
Hash Tables: Handling Collisions

CSE 373: Data Structures and Algorithms

Thanks to Kasey Champion, Ben Jones, Adam Blank, Michael Lee, Evan McCarty, Robbie Weber, Whitaker
Brand, Zora Fung, Stuart Reges, Justin Hsia, Ruth Anderson, and many others for sample slides and materials ...

Autumn 2018

Shrirang (Shri) Mare
shri@cs.washington.edu

mailto:shri@cs.washington.edu

- HW3 due Friday Noon
- Office hours for next week have changed. Please see the calendar for the correct info
- We made a mistake in a comment in HW4. We’ll push a commit to your repo to correct
that. (So expect one more git commit from us.)

Announcements

CSE 373 AU 18 – SHRI MARE 2

- Review Hashing
- Separate Chaining
- Open addressing with linear probing
- Open addressing with quadratic probing

Today

CSE 373 AU 18 – SHRI MARE 3

How can we implement a dictionary such that dictionary operations are efficient?

Idea 1: Create a giant array and use keys as indices.
(This approach is called direct-access table or direct-access map)

Two main problems:
1. Can only work with integer keys?
2. Too much wasted space

Idea 2: What if we
(a) convert any type of key into a non-negative integer key
(b) map the entire key space into a small set of keys (so we can use just the right size array)

Problem (Motivation for hashing)

CSE 373 AU 18 – SHRI MARE 4

Idea: Use functions that convert a non-integer key into a non-negative integer key

Solution to problem 1: Can only work with integer keys?

CSE 373 AU 18 – SHRI MARE 5

Idea: Use functions that convert a non-integer key into a non-negative integer key

- Everything is stored as bits in memory and can be represented as an integer.
- But the representation can be much simpler (nothing to do with memory).

- For example (just for illustration; this is not how strings, images, and videos are hashed in practice):
- Strings can be represented with number of characters in the string, ascii value of the first char, last char
- Image can be represented with resolution, size of image, value of the 5th pixel in the image, 100th pixel
- Similarly, video can be represented resolution, size, frame rate, size of the 10th frame

Solution to problem 1: Can only work with integer keys?

CSE 373 AU 18 – SHRI MARE 6

Idea: Use functions that convert a non-integer key into a non-negative integer key
- Everything is stored as bits in memory and can be represented as an integer.
- But the representation can be much simpler (nothing to do with memory).

- For example (just for illustration; this is not how strings, images, and videos are hashed in practice):
- Strings can be represented with number of characters in the string, ascii value of the first char, last char
- Image can be represented with resolution, size of image, value of the 5th pixel in the image, 100th pixel
- Similarly, video can be represented resolution, size, frame rate, size of the 10th frame

Question: What are some good strategies to pick a hash function? (This is important)
1. Quick: Computing hash should be quick (constant time).
2. Deterministic: Hash value of a key should be the same hash table.
3. Random: A good hash function should distribute the keys uniformly into the slots in the table.

Solution to problem 1: Can only work with integer keys?

CSE 373 AU 18 – SHRI MARE 7

Idea: Map the entire key space into a small set of keys (so we can use just the right sized array)

Solution to problem 2: Too much wasted space

CSE 373 AU 18 – SHRI MARE 8

202

5000

900007

1
2

202

5000

1

900007

0
indices

1

202

5000

900007

..

..

..

..

Idea: Map the entire key space into a small set of keys (so we can use just the right sized array)

Solution to problem 2: Too much wasted space

CSE 373 AU 18 – SHRI MARE 9

indices

1

202

5000

900007

1
2

0

7

202

900007

5000
1

2
3
4
5
6
7
8

1

9

0

Review: The “modulus” (mod) operation

Examples:
1 % 10 = 1

11 % 10 = 1
10 % 10 = 0

5746 % 10 = 6
71 % 7 = 1

10

The modulus (or mod) operation gives the remainder of a division of one number
by another. Written as x	mod	n			or x		%		n.

