ADVANCED REVERSE
ENGINEERING OF SOFTWARE
VERSION 1.2

The most practical and comprehensive training course on reverse engineering

Y -reomcon

ing security professi

elLearnSecurity has been chosen by students in over 140 countries in the world
and by leading organizations such as:

>
@ am Microsoft (intel)' I::IIISI élc;. _\:-_QAT&T \ve{mn e pw-cl- gemalto™

INTRODUCTION

COURSE DESCRIPTION

This fundamental self-study course teaches you the theoretical and practical
knowledge required to perform advanced reverse engineering of third-party
software and malware on the assembly language level.

Through a series of lessons, and several challenges, you will be taught all the
necessary skills to succeed as a professional, and not just acquire a superficial
understanding of how to use reversing tools.

This training is based on Windows NT architecture (XP, Vista, 7, 8), since malware &
vulnerability researchers as well as software pirates still typically target these
operating systems.

During your advanced reverse engineering training, you will learn several methods
used to identify, isolate, and finally, analyze portions of code which are of high
interest. You will also learn about the most common Windows APIs utilized for file,
memory and registry manipulation by either software protections (such as packers)
or malware.

Additionally, the training focuses on several packers in order to give the student all
the essential knowledge and understanding of manual unpacking software. This is
one of the most important parts of advanced reverse engineering.

On top of all these exciting topics, you will also get insights into the most common
anti-reversing tricks, including different code obfuscation methods. Not only will you
analyze their mechanisms, but also learn how these can be bypassed in order to
successfully perform the reverse engineering process.

WHO SHOULD TAKE THIS COURSE?

This advanced reverse engineering training course is highly practical, meaning you
will learn things by yourself and not just listen to some instructors and watch videos.
If you like the “learning-by-doing” approach, then this is for you. Thisis NOT a “learn-
repeat-forget”-type of training. The course’s guidance ensures that you will get all
the necessary knowledge along the way.

The Advanced Reverse Engineering of Software training course provides the
foundation for current or future malware researchers. If you are involved software

Course Home Page: www.elearnsecurity.com/ares

INTRODUCTION

development, you will benefit from learning how pirates attempt to bypass your
protection. In turn, you will be able to create more sophisticated and smarter ways to
keep pirates away, as efficiently as possible.

This course definitely benefits you if you are a:
e penetration tester

security analyst

antivirus researcher

software developer

software tester

malware researcher

government IT staff

computer forensics expert

IT security expert

mobile application developer
game developer

incident response team member
vulnerability researcher

web application security expert

Since reverse engineering is based on the complete understanding of computing
architecture, this course serves as a great foundation for everyone working in IT
positions. With this foundation, you will understand even the most complex IT topics
easier.

WHO SHOULD NOT TAKE THIS COURSE?

If you are looking to quickly memorize some theory which you can dump out on paper
during an exam to get another certificate, this course is NOT for you. If you are simply
looking for user-manuals of reverse engineering tools in course format, then you
won'’t be happy with this highly interactive training course either.

HOW AM I GOING TO LEARN?

The fun way of course!!!

Don’t worry, eLearnSecurity courses are very interactive and addictive, and presents
content in such a way that it appeals to all learning styles. During this training, you
will have to deal with several guided reversing challenges, that will provide you with
relevant and hands-on practical application experience. Don’t expect the outdated
way of learning by reading pages and pages of theoretical methodologies.

Course Home Page: www.elearnsecurity.com/ares

INTRODUCTION

CAN I TRACK MY LEARNING PROGRESS?

...or will l only find out during the exam if | learned something?

The answer to these questions is very simple. Your achievements will tell. Each
practical chapter of the course has some cool reversing challenges associated with it.
We will solve these together, while we explain to you all the necessary concepts. You
are thenfree to practice the labs as long as you want. If you can solve a challenge, that
demonstrates that you learned and properly understood the concepts.

IS THERE A FINAL EXAMINATION?

Yes. The final examination consists of two parts. The first part is a multiple-choice
quiz test. Once you have passed this, you will proceed with the hands-on
examination. During this second part of your exam, you will have to solve a complex
Reverse Engineering Challenge.

WILL I GET A CERTIFICATE?

Once you passed the complete final examination, you are an
“eLearnSecurity Certified Reverse Engineer” and will hold the
eCRE certification.

You can print your shiny new certificate directly or have it
shipped to you internationally.

Course Home Page: www.elearnsecurity.com/ares

INTRODUCTION

ORGANIZATION OF CONTENTS

The student is provided with a suggested learning path to ensure the maximum
success rate and the minimum effort.

