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- HW3 due Friday Noon
- Office hours for next week have changed. Please see the calendar for the correct info
- We made a mistake in a comment in HW4. We’ll push a commit to your repo to correct 
that. (So expect one more git commit from us.)

Announcements
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- Review Hashing
- Separate Chaining
- Open addressing with linear probing
- Open addressing with quadratic probing

Today
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How can we implement a dictionary such that dictionary operations are efficient? 

Idea 1: Create a giant array and use keys as indices. 
(This approach is called direct-access table or direct-access map)

Two main problems:
1. Can only work with integer keys?
2. Too much wasted space

Idea 2: What if we
(a) convert any type of key into a non-negative integer key
(b) map the entire key space into a small set of keys (so we can use just the right size array)

Problem (Motivation for hashing)
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Idea: Use functions that convert a non-integer key into a non-negative integer key

Solution to problem 1: Can only work with integer keys? 
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Idea: Use functions that convert a non-integer key into a non-negative integer key

- Everything is stored as bits in memory and can be represented as an integer.
- But the representation can be much simpler (nothing to do with memory).

- For example ( just for illustration; this is not how strings, images, and videos are hashed in practice):
- Strings can be represented with number of characters in the string, ascii value of the first char, last char
- Image can be represented with resolution, size of image, value of the 5th pixel in the image, 100th pixel
- Similarly, video can be represented resolution, size, frame rate, size of the 10th frame

Solution to problem 1: Can only work with integer keys? 
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Idea: Use functions that convert a non-integer key into a non-negative integer key
- Everything is stored as bits in memory and can be represented as an integer.
- But the representation can be much simpler (nothing to do with memory).

- For example ( just for illustration; this is not how strings, images, and videos are hashed in practice):
- Strings can be represented with number of characters in the string, ascii value of the first char, last char
- Image can be represented with resolution, size of image, value of the 5th pixel in the image, 100th pixel
- Similarly, video can be represented resolution, size, frame rate, size of the 10th frame

Question: What are some good strategies to pick a hash function?  (This is important)
1. Quick: Computing hash should be quick (constant time).
2. Deterministic: Hash value of a key should be the same hash table.
3. Random: A good hash function should distribute the keys uniformly into the slots in the table.

Solution to problem 1: Can only work with integer keys? 
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Idea: Map the entire key space into a small set of keys (so we can use just the right sized array)

Solution to problem 2: Too much wasted space
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Idea: Map the entire key space into a small set of keys (so we can use just the right sized array)

Solution to problem 2: Too much wasted space
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Review: The “modulus” (mod) operation

Examples:
1  % 10 = 1

11  % 10 = 1
10  % 10 = 0

5746 % 10 = 6
71 %  7 = 1

10

The modulus (or mod) operation gives the remainder of a division of one number 
by another.  Written as   x	mod	n			or x		%		n.

The “modulus” (mod) operation

For more review/practice, check out https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/what-is-modular-arithmetic

https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/what-is-modular-arithmetic


Review: The “modulus” (mod) operation

Examples:
1  % 10 = 1

11  % 10 = 1
10  % 10 = 0

5746 % 10 = 6
71 %  7 = 1

11

The modulus (or mod) operation gives the remainder of a division of one number 
by another.  Written as   x	mod	n			or x		%		n.

The “modulus” (mod) operation

For more review/practice, check out https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/what-is-modular-arithmetic

Common applications of the mod operation:
- finding last digit ( % 10)
- whether a number is odd/even (% 2)
- wrap around behavior (% wrap limit)

The application we are interested in is the wrap 
around behavior. 
It lets us map any large integer into an index in 
our array of size m (using % m)

https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/what-is-modular-arithmetic


Implementing a simple hash table (assume no collisions)

public V get(int key) {

return this.array[key].value;
}

public void put(int key, V value) {

this.array[key] = value;
}

public void remove(int key) {

this.array[key] = null;
}
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Implementing a simple hash table (assume no collisions)

public V get(int key) {
key = getHash(key)

return this.array[key].value;
}

public void put(int key, V value) {
key = getHash(key)

this.array[key] = value;
}

public void remove(int key) {
key = getHash(key)

this.array[key] = null;
}

13

public int getHash(int a) {

return a % this.array.length;

}
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Our simple hash table: insert (1000)

CSE 373 AU 18 – SHRI MARE 14

indices

1

202

5000

900007

1
2

0

7

202

900007

5000
1

2
3
4
5
6
7
8

1

9

0



Our simple hash table: insert (1000)
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Hash collision
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It’s a case when two different keys have the same hash value. 
Mathematically,  h(k1) = h(k2) when k1 ≠ k2

What is a hash collision?