The “modulus” (mod) operation

For more review/practice, check out https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/what-is-modular-arithmetic

https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/what-is-modular-arithmetic

Review: The “modulus” (mod) operation

Examples:
1 % 10 = 1

11 % 10 = 1
10 % 10 = 0

5746 % 10 = 6
71 % 7 = 1

11

The modulus (or mod) operation gives the remainder of a division of one number
by another. Written as x	mod	n			or x		%		n.

The “modulus” (mod) operation

For more review/practice, check out https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/what-is-modular-arithmetic

Common applications of the mod operation:
- finding last digit (% 10)
- whether a number is odd/even (% 2)
- wrap around behavior (% wrap limit)

The application we are interested in is the wrap
around behavior.
It lets us map any large integer into an index in
our array of size m (using % m)

https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/what-is-modular-arithmetic

Implementing a simple hash table (assume no collisions)

public V get(int key) {

return this.array[key].value;
}

public void put(int key, V value) {

this.array[key] = value;
}

public void remove(int key) {

this.array[key] = null;
}

12CSE 373 AU 18 – SHRI MARE

Implementing a simple hash table (assume no collisions)

public V get(int key) {
key = getHash(key)

return this.array[key].value;
}

public void put(int key, V value) {
key = getHash(key)

this.array[key] = value;
}

public void remove(int key) {
key = getHash(key)

this.array[key] = null;
}

13

public int getHash(int a) {

return a % this.array.length;

}

CSE 373 AU 18 – SHRI MARE

Our simple hash table: insert (1000)

CSE 373 AU 18 – SHRI MARE 14

indices

1

202

5000

900007

1
2

0

7

202

900007

5000
1

2
3
4
5
6
7
8

1

9

0

Our simple hash table: insert (1000)

CSE 373 AU 18 – SHRI MARE 15

indices

1

202

5000

900007

1
2

0

7

202

900007

5000
1

2
3
4
5
6
7
8

1

9

0
1000

Hash collision Some other value
exists in slot at index 0

Hash collision

CSE 373 AU 18 – SHRI MARE 16

It’s a case when two different keys have the same hash value.
Mathematically, h(k1) = h(k2) when k1 ≠ k2

What is a hash collision?

Why is this a problem?
- We put keys in slots determined by the hash function. That is, we put k1 at index h(k1),
- A collision means the natural choice slot is taken
- We cannot replace k1 with k2 (because the keys are different)
- So the problem is where do we put k2?

Hash collision

CSE 373 AU 18 – SHRI MARE 17

It’s a case when two different keys have the same hash value.
Mathematically, h(k1) = h(k2) when k1 ≠ k2

What is a hash collision?

Strategies to handle hash collision

18CSE 373 AU 18 – SHRI MARE

There are multiple strategies. In this class, we’ll cover the following three:

1. Separate chaining
2. Open addressing
- Linear probing
- Quadratic probing

3. Double hashing

Strategies to handle hash collision

CSE 373 AU 18 – SHRI MARE 19

- Separate chaining is a collision resolution strategy where collisions are resolved by storing
all colliding keys in the same slot (using linked list or some other data structure)

- Each slot stores a pointer to another data structure (usually a linked list or an AVL tree)

Separate chaining

CSE 373 AU 18 – SHRI MARE 20

put(44, value44)

put(21, value21)

1

2
3
4
5
6
7
8

1

9

0
indices

13

22

7
Note: For simplicity, the table shows only keys, but
in each slot/node both, key and value, are stored.

- Separate chaining is a collision resolution strategy where collisions are resolved by storing
all colliding keys in the same slot (using linked list or some other data structure)

- Each slot stores a pointer to another data structure (usually a linked list or an AVL tree)

Separate chaining

CSE 373 AU 18 – SHRI MARE 21

1

2
3
4
5
6
7
8

1

9

0
indices

13

22

7

44

21
put(44, value44)

put(21, value21)

Note: For simplicity, the table shows only keys, but
in each slot/node both, key and value, are stored.

