PVEESprint
PARABOLA conics sections

pulkit IIT ROORKEE

\#FATHERPRENEUR \#TRAVELLER \#GAMER

SUBSGRIBE

Vedantu STUDENTS BAG TOP RANKS IN IIT JEE

Best Results Amongst All Online Classes

JEEADVANCED RESULIS 2020

CELEBRATING OUR SUPER SCORERS

JEEADVANCED RESULIS 2020

CELEBRATING OUR SUPER SCORERS

JEE ADVANCED RESULTS 2020

CELEBRATING OUR SUPER SCORERS

A circle with its centre at the focus of the parabola $\mathbf{y}^{\mathbf{2}}=\mathbf{8 x}$ and touching its directrix intersects the parabola at points \mathbf{A}, \mathbf{B}. Then length $A B$ is equal to?
(Numerical type)

Parabola

Standard parabolas having vertex at origin

A circle with its centre at the focus of the parabola $\mathbf{y}^{\mathbf{2}}=\mathbf{8 x}$ and touching its directrix intersects the parabola at points \mathbf{A}, \mathbf{B}. Then length $A B$ is equal to

(Numerical type)

A circle with its centre at the focus of the parabola $y^{2}=4 a x$ and touching its directrix intersects the parabola at points A, B. Then length $A B$ is equal to Answer: 8

Alternate Solution:

Centre of circle ($\mathrm{a}, 0$) and radius 2 a Equation of circle $(x-a)^{2}+y^{2}=4 a^{2}$

$$
\begin{aligned}
& x^{2}+y^{2}-2 a x-3 a^{2}=0 \text { and } y^{2}=4 a x \\
& x^{2}+2 a x-3 a^{2}=0 \\
& x=-3 a, a \text { and } y= \pm 2 a
\end{aligned}
$$

$$
\therefore \text { Length of } A B=4 a=8
$$

pulkit IIT ROORKEE

\#FATHERPRENEUR \#TRAVELLER \#GAMER

Parabola

UNIT-WISE WEIGHTAGE - COORDINATE GEOMETRY

	CHAPTERS	2018	\%	2017	\%	2016	\%	2015	\%	2014	\%	2013	\%
VECTOR-3D	VECTORS	1	3.33	1	3.33	1	3.33	1	3.33	1	3.33	1	3.33
	3-DIMENSIONAL GEOMETRY	2	6.67	2	6.67	2	6.67	2	6.67	2	6.67	2	6.67
CO-ORDINATE	STRAIGHT LINES	2	6.67	1	3.33	1	3.33	2	6.67	1	3.33	2	6.67
	CIRCLES	1	3.33	0	0.00	2	6.67	1	3.33	1	3.33	1	3.33
	PARABOLA	2	6.67	0	0.00	1	3.33	1	3.33	1	3.33	1	3.33
	ELLIPSE	0	0.00	1	3.33	0	0.00	1	3.33	1	3.33	1	3.33
	HYPERBOLA	1	3.33	1	3.33	1	3.33	0	0.00	0	0.00	0	0.00
			20\%		10\%		17\%		17\%		13\%		17\%

Current Session

1 DEC-29 DEC 2020 EVERY DAY 4PM \& 6 PM

JEE Sprint
04:00
PM
Parabola (Conic Sections)

Previous Session 22/DEC/2020	Next Session 23/DEC/2020
JEE Sprint 06:00 Magnetic Effects of Current	JEE Sprint 06:00 Atomic Structure

Parabola

- Definition of a Conic
- Parabola- Standard Equations
- Parametric form of Equation of a Parabola
- Equation of Tangent
- Problems based on:
- Common Tangents + Pt. of Intersection of two curves
+ Angle of Intersection between two curves

Home Assignment Problems

Q1. If the tangent at $(1,7)$ to the curve $\mathbf{x}^{\mathbf{2}}=\mathbf{y}-\mathbf{6}$ touches the circle $x^{2}+y^{2}+16 x+12 y+c=0$ then the value of c is :
A 95
B 195
C 185
D 85

JEE (Main) 2018

Q2. The slope of the line touching both the parabolas $\mathbf{y}^{\mathbf{2}}=\mathbf{4 x}$ and $\mathbf{x}^{\mathbf{2}} \mathbf{= - 3 2 \mathbf { y }}$ is
A $\frac{1}{2}$
B $\frac{3}{2}$
C $\frac{1}{8}$
D $\frac{2}{3}$
JEE (Main) 2014