Why is this a problem?
- We put keys in slots determined by the hash function. That is, we put k1 at index h(k1),
- A collision means the natural choice slot is taken
- We cannot replace k1 with k2 (because the keys are different)
- So the problem is  where do we put k2?

Hash collision
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It’s a case when two different keys have the same hash value. 
Mathematically,  h(k1) = h(k2) when k1 ≠ k2

What is a hash collision?



Strategies to handle hash collision
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There are multiple strategies. In this class, we’ll cover the following three:

1. Separate chaining
2. Open addressing
- Linear probing
- Quadratic probing

3. Double hashing

Strategies to handle hash collision
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- Separate chaining is a collision resolution strategy where collisions are resolved by storing 
all colliding keys in the same slot (using linked list or some other data structure)

- Each slot stores a pointer to another data structure (usually a linked list or an AVL tree)

Separate chaining
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Note: For simplicity, the table shows only keys, but 
in each slot/node both, key and value, are stored.



- Separate chaining is a collision resolution strategy where collisions are resolved by storing 
all colliding keys in the same slot (using linked list or some other data structure)

- Each slot stores a pointer to another data structure (usually a linked list or an AVL tree)

Separate chaining
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put(21, value21)

Note: For simplicity, the table shows only keys, but 
in each slot/node both, key and value, are stored.



What are the running times for: 
insert

Best:

Worst:

find
Best:

Worst:

delete 
Best: 
Worst:

Separate chaining: Running Times
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What are the running times for: 
insert

Best: !(1)
Worst: !(%) (if insertions are always at the end of the linked list)

find
Best:  !(1)
Worst: !(%)

delete 
Best: !(1)
Worst: !(%)

Separate chaining: Running Times
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Load Factor
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Ratio of number of entries in the table to table size.  
If n is the total number of (key, value) pairs stored in the table and c is capacity of 
the table (i.e., array),

Load factor

Load Factor (λ) 