What are the running times for:
insert

Best:

Worst:

find
Best:

Worst:

delete
Best:
Worst:

Separate chaining: Running Times

CSE 332 SU 18 – ROBBIE WEBER

What are the running times for:
insert

Best: !(1)
Worst: !(%) (if insertions are always at the end of the linked list)

find
Best: !(1)
Worst: !(%)

delete
Best: !(1)
Worst: !(%)

Separate chaining: Running Times

CSE 332 SU 18 – ROBBIE WEBER

Load Factor

CSE 373 AU 18 – SHRI MARE 24

Ratio of number of entries in the table to table size.
If n is the total number of (key, value) pairs stored in the table and c is capacity of
the table (i.e., array),

Load factor

Load Factor (λ)

� =
n

c
<latexit sha1_base64="4bT51nyDz+JEALkidQLO5gdq0+M=">AAACNHicbVDLSgMxFM3UVx1fVZduglVwIWWmILoRSl0ouKliW6FTSiaTsaGZzJBklBLmo9z4IW5EcKGIW7/BtB1EqwcuHM659+bm+AmjUjnOs1WYmZ2bXygu2kvLK6trpfWNloxTgUkTxywW1z6ShFFOmooqRq4TQVDkM9L2Bycjv31LhKQxv1LDhHQjdMNpSDFSRuqVzr2AhGZ2vEnfZfrytJ7p6oGzn1dm7+zY2vv2PWaWByiDx9ALQoGw5pnG2aitVyo7FWcM+Je4OSmDHI1e6dELYpxGhCvMkJQd10lUVyOhKGYks71UkgThAbohHUM5iojs6vEpGdw1SgDDWJjiCo7VnxMaRVIOI990Rkj15bQ3Ev/zOqkKj7qa8iRVhOPJQ2HKoIrhKEEYUEGwYkNDEBbU3ApxH5kklMnZNiG401/+S1rVimv4RbVcq+dxFMEW2AZ7wAWHoAbOQAM0AQb34Am8gjfrwXqx3q2PSWvBymc2wS9Yn1/QYamz</latexit><latexit sha1_base64="4bT51nyDz+JEALkidQLO5gdq0+M=">AAACNHicbVDLSgMxFM3UVx1fVZduglVwIWWmILoRSl0ouKliW6FTSiaTsaGZzJBklBLmo9z4IW5EcKGIW7/BtB1EqwcuHM659+bm+AmjUjnOs1WYmZ2bXygu2kvLK6trpfWNloxTgUkTxywW1z6ShFFOmooqRq4TQVDkM9L2Bycjv31LhKQxv1LDhHQjdMNpSDFSRuqVzr2AhGZ2vEnfZfrytJ7p6oGzn1dm7+zY2vv2PWaWByiDx9ALQoGw5pnG2aitVyo7FWcM+Je4OSmDHI1e6dELYpxGhCvMkJQd10lUVyOhKGYks71UkgThAbohHUM5iojs6vEpGdw1SgDDWJjiCo7VnxMaRVIOI990Rkj15bQ3Ev/zOqkKj7qa8iRVhOPJQ2HKoIrhKEEYUEGwYkNDEBbU3ApxH5kklMnZNiG401/+S1rVimv4RbVcq+dxFMEW2AZ7wAWHoAbOQAM0AQb34Am8gjfrwXqx3q2PSWvBymc2wS9Yn1/QYamz</latexit><latexit sha1_base64="4bT51nyDz+JEALkidQLO5gdq0+M=">AAACNHicbVDLSgMxFM3UVx1fVZduglVwIWWmILoRSl0ouKliW6FTSiaTsaGZzJBklBLmo9z4IW5EcKGIW7/BtB1EqwcuHM659+bm+AmjUjnOs1WYmZ2bXygu2kvLK6trpfWNloxTgUkTxywW1z6ShFFOmooqRq4TQVDkM9L2Bycjv31LhKQxv1LDhHQjdMNpSDFSRuqVzr2AhGZ2vEnfZfrytJ7p6oGzn1dm7+zY2vv2PWaWByiDx9ALQoGw5pnG2aitVyo7FWcM+Je4OSmDHI1e6dELYpxGhCvMkJQd10lUVyOhKGYks71UkgThAbohHUM5iojs6vEpGdw1SgDDWJjiCo7VnxMaRVIOI990Rkj15bQ3Ev/zOqkKj7qa8iRVhOPJQ2HKoIrhKEEYUEGwYkNDEBbU3ApxH5kklMnZNiG401/+S1rVimv4RbVcq+dxFMEW2AZ7wAWHoAbOQAM0AQb34Am8gjfrwXqx3q2PSWvBymc2wS9Yn1/QYamz</latexit><latexit sha1_base64="4bT51nyDz+JEALkidQLO5gdq0+M=">AAACNHicbVDLSgMxFM3UVx1fVZduglVwIWWmILoRSl0ouKliW6FTSiaTsaGZzJBklBLmo9z4IW5EcKGIW7/BtB1EqwcuHM659+bm+AmjUjnOs1WYmZ2bXygu2kvLK6trpfWNloxTgUkTxywW1z6ShFFOmooqRq4TQVDkM9L2Bycjv31LhKQxv1LDhHQjdMNpSDFSRuqVzr2AhGZ2vEnfZfrytJ7p6oGzn1dm7+zY2vv2PWaWByiDx9ALQoGw5pnG2aitVyo7FWcM+Je4OSmDHI1e6dELYpxGhCvMkJQd10lUVyOhKGYks71UkgThAbohHUM5iojs6vEpGdw1SgDDWJjiCo7VnxMaRVIOI990Rkj15bQ3Ev/zOqkKj7qa8iRVhOPJQ2HKoIrhKEEYUEGwYkNDEBbU3ApxH5kklMnZNiG401/+S1rVimv4RbVcq+dxFMEW2AZ7wAWHoAbOQAM0AQb34Am8gjfrwXqx3q2PSWvBymc2wS9Yn1/QYamz</latexit>