Previously Taken Detailed Classes on Coordinate Geometry (Lectures 27-32)

Straight Lines - 1

Circles and Tangents

Straight Lines - 2

Parabola and Tangents

Normal to Parabola

Ellipse and Hyperbola

Crack JEE Maths in 30 Hours - Playlist:-
https://www.youtube.com/watch?v=C4pO-NnfCcY\&list=PLCtUyOrCJbxxkL5dPyLJi9UmUlrP-etG3\&index=27
Vedantu
Q. Let P be a point on the parabola, $y^{2}=12 x$ and N be the foot of the perpendicular drawn from P on the axis of the parabola. A line is now drawn through the mid-point M of $P N$, parallel to its axis which meets the parabola at Q. If the y-intercept of the line $N Q$ is $\frac{4}{3}$, then:
A $M Q=\frac{1}{4}$
B $P N=3$
C $P N=4$
D $M Q=\frac{1}{3}$

JEE-Main 2020
Q. Let P be a point on the parabola, $y^{2}=12 x$ and N be the foot of the perpendicular drawn from P on the axis of the parabola. A line is now drawn through the mid-point M of $P N$, parallel to its axis which meets the parabola at Q. If the y-intercept of the line $N Q$ is $\frac{4}{3}$, then:
(A) $M Q=\frac{1}{4}$
B $P N=3$
C $P N=4$
D $M Q=\frac{1}{3}$

JEE-Main 2020

Parabola

Solution:

Let $P\left(a t^{2}, 2 a t\right)$ where $a=3$
$\Rightarrow N\left(a t^{2}, 0\right) \Rightarrow M\left(a t^{2}, a t\right)$
$\because Q M \equiv y=a t$
So $y^{2}=4 a x \Rightarrow x=\frac{a t^{2}}{4}$
$\Rightarrow Q\left(\frac{a t^{2}}{4}, a t\right)$

Parabola

Solution:

QN passes through $\left(0, \frac{4}{3}\right)$, then
$\frac{4}{3}=-\frac{4}{3 t}\left(-a t^{2}\right) \Rightarrow a t=1 \Rightarrow t=\frac{1}{3}$
Now, $M Q=\frac{3}{4} a t^{2}=\frac{1}{4}$ and $P N=2 a t=2$

JEE MAIN 2021 CRASH COURSE

* Cover entire JEE Main Syllabus (as per the new pattern) with India's Best Teachers in 90 Sessions
* Solve unlimited doubts with Doubt experts on our Doubt App from till Exam 8 AM to 11 PM
* 1 Batch Classes will be over in 10 Weeks
* 10 full and 10 Part syllabus test to make you exam ready
* Amazing tricks \& tips to crack JEE Main 2021 Questions in power-packed 90 Min sessions

JEE MAIN 2021 CRASH COURSE Lightning Deal: ₹10000

₹ $8000 />$

Batch Starts From : Every Monday

* Crash Course Link Available in Description

Apply Coupon Code: PJCC

ENROLLNOW

Join Vedantu JEE Telegram channel NOW!

Assignments
Notes
Daily Update
https://vdnt.in/jeepro
Link in Bio

Standard parabolas having vertex at origin

$$
y^{2}=-4 a x
$$

Parabola Standard parabolas having vertex at origin

Vedantu

Standard parabolas having vertex at any point

Consider the following equations for $a>0$ and remember their graphs.
(1) $(y-k)^{2}=4 a(x-h)$
Q. Axis of a parabola lies along x-axis. If its vertex and focus are at distance 2 and 4 respectively from the origin, on the positive x-axis then which of the following points does not lie on it?
A $(5,2 \sqrt{6})$
B $(8,6)$
C $(6,4 \sqrt{2})$
D $(4,-4)$

JEE-Main 2019

Parabola

Q. Axis of a parabola lies along x-axis. If its vertex and focus are at distance 2 and 4 respectively from the origin, on the positive x-axis then which of the following points does not lie on it?
A $(5,2 \sqrt{6})$
B $(8,6)$
C $(6,4 \sqrt{2})$
D $(4,-4)$

JEE-Main 2019
Since, vertex and focus of given parabola is $(2,0)$ and $(4,0)$ respectively.
Then, equation of parabola is
$(y-0)^{2}=4 \times 2(x-2)$
$\Rightarrow y^{2}=8 x-16$
Hence, the point $(8,6)$ does not lie on given parabola.