THEORY PART

Module 1: The Necessary Theory Part 1/3
Module 2: The Necessary Theory Part 2/3
Module 3: The Necessary Theory Part 3/3
Module 4: VA/RVA/OFFSET & PE File Format

TECHNICAL PART

All the following chapters include practical challenges, which we discuss in the
written part and/or during the video demos:

Module 5: String References & Basic Patching
Module 6: Exploring the Stack

Module 7: Algorithm Reversing

Module 8: Windows Registry Manipulation
Module 9: File Manipulation

Module 10: Anti-Reversing Part |

Module 11: Anti-Reversing Part Il

Module 12: Anti-Reversing Part Il

Module 13: Code Obfuscation

Module 14: Analyzing Packers & Manual Unpacking
Module 15: Debugging Multi-Thread Applications

Course Home Page: www.elearnsecurity.com/ares

THEORY PART

MODULE 1: THE NECESSARY THEORY PART 1 0of 3

The first three modules aim to cover all the necessary theory as well as the concepts
in which the practical part of this course is based.

We will start with a short description of what Reverse Engineering is and the reasons
why someone might need it, and then we’ll proceed with more technical concepts.

During the first three chapters, we will discuss the basics behind the Intel IA-32 CPU
architecture (x86), the stack, the heaps, as well as exceptions, Windows APIs with
some Windows Internals, and the most common types of reversing tools used these
days.

1. The Necessary Theory Part 1/3

1.1. Introduction

1.2. What is Reverse Engineering

1.3. Do we need Reverse Engineering?

1.4. The Basics behind the Intel IA-32 CPU architecture
1.4.1. General Purpose Registers
1.4.2. EFLAGS Register
1.4.3. Segment Registers
1.4.4. Instruction Pointer Register
1.4.5. Debug Registers
1.4.6. Machine Specific Registers
Conclusion
References

MODULE 2: THE NECESSARY THEORY PART 2 of 3

The second module is also dedicated to the theoretical knowledge necessary for this
course.

What you always need to keep in mind during this course, is that ‘theoretical’ doesn’t
actually mean that you might need it...or not.

In fact, the theory discussed during these first three chapters covers all the
fundamental knowledge and the concepts that you will need, not just for this course
and its technical assignments, but for the rest of your time as a reverser.

Course Home Page: www.elearnsecurity.com/ares

THEORY PART

2. The Necessary Theory Part 2/3
2.1. Introduction
2.2. Functions
2.3. Process vs. Thread
2.4. Function Calling
2.5. Stack Frames
2.5.1. Setting up the stack frame
PUSH EBP
MOVE EBP, ESP
SUB ESP, 10h
2.6. Calling Conventions
2.7. Reading EIP - A simple trick -
Conclusion
References

MODULE 3: THE NECESSARY THEORY PART 3/3

The third theoretical module of this will briefly touch on the concept of heaps, as well
as discuss handles, exceptions, some basic Windows Ring3 Internal structures, and
review Windows APls.

Finally, we’ll go through the most common types of reversing tools used today for
software reverse engineering.

3. The Necessary Theory Part 3/3
3.1. Introduction
3.2. Heaps
3.3. Handles
3.4. Exceptions
3.4.1. Hardware Exceptions
3.4.2. Software Exceptions
3.5. Basic Windows Ring3 Internal Structures
3.6. Windows APIs
3.7. Types of Reversing Tools
3.7.1. Hex Editor
3.7.2. Decompiler
3.7.3. Disassembler
3.7.4. Debugger
3.7.5. System Monitoring Tools
3.7.6. Windows APl Monitoring Tools
Conclusion
References

Course Home Page: www.elearnsecurity.com/ares

THEORY PART

MODULE 4: VA/RVA/OFFSET & PE FILE FORMAT

In this chapter, we will discuss virtual addresses, relative virtual addresses, offsets,
as well as some basic information regarding the Portable Executable File Format
which describes the basic structure of all Windows executable files.

4. VA/RVA/OFFSET & PE File Format
4.1. Introduction
4.2. VA/RVA/OFFSET
4.2.1. Why do we need all this information?
4.3. Overview of the Portable Executable File Format (PE)
4.3.1. MS-DOS Header
4.3.2. IMAGE_NT_HEADERS structure (PE Header)
IMAGE_FILE_HEADER structure
IMAGE_OPTIONAL_HEADER
4.3.3. IMAGE_DATA_DIRECTORY structure
4.3.4. THE SECTION TABLE
VirtualSize
VirtualAddress
SizeOfRawData
PointerToRawData
Characteristics
text
.data
.rdata or .idata
.rsrc
4.4. Memory and File Alignment
Conclusion

Course Home Page: www.elearnsecurity.com/ares

TECHNICAL PART

MODULE 5: STRING REFERENCES & BASIC PATCHING

This chapter is dedicated to ‘String References’ as well as Basic Memory and File
Patching.