� =
n

c
<latexit sha1_base64="4bT51nyDz+JEALkidQLO5gdq0+M=">AAACNHicbVDLSgMxFM3UVx1fVZduglVwIWWmILoRSl0ouKliW6FTSiaTsaGZzJBklBLmo9z4IW5EcKGIW7/BtB1EqwcuHM659+bm+AmjUjnOs1WYmZ2bXygu2kvLK6trpfWNloxTgUkTxywW1z6ShFFOmooqRq4TQVDkM9L2Bycjv31LhKQxv1LDhHQjdMNpSDFSRuqVzr2AhGZ2vEnfZfrytJ7p6oGzn1dm7+zY2vv2PWaWByiDx9ALQoGw5pnG2aitVyo7FWcM+Je4OSmDHI1e6dELYpxGhCvMkJQd10lUVyOhKGYks71UkgThAbohHUM5iojs6vEpGdw1SgDDWJjiCo7VnxMaRVIOI990Rkj15bQ3Ev/zOqkKj7qa8iRVhOPJQ2HKoIrhKEEYUEGwYkNDEBbU3ApxH5kklMnZNiG401/+S1rVimv4RbVcq+dxFMEW2AZ7wAWHoAbOQAM0AQb34Am8gjfrwXqx3q2PSWvBymc2wS9Yn1/QYamz</latexit><latexit sha1_base64="4bT51nyDz+JEALkidQLO5gdq0+M=">AAACNHicbVDLSgMxFM3UVx1fVZduglVwIWWmILoRSl0ouKliW6FTSiaTsaGZzJBklBLmo9z4IW5EcKGIW7/BtB1EqwcuHM659+bm+AmjUjnOs1WYmZ2bXygu2kvLK6trpfWNloxTgUkTxywW1z6ShFFOmooqRq4TQVDkM9L2Bycjv31LhKQxv1LDhHQjdMNpSDFSRuqVzr2AhGZ2vEnfZfrytJ7p6oGzn1dm7+zY2vv2PWaWByiDx9ALQoGw5pnG2aitVyo7FWcM+Je4OSmDHI1e6dELYpxGhCvMkJQd10lUVyOhKGYks71UkgThAbohHUM5iojs6vEpGdw1SgDDWJjiCo7VnxMaRVIOI990Rkj15bQ3Ev/zOqkKj7qa8iRVhOPJQ2HKoIrhKEEYUEGwYkNDEBbU3ApxH5kklMnZNiG401/+S1rVimv4RbVcq+dxFMEW2AZ7wAWHoAbOQAM0AQb34Am8gjfrwXqx3q2PSWvBymc2wS9Yn1/QYamz</latexit><latexit sha1_base64="4bT51nyDz+JEALkidQLO5gdq0+M=">AAACNHicbVDLSgMxFM3UVx1fVZduglVwIWWmILoRSl0ouKliW6FTSiaTsaGZzJBklBLmo9z4IW5EcKGIW7/BtB1EqwcuHM659+bm+AmjUjnOs1WYmZ2bXygu2kvLK6trpfWNloxTgUkTxywW1z6ShFFOmooqRq4TQVDkM9L2Bycjv31LhKQxv1LDhHQjdMNpSDFSRuqVzr2AhGZ2vEnfZfrytJ7p6oGzn1dm7+zY2vv2PWaWByiDx9ALQoGw5pnG2aitVyo7FWcM+Je4OSmDHI1e6dELYpxGhCvMkJQd10lUVyOhKGYks71UkgThAbohHUM5iojs6vEpGdw1SgDDWJjiCo7VnxMaRVIOI990Rkj15bQ3Ev/zOqkKj7qa8iRVhOPJQ2HKoIrhKEEYUEGwYkNDEBbU3ApxH5kklMnZNiG401/+S1rVimv4RbVcq+dxFMEW2AZ7wAWHoAbOQAM0AQb34Am8gjfrwXqx3q2PSWvBymc2wS9Yn1/QYamz</latexit><latexit sha1_base64="4bT51nyDz+JEALkidQLO5gdq0+M=">AAACNHicbVDLSgMxFM3UVx1fVZduglVwIWWmILoRSl0ouKliW6FTSiaTsaGZzJBklBLmo9z4IW5EcKGIW7/BtB1EqwcuHM659+bm+AmjUjnOs1WYmZ2bXygu2kvLK6trpfWNloxTgUkTxywW1z6ShFFOmooqRq4TQVDkM9L2Bycjv31LhKQxv1LDhHQjdMNpSDFSRuqVzr2AhGZ2vEnfZfrytJ7p6oGzn1dm7+zY2vv2PWaWByiDx9ALQoGw5pnG2aitVyo7FWcM+Je4OSmDHI1e6dELYpxGhCvMkJQd10lUVyOhKGYks71UkgThAbohHUM5iojs6vEpGdw1SgDDWJjiCo7VnxMaRVIOI990Rkj15bQ3Ev/zOqkKj7qa8iRVhOPJQ2HKoIrhKEEYUEGwYkNDEBbU3ApxH5kklMnZNiG401/+S1rVimv4RbVcq+dxFMEW2AZ7wAWHoAbOQAM0AQb34Am8gjfrwXqx3q2PSWvBymc2wS9Yn1/QYamz</latexit>



Worksheet Q1-Q3
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Worksheet Q3
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- Open addressing is a collision resolution strategy where collisions are resolved by storing 
the colliding key in a different location when the natural choice is full.

Open Addressing

CSE 373 AU 18 – SHRI MARE 27



- Open addressing is a collision resolution strategy where collisions are resolved by storing 
the colliding key in a different location when the natural choice is full.

Open Addressing
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in each slot both, key and value, are stored.



- Open addressing is a collision resolution strategy where collisions are resolved by storing 
the colliding key in a different location when the natural choice is full.

Open Addressing: Linear probing
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Index = hash(k) + 0    (if occupied, try next i)
= hash(k) + 1    (if occupied, try next i)
= hash(k) + 2    (if occupied, try next i)
= ..
= ..
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put(21, value21)

Note: For simplicity, the table shows only keys, but 
in each slot both, key and value, are stored.



- Open addressing is a collision resolution strategy where collisions are resolved by storing 
the colliding key in a different location when the natural choice is full.

Open Addressing: Quadratic probing
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Quadratic probing

Index = hash(k) + 0       (if occupied, try next i^2)
= hash(k) + 1^2    (if occupied, try next i^2)
= hash(k) + 2^2    (if occupied, try next i^2)
= hash(k) + 3^2    (if occupied, try next i^2)
= ..
= ..
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put(21, value21)

Note: For simplicity, the table shows only keys, but 
in each slot both, key and value, are stored.



Worksheet Q4
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Worksheet Q5
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