Worksheet Q1-Q3

CSE 373 AU 18 – SHRI MARE 25

Worksheet Q3

CSE 373 AU 18 – SHRI MARE 26

- Open addressing is a collision resolution strategy where collisions are resolved by storing
the colliding key in a different location when the natural choice is full.

Open Addressing

CSE 373 AU 18 – SHRI MARE 27

- Open addressing is a collision resolution strategy where collisions are resolved by storing
the colliding key in a different location when the natural choice is full.

Open Addressing

CSE 373 AU 18 – SHRI MARE 28

put(21, value21) 22
13

7

1
2
3
4
5
6
7
8

1

9

0
indices

Note: For simplicity, the table shows only keys, but
in each slot both, key and value, are stored.

- Open addressing is a collision resolution strategy where collisions are resolved by storing
the colliding key in a different location when the natural choice is full.

Open Addressing: Linear probing

CSE 373 AU 18 – SHRI MARE 29

22
13

7

1
2
3
4
5
6
7
8

1

9

0
indices Linear probing

Index = hash(k) + 0 (if occupied, try next i)
= hash(k) + 1 (if occupied, try next i)
= hash(k) + 2 (if occupied, try next i)
= ..
= ..
= ..

put(21, value21)

Note: For simplicity, the table shows only keys, but
in each slot both, key and value, are stored.

- Open addressing is a collision resolution strategy where collisions are resolved by storing
the colliding key in a different location when the natural choice is full.

Open Addressing: Quadratic probing

CSE 373 AU 18 – SHRI MARE 30

Quadratic probing

Index = hash(k) + 0 (if occupied, try next i^2)
= hash(k) + 1^2 (if occupied, try next i^2)
= hash(k) + 2^2 (if occupied, try next i^2)
= hash(k) + 3^2 (if occupied, try next i^2)
= ..
= ..

22
13

7

1
2
3
4
5
6
7
8

1

9

0
indices

put(21, value21)

Note: For simplicity, the table shows only keys, but
in each slot both, key and value, are stored.

Worksheet Q4

31

Worksheet Q5

CSE 373 AU 18 – SHRI MARE 32

