
Introduction
Bug Patterns

Evaluation
Conclusions

Finding Bugs is Easy

David Hovemeyer and William Pugh

October 27, 2004

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

The problem
Static analysis

Introduction

Bug Patterns

Evaluation

Conclusions

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

The problem
Static analysis

Bugs in software

Programmers are smart

We have good techniques (e.g., unit testing, pair
programming, code inspections) for finding bugs early

So, most bugs remaining in production code must be subtle,
and require sophisticated techniques to find

Right?

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

The problem
Static analysis

Apache Ant 1.6.2,
org.apache.tools.ant.taskdefs.optional.metamata.MAudit

if (out == null) {
try {

out.close();
} catch (IOException e) {
}

}

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

The problem
Static analysis

Eclipse 3.0.1, org.eclipse.update.internal.core.ConfiguredSite

if (in == null)
try {

in.close();
} catch (IOException e1) {
}

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

The problem
Static analysis

JBoss 4.0.0RC1, org.jboss.mq.xml.XElement

if (split[0].equals(null)) {
return this;

}

JBoss 4.0.0RC1, org.jboss.cache.TreeCache

int treeNodeSize=fqn.size();
if(fqn == null) return null;

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

The problem
Static analysis

J2SE version 1.5 build 63 (released version),
java.lang.annotation.AnnotationTypeMismatchException

public String foundType() {
return this.foundType();

}

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

The problem
Static analysis

Software contains bugs

Lots of obvious bugs find their way into production software

Testing and code inspections won’t find every bug

Very hard to get high test coverage for a large system
Limits to frequency, completeness of code inspections

Techniques to find more bugs automatically are valuable

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

The problem
Static analysis

Static analysis

Let the computer figure out where (some of) the bugs are

Much work has been done on static analysis to find bugs

Lint, PREfix, PREfast, FxCop, MC/Metal, ESC/Java, Cqual
Many other tools, papers, techniques

However, static bug checking not used nearly as widely as
testing, code inspections

We think it should be!

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

The problem
Static analysis

Static analysis challenges

Fundamental limits to static analysis

Nontrivial properties of programs are undecidable

Choice: what to do when confronted by a difficult analysis
problem

Be consistently conservative: could choose to

Never miss a real bug (but report some false positives)
Never report a false positive (but miss some real bugs)

Guess a “likely” behavior

Both false positives and false negatives are possible
But, may be able to get better accuracy overall

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

The problem
Static analysis

Bugs vs. style

It is important to distinguish bug checkers from style checkers

Style checkers warn about dubious or dangerous coding idioms:
however, instances of those idioms may not be particularly
likely to be a bug
Bug checkers warn about code idioms that are likely to be
acutal bugs

Style checkers useful for enforcing consistent coding standards

Help prevent certain kinds of bugs

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Overview
Implementation
Correctness bugs
Multithreaded correctness bugs
Malicious code vulnerabilities

Introduction

Bug Patterns

Evaluation

Conclusions

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Overview
Implementation
Correctness bugs
Multithreaded correctness bugs
Malicious code vulnerabilities

Bug-driven bug finding

When a bug is found, a good developer will:

Fix it
Add a dynamic check or test case to make sure the bug cannot
reoccur

Why not take this idea a step further?

Write a static bug checker to find occurences of similar bugs
elsewhere in the program, or in other programs

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Overview
Implementation
Correctness bugs
Multithreaded correctness bugs
Malicious code vulnerabilities

Bug patterns

Many bugs share common characteristics

These common characteristics form bug patterns

Can often be detected using simple analysis techniques

Consequences of imprecision:

May miss some real bugs
May report false warnings

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Overview
Implementation
Correctness bugs
Multithreaded correctness bugs
Malicious code vulnerabilities

Genesis of a bug pattern

Bug arose in intro programming course

class WebSpider {
/** Construct a new WebSpider */
public WebSpider(boolean isDFS, int limit) {

WebSpider spider = new WebSpider(isDFS, limit);
}

Bug is unconditional self-recursive invocation: infinite loop

Checked, 4 other students had similar bugs

Wrote detector to find unconditional self-recursion; ran it on
JDK1.5 rt.jar to ensure it wasn’t generating false positives

Found 3 real bugs!