Standard parabolas having vertex at any point

Consider the following equations for $a>0$ and remember their graphs.
(1) $(y-k)^{2}=4 a(x-h)$

(2) $(y-k)^{2}=-4 a(x-h)$

Standard parabolas having vertex at any point

Consider the following equations for $a>0$ and remember their graphs.
(3) $(x-h)^{2}=4 a(y-k)$
(4) $(x-h)^{2}=-4 a(y-k)$

Q. If the area of the triangle whose one vertex is at the vertex of the parabola, $y^{2}+4\left(x-a^{2}\right)=0$ and the other two vertices are the points of intersection of the parabola and y-axis, is 250 sq. units, then a value of 'a' is \qquad .

(Numerical type)

JEE-Main 2019

Parabola

Q. If the area of the triangle whose one vertex is at the vertex of the parabola, $y^{2}+4\left(x-a^{2}\right)=0$ and the other two vertices are the points of intersection of the parabola and y-axis, is 250 sq. units, then a value of 'a' is \qquad _.

(Numerical type)

JEE-Main 2019

Solution:

$y^{2}=-4\left(x-a^{2}\right)$
Area $=\frac{1}{2}(4 a)\left(a^{2}\right)=2 a^{3}$
Since $2 a^{3}=250 \Rightarrow a=5$

Q. If one end of a focal chord of the parabola, $y^{2}=16 x$ is at $(1,4)$, then the length of this focal chord is:
A 25
B 22
C 24
D 20
JEE-Main 2019

Properties of Focal Chord
(-) If $P Q$ is a Focal chord, then $S(a, 0)$ must satisfy Ign(i i)

$$
\begin{aligned}
& \Rightarrow\left(t_{1}+t_{2}\right) 0=2 a+2 a t_{1} t_{2} \\
& \Rightarrow \quad t_{1} t_{2}=-1
\end{aligned}
$$

$$
t_{2}=-\frac{1}{t_{1}}
$$

Parabola

Properties of Focal Chord

Description

If one extremity of a focal chord is $\left(\mathrm{at}_{1}^{2}, 2 \mathrm{at}_{1}\right)$, then the other extremity $\left(a t_{2}^{2}, 2 a t_{2}\right)$ becomes $\left(\frac{a}{t_{1}^{2}}, \frac{-2 a}{t_{1}}\right)$ by virtue of relation $t_{1} t_{2}=-1$.

If one end of the focal chord of parabola is ($\left.a^{2}{ }^{2}, 2 a t\right)$, then other end will be $\left(a t^{2}, \frac{-2 a}{t}\right)$ and length of chord $=\mathrm{a}\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)^{2}$.

The focal chord of parabola $y^{2}=4 a x$ making an angle α with the x-axis is of length $4 \mathrm{a} \operatorname{cosec}^{2} \alpha$ and perpendicular on it from the vertex is a $\sin \alpha$.
Q. If one end of a focal chord of the parabola, $y^{2}=16 x$ is at $(1,4)$, then the length of this focal chord is:
A 25

B 22
C 24
D 20
$y^{2}=16 x$
JEE-Main 2019
$\Rightarrow a=4$
One end of focus of the parabola is at $(1,4)$
y - coordinate of focal chord is $2 a t$
2 at $=4$
$\Rightarrow t=\frac{1}{2}$
Hence, the required length of focal chord

$$
=a\left(t+\frac{1}{t}\right)^{2}=4 \times\left(2+\frac{1}{2}\right)^{2}=25
$$

Tangent to a Parabola:
(-) Condition for a line of slope m: $y=m x+c$ to be tangent to the Parabola.

$$
c=a / m
$$

or,
Tangent of scope m to the Parabola:

$$
y=m x+\frac{a}{m}
$$

Equation of Tangent to Parabola in Different Forms:

En. of tangent to Parabola at $P\left(x_{1}, y_{1}\right)$:

$$
y y_{1}=2 a\left(x+x_{1}\right)
$$

Eqn. of tangent to Parabola at $P\left(a t^{2}, 2 a t\right)$:

$$
t y=x+a t^{2}
$$

Slope form

$$
y=m x+\frac{a}{m}
$$

Tangent at a point on

Parametric form

Vedantu

Previously Taken Detailed Classes on Coordinate Geometry (Lectures 27-32)

