radiosurgery treatment planning 
of pituitary adenomas. 

Materials and Methods
The study group included 18 patients who received 

radiosurgery for pituitary adenoma at our department. 
Written informed consent was provided for each patient before 
radiosurgical treatment. Decision making for radiosurgery 
was performed after thorough patient assessment by a 
multidisciplinary team of experts on neurosurgery, radiation 
oncology, and neuroradiology. Factors such as lesion size, location 
and association with critical structures, patient symptomatology, 
age, performance status and preferences were considered. All 
patients had thin slice MRI typically acquired within one week 
before radiosurgery. On treatment day, immobilization was 
secured by use of a stereotactic head frame which was affixed 
to the patients’ skull under local anesthesia with 4 pins. Patients 
underwent CT-simulation at the CT-simulator (GE Lightspeed 
RT, GE Healthcare, Chalfont St. Giles, UK) at our department. 
Planning CT images were sent to the contouring workstation 
(SimMD, GE, UK) for delineation of the target and neighbouring 
critical structures such as the brainstem, optic nerves, optic 
chiasm, pituitary stalk, and pituitary gland. Target delineation 
was based on CT-simulation images only or fused CT and T1 
gadolinium-enhanced MR images. A comparative assessment 
was performed to investigate the incorporation of MRI into 
radiosurgery treatment planning for pituitary adenomas. For 
actual treatment and comparison purposes, the ground truth 
target volume was generated after collaboration and consensus 
of treating radiation oncologists by using all available imaging 
data of the patients. 

Results
A total of 18 patients receiving radiosurgery for pituitary 

adenomas at our department were assessed for target volume 
definition by use of CT-only imaging and CT-MR fusion based 
imaging in this study. Mean target volume was 4.4 cc (range: 

1.1-10.9 cc) on CT-only imaging, 4.7 cc (range: 1.2-11.1 cc) on 
CT-MR fusion based imaging, and 4.6 cc (range: 1.2-11.2 cc) on 
collaboration and consensus of treating radiation oncologists 
by using all available imaging data of the patients. Ground truth 
target volume was identical to target determination based on CT-
MR fusion based imaging in majority of the study group. Target 
volume delineation was optimized by adjustment of appropriate 
windows and levels for radiosurgery treatment planning. In 
treatment planning for radiosurgery, either a single 360-degree, 
double 360-degree arcs or five 180-degree arcs were used for 
optial sparing of critical structures surrounding the target. Arc 
Modulation Optimization Algorithm (AMOA) was utilized for 
achieving optimal target coverage and normal tissue sparing. 
Radiosurgery treatment planning was accomplished by use of 
ERGO ++ (CMS, Elekta, UK) radiosurgery planning system and 
treatment delivery was performed by using Synergy (Elekta, 
UK) Linear Accelerator (LINAC) with 6-MV photons. Median 
dose of radiosurgery was 13 Gy (range: 10-16 Gy) prescribed to 
the 85%-95% isodose line encompassing the target. Isocenter 
and setup verifications were performed by use of kV-CBCT 
(kilovoltage Cone Beam CT) and XVI (Xray Volumetric Imaging, 
Elekta, UK) system integrated into the LINAC gantry. All patients 
routinely received 8 mg intravenous dexamethasone with H2-
antihistamines after radiosurgical treatment (Figure 1). 

Figure 1: Treatment planning CT and MR images of a patient 
with pituitary adenoma.

Discussion
Pituitary adenomas may cause several symptoms depending 

on their location and association with surrounding critical 
structures. Therapeutic options for management typically 
include medical treatment, surgery, and RT. Management with 
complete surgical resection may be hampered due to the excessive 
risk of surgical complications particularly when the pituitary 
adenoma lesion is in close contact with the optic apparatus or 
vital neurovascular structures located in the cavernous sinus. 
RT offers a viable treatment modality and may be utilized 
for complementary or definitive management of pituitary 
adenomas in selected patients. Conventionally fractionated RT 
has been traditionally used for treatment of pituitary adenomas, 
however, radiosurgery in the form of SRS or HFSRT has emerged 
as a viable radiotherapeutic modality for management of well-
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defined lesions with small to moderate size. Primary advantage 
of radiosurgery is management of patients with a condensed 
treatment schedule by use of one or a few fractions while 
achieving steep dose gradients around the target resulting in 
optimal normal tissue sparing. Nevertheless, excessive toxicity 
is an important concern for management of pituitary adenomas 
with radiosurgery a well as surgical resection and achieving an 
improved toxicity profile is a pertinent goal of irradiation as 
well to avoid adverse radiation effects [25,26]. In this context, 
several strategies have been implemented for avoiding excessive 
treatment toxicity such as deferral of irradiation, proton therapy, 
and combined modality management including surgery followed 
by SRS [27-32]. 

An important aspect of precision radiosurgery is accurate 
definition of the target given the high fractional doses and steep 
dose gradients around the target in radiosurgical treatments. 
There may be interobserver variability in delineation of the 
target and critical structures which may lead to inadequate 
treatment and unexpected toxicity, emphasizing the need for 
vigilance in contouring of the pituitary adenoma target and 
relevant critical structures for achieving optimal radiosurgical 
outcomes [33-35]. While CT-simulation is a common practice 
for radiosurgery, incorporation of MRI may add to the accuracy 
of target definition. In our study, ground truth target volume 
was identical to target determination based on CT-MR fusion 
based imaging in majority of the patients. Our study supports 
the incorporation of MRI into radiosurgery target definition for 
improving the accuracy of treatment. In conclusion, MRI offers a 
viable imaging modality for pituitary adenoma target definition 
and may substantially improve accuracy and precision in target 
contouring for radiosurgery of pituitary adenomas.
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