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Overview
Implementation
Correctness bugs
Multithreaded correctness bugs
Malicious code vulnerabilities

Static analysis philosophy

Two approaches to devising a static analysis to find bugs:

1. Given an analysis technique, figure out what bugs it could find

2. Given a bug, figure out an analysis that could be used to find
occurrences of similar bugs

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Overview
Implementation
Correctness bugs
Multithreaded correctness bugs
Malicious code vulnerabilities

The FindBugs tool

We have implemented automatic detectors for about 50 bug
patterns in a tool called FindBugs

Open source
http://findbugs.sourceforge.net

Analyzes Java bytecode using Apache BCEL library

Bytecode is easy to analyze
Tool continues to work in the face of language changes (e.g.,
new Java 1.5 language features)

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Overview
Implementation
Correctness bugs
Multithreaded correctness bugs
Malicious code vulnerabilities

Implementing a bug pattern detector

Implementation steps:

1. Think of the simplest technique that would find occurrences of
the bug

2. Implement it
3. Apply it to real software

Hopefully find some real bugs
Will probably produce some false warnings

4. Add heuristics to reduce percentage of false warnings

Our experience: new detectors can usually be implemented
quickly (somewhere between a few minutes and a few days)

Often, detectors find more bugs than you would expect

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Overview
Implementation
Correctness bugs
Multithreaded correctness bugs
Malicious code vulnerabilities

Implementation techniques

We use various kinds of analysis in implementing detectors:

Examination of method names, signatures, class hierarchy
Linear scan of bytecode instructions using a state machine
Method control flow graphs, dataflow anlysis

No interprocedural flow analysis or sophisticated heap analysis

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Overview
Implementation
Correctness bugs
Multithreaded correctness bugs
Malicious code vulnerabilities

Categories

Categories of bug patterns
Correctness

Multithreaded correctness

Malicious code vulnerability
Efficiency and design

Will we describe a few of the patterns and show some
examples of bugs found

See paper, website for more bug patterns

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Overview
Implementation
Correctness bugs
Multithreaded correctness bugs
Malicious code vulnerabilities

Correctness bugs

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Overview
Implementation
Correctness bugs
Multithreaded correctness bugs
Malicious code vulnerabilities

Hashcode/Equals

Equal objects must have equal hash codes
Programmers sometimes override equals() but not hashCode()

Or, override hashCode() but not equals()

Objects violating the contract won’t work in hash tables,
maps, sets

Example (JDK 1.5 build 59):

javax.management.Attribute

Warnings: 55 in rt.jar 1.5-b59, 170 in eclipse-3.0

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Overview
Implementation
Correctness bugs
Multithreaded correctness bugs
Malicious code vulnerabilities

Covariant Equals

equals() method must have parameter of type Object

Programmers sometimes define with the type of the class

Doesn’t actually override Object.equals()
The right equals() won’t get used in Collections

Examples (JDK 1.5 build 59)

java.awt.geom.Area
sun.security.krb5.Realm

Warnings: 9 in rt.jar 1.5-b59, 3 in eclipse-3.0

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Overview
Implementation
Correctness bugs
Multithreaded correctness bugs
Malicious code vulnerabilities

Null Pointer Dereference

Often, these happen because of trivial mistakes (e.g., using &&
instead of ||, or vice versa)

Sometimes, code is modified incorrectly during maintenance

Bugs: 37 in rt.jar 1.5-b59, 55 in eclipse-3.0

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Overview
Implementation
Correctness bugs
Multithreaded correctness bugs
Malicious code vulnerabilities

Null pointer examples

Eclipse 3.0.1, org.eclipse.team.internal.ccvs.core.CVSSyncInfo

if (local != null || local.getType() == IResource.FILE) {

Eclipse 3.0.1, org.eclipse.debug.internal.ui.sourcelookup.
AddSourceContainerDialog

if(browser == null) {
super.okPressed();

}
ISourceContainer results =

browser.addSourceContainers(getShell(), fDirector);

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Overview
Implementation
Correctness bugs
Multithreaded correctness bugs
Malicious code vulnerabilities

Null pointer examples

JBoss 4.0.0RC1, javax.xml.soap.SOAPPart, getContentId()

if(header != null || header.length > 0)
id = header[0];