Straight Lines - 1

Circles and Tangents

Straight Lines - 2

Parabola and Tangents

Normal to Parabola

Ellipse and Hyperbola

Crack JEE Maths in 30 Hours - Playlist:-
https://www.youtube.com/watch?v=C4pO-NnfCcY\&list=PLCtUyOrCJbxxkL5dPyLJi9UmUlrP-etG3\&index=27
Vedantu
Q. If one end of a focal chord AB of the parabola $y^{2}=8 x$ is at $A\left(\frac{1}{2},-2\right)$ then the equation of the tangent to it at B is :
A $x-2 y+8=0$
B $\quad x+2 y+8=0$
C $2 x-y-24=0$
D $2 x+y-24=0$

JEE-Main 2020
Q. If one end of a focal chord AB of the parabola $y^{2}=8 x$ is at $A\left(\frac{1}{2},-2\right)$ then the equation of the tangent to it at B is :
A $x-2 y+8=0$
B $\quad x+2 y+8=0$
C $2 x-y-24=0$
D $2 x+y-24=0$

JEE-Main 2020

Parabola

Solution:

Let $\left(\frac{1}{2},-2\right)$ is $\left(2 t^{2}, 4 t\right) \Rightarrow t=\frac{-1}{2}$
Parameter of other end of focal chord is 2
\Rightarrow point is $(8,8)$
\Rightarrow Equation of tangent is $8 y-4(x+8)=0$
$\Rightarrow 2 y-x=8$
Q. The equation of a tangent to the parabola, $\mathbf{x}^{\mathbf{2}}=\mathbf{8} \mathbf{y}$, which makes an angle θ with the positive direction of x-axis, is:
A $y=x \tan \theta+2 \cot \theta$
B $y=x \tan \theta-2 \operatorname{Cot} \theta$
C $x=y \cot \theta+2 \tan \theta$
D $x=y \cot \theta-2 \tan \theta$

JEE-Main 2019

Parabola

Q. The equation of a tangent to the parabola, $\mathbf{x}^{\mathbf{2}}=\mathbf{8} \mathbf{y}$, which makes an angle θ with the positive direction of x-axis, is:
A $y=x \tan \theta+2 \cot \theta$
B $y=x \tan \theta-2 \operatorname{Cot} \theta$
C. $x=y \cot \theta+2 \tan \theta$
D $x=y \cot \theta-2 \tan \theta$

JEE-Main 2019
$x^{2}=8 y$
Then, equation of tangent at P
$t x=y+a t^{2}$
$\Rightarrow y=t x-a t^{2}$
Then, slope $t=\tan \theta$
Now, $y=\tan \theta x-2 \tan ^{2} \theta$
$\Rightarrow \cot \theta y=x-2 \tan \theta \Rightarrow x=y \cot \theta+2 \tan \theta$

Q. The tangent to the parabola $y^{2}=4 x$ at the point where it intersects the circle $x^{2}+y^{2}=5$ in the first quadrant, passes through the point :
A $\left(-\frac{1}{3}, \frac{4}{3}\right)$
B $\left(\frac{1}{3}, \frac{3}{4}\right)$
C $\left(\frac{3}{4}, \frac{7}{4}\right)$
D $\left(-\frac{1}{4}, \frac{1}{2}\right)$

JEE-Main 2019
Q. The tangent to the parabola $y^{2}=4 x$ at the point where it intersects the circle $x^{2}+y^{2}=5$ in the first quadrant, passes through the point :
A $\left(-\frac{1}{3}, \frac{4}{3}\right)$
B $\left(\frac{1}{3}, \frac{3}{4}\right)$
(C) $\left(\frac{3}{4}, \frac{7}{4}\right)$
D $\left(-\frac{1}{4}, \frac{1}{2}\right)$

JEE-Main 2019

Solution:

To find intersection point of $x^{2}+y^{2}=5$ and $y^{2}=4 x$, substitute $y^{2}=4 a x$ in $x^{2}+y^{2}=5$, we get
$x^{2}+4 x-5=0 \Rightarrow x^{2}+5 x-x-5=0$
$\Rightarrow x(x+5)-1(x+5)=0$
$x=1,-5$
Intersection point in 1 st quadrant be $(1,2)$.
Q. The tangent to the parabola $y^{2}=4 x$ at the point where it intersects the circle $x^{2}+y^{2}=5$ in the first quadrant, passes through the point :
A $\left(-\frac{1}{3}, \frac{4}{3}\right)$
B $\left(\frac{1}{3}, \frac{3}{4}\right)$
(C) $\left(\frac{3}{4}, \frac{7}{4}\right)$
D $\left(-\frac{1}{4}, \frac{1}{2}\right)$