We demonstrate the use of data strings in order to locate the algorithm we are
interested in, and then we reverse its logic.

Finally, we explain how we can manually calculate the offset of a byte inside the
physical file by knowing its virtual address in memory.

Challenge and video included in this module

5. String References & Basic Patching

5.1. Introduction

5.2. String References

5.3. A few words before starting

5.4. String References & Basic Patching
5.4.1. Run the target executable and observe its functionalities.
5.4.2. Load the executable to Olly Debugger
5.4.3. Search for string references
5.4.4. Reversing the logic
5.4.5. Basic Memory Patching
5.4.6. Executable Patching through Olly
5.4.7. VA -> OFFSET manual calculation
5.4.8. Manual Byte Patching
Conclusion

MODULE 6: EXPLORING THE STACK

This chapter focuses on exploring the data that we can retrieve from the stack in
order to trace back an algorithm. This is a very important technique when dealing
with on-the-fly encryption and decryption of data.

Challenge and video included in this module
6. Exploring the Stack

6.1. Introduction
6.2. A few words before starting

Course Home Page: www.elearnsecurity.com/ares

TECHNICAL PART

6.3. Exploring the Stack
6.3.1. Run and Observe
6.3.2. Load to Olly and search for strings
6.3.3. How is this possible?!?!
6.3.4. Exploring the stack
6.3.5. Evaluating the MessageBox APl parameters
6.3.6. Reversing the logic
6.3.7. Patching the code
Conclusion

MODULE 7: ALGORITHM REVERSING

During this module, we dig deeper into Reverse Engineering by analyzing, in detail,
all the important algorithms of the executable which include the data
encryption/decryption algorithm, as well as the input data validation algorithm.

Challenge and video included in this module

7. Algorithm Reversing
7.1. Introduction
7.2. A few words before starting
7.3. Algorithm Reversing
7.3.1. Important algorithms
String Decryption/Encryption
Call Stack Window
Calls to decrypt/encrypt string function
Setting SW BPs
Pushing parameters to decrypt/encrypt string function
Parameter value
Code Validation
Custom Exception Handler
Conclusion

MODULE 8: WINDOWS REGISTRY MANIPULATION

This module is dedicated to Windows Registry. We start with an overview of this
important Windows component and then we proceed with the detailed analysis of an
executable that attempts to read data from the registry and validate it according to a
custom algorithm which we finally Reverse Engineer.

Course Home Page: www.elearnsecurity.com/ares

TECHNICAL PART

Furthermore, during this chapter, we also make use of Hardware Breakpoints, and
we demonstrate their importance.

Challenge and video included in this module

8. Windows registry Manipulation

8.1. Introduction

8.2. Windows Registry

8.3. A few words before starting

8.4. Windows Registry Manipulation
8.4.1. Retrieving data from Windows Registry
8.4.2. Using Hardware Breakpoints
8.4.3. Algorithm analysis
8.4.4. Reversing the logic
Conclusion
References

MODULE 9: FILE MANIPULATION

During this module, we reverse engineer an executable that attempts to locate a
specific file in the system and read data from it.

Once again, we analyze, in detail, the custom algorithm used to validate that data in
order to extend our skills in reverse engineering custom algorithms.

Challenge and video included in this module

9. File Manipulation
9.1. Introduction
9.2. A few words before starting
9.3. File Manipulation
9.3.1. Getting aHandle
9.3.2. What do we know by now?
9.3.3. Reading the file contents
9.3.4. Algorithm Analysis
Read Buffer Contents
Conclusion

Course Home Page: www.elearnsecurity.com/ares

TECHNICAL PART

MODULE 10: ANTI-REVERSING TRICKS PART |

This is the first module dedicated to anti-reversing tricks which includes some basic
direct and indirect ways to detect a Ring3 debugger.

Challenge and video included in this module

10. Anti-Reversing Tricks Part |
10.1. Introduction
10.2. Categories of Anti-Reversing tricks
10.3. A few words before starting
10.4. Anti-Reversing Tricks Part |
10.5. PART |
10.5.1. Direct Debugger Detection
PEB.BeginDebugged
PEB.NtGlobalFlag
CheckRemoteDebuggerPresent
10.5.2. Indirect Debugger Detection
OutputDebugString
OpenProcess
10.5.3. Window Debugger Detection
Not-a-conclusion...

MODULE 11: ANTI-REVERSING TRICKS PART Il

In this module, we continue talking about anti-reversing tricks regarding debuggers
and reversing tools detection methods.