JBoss 4.0.0RC1, javax.xml.soap.SOAPPart,
getContentLocation()

if(header != null || header.length > 0)
location = header[0];

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Overview
Implementation
Correctness bugs
Multithreaded correctness bugs
Malicious code vulnerabilities

Return value ignored

Many API methods can only be used correctly if return value
is checked

E.g., methods that perform an operation on an immutable
object such as a String
Programmers might think operation actually modifies object

Bugs: 5 in rt.jar 1.5-b59, 7 in eclipse-3.0

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Overview
Implementation
Correctness bugs
Multithreaded correctness bugs
Malicious code vulnerabilities

Return value ignored examples

Eclipse 3.0.1,
org.eclipse.ui.externaltools.internal.model.BuilderUtils

String name= workingCopy.getName();
name.replace(’/’, ’.’);
if (name.charAt(0) == (’.’)) {

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Overview
Implementation
Correctness bugs
Multithreaded correctness bugs
Malicious code vulnerabilities

Return value ignored examples

Eclipse 3.0.1,
org.eclipse.update.internal.ui.security.UpdateManagerAuthenticator

String hostString = host;
if (hostString == null && address != null) {

address.getHostName(); Meant to assign to hostString?
}
if (hostString == null) {

hostString = ""; //$NON-NLS-1$
}

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Overview
Implementation
Correctness bugs
Multithreaded correctness bugs
Malicious code vulnerabilities

Multithreaded correctness bugs

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Overview
Implementation
Correctness bugs
Multithreaded correctness bugs
Malicious code vulnerabilities

Inconsistent synchronization

Detecting data races: NP hard in general case

Many complicated analyses have been developed to find data
races
What if we try looking for very obvious data races?

Common idiom for thread safe classes is to synchronize on the
receiver object (“this”)

Examine all field accesses and synchronized regions

Find fields where lock on “this” object is sometimes, but not
always, held
Unsynchronized accesses, if reachable by multiple threads,
constitute a potential data race

Bugs: 52 in rt.jar 1.5-b59, 39 in eclipse-3.0

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Overview
Implementation
Correctness bugs
Multithreaded correctness bugs
Malicious code vulnerabilities

Inconsistent synchronization example

GNU Classpath 0.08, java.util.Vector

public int lastIndexOf(Object elem)
{
return lastIndexOf(elem, elementCount - 1);

}

public synchronized int lastIndexOf(Object e, int index)
{
...

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Overview
Implementation
Correctness bugs
Multithreaded correctness bugs
Malicious code vulnerabilities

Unconditional wait

Before waiting on a monitor, the condition waited for should
be checked

Waiting unconditionally upon entering a synchronized block
usually a bug
If condition checked without lock held, could miss notification

Bugs: 3 in rt.jar 1.5-b59, 2 in eclipse-3.0

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Overview
Implementation
Correctness bugs
Multithreaded correctness bugs
Malicious code vulnerabilities

Unconditional wait example

JBoss 4.0.0RC1,
org.jboss.deployment.scanner.AbstractDeploymentScanner

// If we are not enabled, then wait
if (!enabled) { Condition checked without lock held!

try { Notification could occur here!
log.debug("Disabled, waiting for notification");
synchronized (lock) {

lock.wait(); Could wait forever
}

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Overview
Implementation
Correctness bugs
Multithreaded correctness bugs
Malicious code vulnerabilities

Malicious code vulnerabilities

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Overview
Implementation
Correctness bugs
Multithreaded correctness bugs
Malicious code vulnerabilities

Mutable static

Can static fields (or the objects they refer to) be modified by
untrusted code?

Public, non-final static fields
Public static fields pointing to an array

Warnings: 254 in rt.jar 1.5-b59, 967 in eclipse-3.0

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Overview
Implementation
Correctness bugs
Multithreaded correctness bugs
Malicious code vulnerabilities

Mutable static example

J2SE 1.5 build 63 (released version),
javax.swing.plaf.metal.MetalSliderUI

protected static Color thumbColor;
protected static Color highlightColor;
protected static Color darkShadowColor;
protected static int trackWidth;
protected static int tickLength;
protected static Icon horizThumbIcon;
protected static Icon vertThumbIcon;

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Overview
Implementation
Correctness bugs
Multithreaded correctness bugs
Malicious code vulnerabilities

Returning a reference to an internal array

Method returns a reference to an array which is still part of
the internal representation of the class

Caller can

see changes to the array
make their own changes to the array

Warnings: 407 in rt.jar 1.5-b59, 755 in eclipse-3.0

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Overview
Implementation
Correctness bugs
Multithreaded correctness bugs
Malicious code vulnerabilities

Who would do such a thing?