JEE-Main 2019

Solution:

Intersection point in 1st quadrant be $(1,2)$.
Now, equation of tangent to $\mathrm{y}^{2}=4 \mathrm{x}$ at $(1,2)$ is
$y \times 2=2(x+1) \Rightarrow y=x+1$
$\Rightarrow x-y+1=0$. (i)

Hence, $\left(\frac{3}{4}, \frac{7}{4}\right)$ lies on (i)
Q. Equation of a common tangent to the circle, $\mathbf{x}^{\mathbf{2}}+\mathbf{y}^{\mathbf{2}} \mathbf{- 6 x}=\mathbf{0}$ and the parabola, $\mathbf{y}^{\mathbf{2}}=\mathbf{4 x}$, is:
A $2 \sqrt{3} y=12 x+1$
B $\quad \sqrt{3} y=x+3$
C $2 \sqrt{3} y=-x-12$
D $\quad \sqrt{3} y=3 x+1$

JEE-Main 2019

Perpendicular Distance of a line from a point.

$$
a x+b y+c=0 \quad d=\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}}
$$

Q. Equation of a common tangent to the circle, $x^{2}+y^{2}-6 x=0$ and the parabola, $y^{2}=4 x$, is:
A $2 \sqrt{3} y=12 x+1$
(B) $\sqrt{3} y=x+3$
C $2 \sqrt{3} y=-x-12$
D $\quad \sqrt{3} y=3 x+1$

JEE-Main 2019
Solution: $\quad t y=x+t^{2}$

$$
\begin{aligned}
& \left|\frac{3+t^{2}}{\sqrt{1+t^{2}}}\right|=3 \\
& \Rightarrow t=\sqrt{3} \\
& \Rightarrow \sqrt{3} y=x+3
\end{aligned}
$$

Q. If the line $\mathbf{a x}+\mathbf{y}=\mathbf{c}$, touches both the curves $\mathbf{x}^{\mathbf{2}}+\mathbf{y}^{\mathbf{2}}=\mathbf{1}$ and $\mathbf{y}^{\mathbf{2}}=4 \sqrt{2} x$, then $|c|$ is equal to
A 2
B $\frac{1}{\sqrt{2}}$
C $\frac{1}{2}$
D $\sqrt{2}$

JEE-Main 2019
Q. If the line $\mathbf{a x}+\mathbf{y}=\mathbf{c}$, touches both the curves $\mathbf{x}^{\mathbf{2}}+\mathbf{y}^{\mathbf{2}}=\mathbf{1}$ and $\mathbf{y}^{\mathbf{2}}=4 \sqrt{2} x$, then $|c|$ is equal to

A 2
B $\frac{1}{\sqrt{2}}$
C $\frac{1}{2}$
(D) $\sqrt{2}$

JEE-Main 2019

Solution:

Equation of tangent on $y^{2}=4 \sqrt{2} x$ is $y t=x+\sqrt{2} t^{2}$
This is also tangent on circle

$$
\begin{aligned}
& \left|\frac{\sqrt{2} t^{2}}{\sqrt{1+t^{2}}}\right|=1 \\
& \Rightarrow 2 t^{4}=1+t^{2} \\
& \Rightarrow t^{2}=1
\end{aligned}
$$

Hence, equation is $\pm y=x+\sqrt{2} \Rightarrow|c|=\sqrt{2}$
Q. If θ denotes the acute angle between the curves, $\mathbf{y}=\mathbf{1 0} \mathbf{- \mathbf { x } ^ { 2 }}$ and $\mathbf{y}=\mathbf{2 + \mathbf { x } ^ { 2 }}$ at the point of their intersection, then $\tan \theta \mid$ is equal to:
A $\frac{4}{9}$
B $\frac{8}{15}$
C $\frac{7}{17}$
D $\frac{8}{17}$
JEE-Main 2019
Q. If θ denotes the acute angle between the curves, $\mathbf{y}=\mathbf{1 0}-\mathbf{x}^{\mathbf{2}}$ and $\mathbf{y}=\mathbf{2 + \mathbf { x } ^ { 2 }}$ at the point of their intersection, then $\tan \theta \mid$ is equal to:

Solution:

Since, the equation of curves are

$$
\begin{aligned}
& y=10-x^{2} \ldots \ldots(1) \\
& y=2+x^{2} \ldots \ldots(2)
\end{aligned}
$$

Adding eqn (1) and (2), we get
$2 y=12 \Rightarrow y=6$
Then, from eqn (1)
$x= \pm 2$
Q. If θ denotes the acute angle between the curves, $y=10-x^{2}$ and $y=2+x^{2}$ at the point of their intersection, then $\tan \theta \mid$ is equal to:
A $\frac{4}{9}$
C $\frac{7}{17}$
D $\frac{8}{17}$

JEE-Main 2019
Differentiate equation (2) with respect to x

$$
\begin{aligned}
& \frac{d y}{d x}=2 x \Rightarrow\left(\frac{d y}{d x}\right)_{(2,6)}=4 \text { and }\left(\frac{d y}{d x}\right)_{(-2,6)}=-4 \\
& \text { At }(2,6) \tan \theta=\left(\frac{(-4)-(4)}{1+(-4) \times(4)}\right)=\frac{-8}{15} \\
& \text { At }(-2,6) \tan \theta=\left(\frac{(4)-(4)}{1+(4) \times(-4)}\right)=\frac{8}{-15} \\
& \Rightarrow|\tan \theta|=\frac{8}{15}
\end{aligned}
$$

Q. Let $A(4,-4)$ and $B(9,6)$ be points on the parabola, $y^{2}=4 x$. Let C be chosen on the arc AOB of the parabola, where O is the origin, such that the area of $\triangle A C B$ is maximum. Then, the area (in sq. units) of $\triangle A C B$, is:
A $31 \frac{1}{4}$
B $30 \frac{1}{2}$
C 32
D $31 \frac{3}{4}$

JEE-Main 2019
Q. Let $A(4,-4)$ and $B(9,6)$ be points on the parabola, $y^{2}=4 x$. Let C be chosen on the arc AOB of the parabola, where O is the origin, such that the area of $\triangle A C B$ is maximum. Then, the area (in sq. units) of $\triangle A C B$, is:
(A) $31 \frac{1}{4}$
в $30 \frac{1}{2}$
c 32
D $31 \frac{3}{4}$

Parabola

Solution:

Alternate Approach:

Let the coordinates of C is $\left(t^{2}, 2 t\right)$
Since, area of $\triangle \mathrm{ACB}$
$=\frac{1}{2}| | \begin{array}{ccc}t^{2} & 2 t & 1 \\ 9 & 6 & 1 \\ 4 & -4 & 1\end{array}| |=\frac{1}{2}\left|t^{2}(6+4)-2 t(9-4)+1(-36-24)\right|$
$=\frac{1}{2}\left|10 t^{2}-10 t-60\right|=5\left|t^{2}-t-6\right|=5\left|\left(t-\frac{1}{2}\right)^{2}-\frac{25}{4}\right|$
For maximum area, $t=\frac{1}{2}$

Hence maximum area $=\frac{125}{4}=31 \frac{1}{4}$ sq. units

Home Assignment Problems

Q1. If the tangent at $(1,7)$ to the curve $\mathbf{x}^{\mathbf{2}}=\mathbf{y}-\mathbf{6}$ touches the circle $x^{2}+y^{2}+16 x+12 y+c=0$ then the value of c is :
A 95
B 195
C 185
D 85

JEE (Main) 2018

Q2. The slope of the line touching both the parabolas $\mathbf{y}^{\mathbf{2}}=\mathbf{4 x}$ and $\mathbf{x}^{\mathbf{2}} \mathbf{= - 3 2 \mathbf { y }}$ is
A $\frac{1}{2}$
B $\frac{3}{2}$
C $\frac{1}{8}$
D $\frac{2}{3}$
JEE (Main) 2014

Previously Taken Detailed Classes on Coordinate Geometry (Lectures 27-32)