Challenge and video included in this module

11. Anti-Reversing Tricks Part I
11.1. Introduction
11.2. Anti-Reversing Tricks Part I
11.3. PART I
11.3.1. Process Debugger Detection
CreateToolhelp32Snapshot
Process32First
Process32Next
11.3.2. Parent Process Detection

Course Home Page: www.elearnsecurity.com/ares

TECHNICAL PART

11.3.3. Module Debugger Detection
CreateToolhelp32Snapshot
Process32First
Process32Next

11.3.4. Code Execution Time Detection
Read Time-Stamp Counter
GetTickCount

Not-a-conclusion...

MODULE 12: ANTI-REVERSING TRICKS PART 1l

This module also focuses on anti-reversing tricks. In this case, we discuss differences
between SW and HW breakpoints and how these can be detected. We also talk about
more advanced tricks that involve the use of exceptions, and finally, we talk about
some well-known methods for detecting a few popular VM environments.

Challenge and video included in this module

12. Anti-Reversing Tricks Part 1l
12.1. Introduction
12.2. Anti-Reversing Tricks Part 1l
12.3. PART I
12.3.1. Software vs. Hardware Breakpoints
12.3.2. Software Breakpoint Detection
12.3.3. Hardware Breakpoint Detection
Most common way
A more obscure way
12.3.4. Ring0 Debuggers & System Monitoring Tools Detection
12.3.5. Structured Exception Handling (SEH)
12.3.6. Unhandled Exception Filter
12.3.7. VM Detection
VMware Detection
VirtualPC Detection
VirtualBox Detection
Conclusion

Course Home Page: www.elearnsecurity.com/ares

TECHNICAL PART

MODULE 13: CODE OBFUSCATION

In this module, we discuss different types of native code obfuscation methods. We
explain how these are implemented, what obstacles are created, and how we can
analyze and cleanup obfuscated code.

Challenge and video included in this module

13. Code Obfuscation
13.1. Introduction
13.2. Logic flow obfuscation
13.3. ‘NOP’ Obfuscation
13.4. Anti-Disassembler Code Obfuscation
13.5. Trampolines
13.6. Instruction permutations
13.6.1. xor reg, reg
13.6.2. addreg, regl
13.6.3. movreg, regl
13.6.4. jump address
Conclusion

MODULE 14: ANALYZING PACKERS & MANUAL
UNPACKING

This chapter focuses on executables packers, and more specifically, on different
generic methods that we can use in order to successfully find the Original Entry Point
of applications packed with common packers.

We give practical examples, and we unpack them together for fun and knowledge.
Challenge and video included in this module

14. Analyzing Packers & Manual Unpacking
14.1. Introduction
14.2. A few words before starting
14.3. Analyzing Packers & Manual Unpacking
14.3.1. Well-known EntryPoints
Microsoft Visual C++ 6.0
Microsoft Visual C++ 7.x

Course Home Page: www.elearnsecurity.com/ares

TECHNICAL PART

Microsoft Visual C++ 8.0-9.0
Borland C++ Builder
Dev C++4.9.9.2
Borland Delphi 6.0-7.0
Microsoft Visual Basic 5.0-6.0
MASM32/TASM32
14.3.2. Methods to reach the OEP
14.3.3. Packers & tools used
Conclusion

MODULE 15: DEBUGGING MULTI-THREAD
APPLICATIONS

In this chapter, we discuss the debugging and the analysis of multi-thread
applications, or in other words, of applications that can execute various blocks of
code via different threads.

Reverse engineering multi-thread applications can sometimes be quite frustrating,
especially for beginners.

Challenge and video included in this module

15. Debugging Multi-Thread Applications
15.1. Introduction
15.2. Multi-Threading in practice
15.3. Creating a new Thread
15.4. Threads Synchronization
15.5. Threads Manipulation
15.6. Debugging Multi-Thread Applications
Conclusion

Course Home Page: www.elearnsecurity.com/ares

s : ; é;eCU r|ty skllls for IT professmnals and corporatlons of all
sizes. Caendra Inc i ﬂe-\s}hcon VaIIey based company behlnd the eLearnSecurlty

"brand

eLearnSecurity has proven to be a leading innovator in the field of practical security
training, with best of breed virtualization technology, in-house projects such as
Coliseum Web Application Security Framework and Hera Network Security Lab,
which has changed the way students learn and practice new skills.

Contact details:

www.elearnsecurity.com
contactus@elearnsecurity.com

Via Matteucci 36/38
Pisa, Italy
2040 Martin Ave.
9 santaClara,CA, USA

Apricot Tower, Dubai Silicon Oasis
Dubai, UAE

http://www.elearnsecurity.com/
mailto:contactus@elearnsecurity.com