J2SE 1.4.1, java.util.jar.JarEntry

public class JarEntry extends ZipEntry {
Certificate[] certs;
public Certificate[] getCertificates() {
return certs;

}
}

This is the exact same design flaw as the JDK1.1 code signing
flaw

That flaw was easily exploitable

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Empirical evaluation
Bugs vs. style
Experience

Introduction

Bug Patterns

Evaluation

Conclusions

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Empirical evaluation
Bugs vs. style
Experience

Accuracy goal

Our goal is that at least 50% of high and medium priority
warnings should be real bugs

We manually classified warnings produced by tool for several
real applications and libraries

In general, we came close to achieving our goal

Some detectors more accurate than others
Detectors work better on some applications than others

Different development teams use different idioms

Lower accuracy is tolerable if detector produces a small
number of warnings, and real instances are especially serious

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Empirical evaluation
Bugs vs. style
Experience

Detectors that produce false positives

For high and medium priority warnings, selected detectors:

Application Warnings Serious

classpath-0.08 93 66%
rt.jar 1.5 build 59 349 68%
eclipse-3.0.0 420 65%
drjava-stable-20040326 13 77%
jboss-4.0.0RC1 118 47%
jedit-4.2pre15 22 50%

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Empirical evaluation
Bugs vs. style
Experience

Detectors that are generally accurate

These warnings may not be relevant for every application

Application Eq HE MS

classpath-0.08 2 14 39
rt.jar 1.5.0 build 59 9 55 259
eclipse-3.0 3 170 1,000
drjava-stable-20040326 9 45
jboss-4.0.0RC1 1 18 227
jedit-4.2pre15 6 53

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Empirical evaluation
Bugs vs. style
Experience

Bugs vs. style

Total warnings counts for FindBugs and PMD

Using recommended rules for PMD

Application KLOC FindBugs PMD

rt.jar 1.5.0 build 59 1,183 3,314 17,133
eclipse-3.0 2,237 4,227 25,227

Style checkers tend to produce a large number of warnings

They are most useful to enforce consistent standards

Bug checkers can be used productively on any software

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Empirical evaluation
Bugs vs. style
Experience

Why do bugs occur?

Everybody makes dumb mistakes

Everybody

Java (and similar languages) have very large standard libraries

Many possibilities for confusion and misuse

Many possibilities for latent bugs (e.g., hashcode/equals)

Programmers play fast and loose with threads

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Conclusions
Future work
Questions?

Introduction

Bug Patterns

Evaluation

Conclusions

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Conclusions
Future work
Questions?

Conclusions

All software contains bugs

Including your software
Some of them are blatant, obvious, and undiscovered
Very simple techniques suffice to find them

Imprecise analysis can be very accurate

Writing bug detectors is surprisingly easy

You should try it!
FindBugs is open source
We welcome contributions

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Conclusions
Future work
Questions?

Future work

Find, implement detectors for new bug patterns

Better integration into continuous development

False warning suppression
Automatic ranking of new warnings based on previously
classified warnings

Bug patterns for beginning programmers

User-specified patterns

Learn new patterns from examples?

David Hovemeyer and William Pugh Finding Bugs is Easy

Introduction
Bug Patterns

Evaluation
Conclusions

Conclusions
Future work
Questions?

Questions?

David Hovemeyer and William Pugh Finding Bugs is Easy

	Introduction
	The problem
	Static analysis

	Bug Patterns
	Overview
	Implementation
	Correctness bugs
	Multithreaded correctness bugs
	Malicious code vulnerabilities

	Evaluation
	Empirical evaluation
	Bugs vs. style
	Experience

	Conclusions
	Conclusions
	Future work
	Questions?