Straight Lines - 1

Circles and Tangents

Straight Lines - 2

Parabola and Tangents

Normal to Parabola

Ellipse and Hyperbola

Crack JEE Maths in 30 Hours - Playlist:-
https://www.youtube.com/watch?v=C4pO-NnfCcY\&list=PLCtUyOrCJbxxkL5dPyLJi9UmUlrP-etG3\&index=27
Vedantu

JEE MAIN 2021 CRASH COURSE

* Cover entire JEE Main Syllabus (as per the new pattern) with India's Best Teachers in 90 Sessions
* Solve unlimited doubts with Doubt experts on our Doubt App from till Exam 8 AM to 11 PM
* 1 Batch Classes will be over in 10 Weeks
* 10 full and 10 Part syllabus test to make you exam ready
* Amazing tricks \& tips to crack JEE Main 2021 Questions in power-packed 90 Min sessions

JEE MAIN 2021 CRASH COURSE Lightning Deal: ₹10000

₹ $8000 />$

Batch Starts From : Every Monday

* Crash Course Link Available in Description

Apply Coupon Code: PJCC

ENROLLNOW

Join Vedantu JEE Telegram channel NOW!

Assignments
Notes
Daily Update
https://vdnt.in/jeepro
Link in Bio

JJeis CRACK JEE

LIIKE SHARE SUBSGRIBE

\#LearningWon'tStop

Parabola

All the very best :-)

DREAM ON!

Solutions to

Home Assignment Problems

Q1. If the tangent at $(1,7)$ to the curve $\mathbf{x}^{\mathbf{2}}=\mathbf{y}-\mathbf{6}$ touches the circle $x^{2}+y^{2}+16 x+12 y+c=0$ then the value of c is :
A 95
B 195
C 185
D 85

JEE (Main) 2018

Q1. If the tangent at $(1,7)$ to the curve $x^{2}=y-6$ touches the circle $x^{2}+y^{2}+16 x+12 y+c=0$ then the value of c is :

JEE (Main) 2018

A 95
B 195
C 185
D 85

Solution:

$$
\text { Equation tangent at }(1,7)
$$

$$
\Rightarrow 2 x-y+5=0
$$

$$
\text { perpendicular }(-8,-6) \text { to line }
$$

$$
=\frac{|2(-8)-(-6)+5|}{\sqrt{5}}=\sqrt{8^{2}+6^{2}-c}
$$

$$
\Rightarrow \sqrt{5}=\sqrt{8^{2}+6^{2}-c}
$$

$$
c=95
$$

Q2. The slope of the line touching both the parabolas $\mathbf{y}^{\mathbf{2}}=\mathbf{4 x}$ and $\mathbf{x}^{\mathbf{2}} \mathbf{= - 3 2 \mathbf { y }}$ is
A $\frac{1}{2}$
B $\frac{3}{2}$
C $\frac{1}{8}$
D $\frac{2}{3}$
JEE (Main) 2014

Previously Taken Detailed Classes on Coordinate Geometry (Lectures 27-32)

Straight Lines - 1

Circles and Tangents

Straight Lines - 2

Parabola and Tangents

Normal to Parabola

Ellipse and Hyperbola

Crack JEE Maths in 30 Hours - Playlist:-
https://www.youtube.com/watch?v=C4pO-NnfCcY\&list=PLCtUyOrCJbxxkL5dPyLJi9UmUlrP-etG3\&index=27
Vedantu

Parabola
Approach:- Let the tangent to parabola $\left(y^{2}=4 a x\right)$
be $\left(y=m x+\frac{a}{m}\right)$-(i)
If it touches other curve, solve (i) with eqn. of curve \& make its ($D=0$) to get value of m.

Approach:- Let the tangent to parabola ($y^{2}=4 a x$)
be $\left(y=m x+\frac{a}{m}\right)$-(i)
If it touches other curve, solve (i) with eqn. of curve \& make its
($D=0$) to get value of m.
For parabola $y^{2}=4 x$,
tangent: $y=m x+\frac{1}{m}$
Since, (i) touches ($x^{2}=-32 y$)
$\Rightarrow \quad x^{2}=-32\left(m x+\frac{1}{m}\right) \rightarrow$ will have only one sols. $\quad \therefore=0$
Fr, $\quad x^{2}+32 m x+\frac{32}{m}=0 \rightarrow D=(32 m)^{2}-4 \times\left(\frac{32}{m}\right)=0$

$$
\Rightarrow m^{3}=1 / 8 \Rightarrow m=1 / 2
$$

