

PULKIT JAIN SIR IIT ROORKEE Jedantie

PULKIT IIT ROORKEE

#FATHERPRENEUR #TRAVELLER #GAMER

Vedanta STUDENTS BAG TOP RANKS IN IIT JEE

Best Results Amongst All Online Classes

.

CONIC SECTIONS

A **circle** with its <u>centre at the focus</u> of the **parabola** $y^2 = 8x$ and <u>touching its</u> <u>directrix</u> intersects the parabola at points **A**, **B**. Then length AB is equal to?

(Numerical type)

JEE-Main Prv. Yr

Vedantu

Parabola Short Cut --- Visualization :)

A **circle** with its <u>centre at the focus</u> of the parabola $y^2 = 8x$ and <u>touching its</u> <u>directrix</u> intersects the parabola at points **A**, **B**. Then length AB is equal to

(Numerical type)

JEE-Main Prv. Yr

A circle with its centre at the focus of the parabola $y^2 = 4ax$ and touching its directrix intersects the parabola at points A, B. Then length AB is equal to **Answer: 8**

Alternate Solution:

Centre of circle (a, 0) and radius 2a Equation of circle $(x - a)^2 + y^2 = 4a^2$

$$x^{2} + y^{2} - 2ax - 3a^{2} = 0$$
 and $y^{2} = 4ax$

 $x^{2} + 2ax - 3a^{2} = 0$

x = -3a, a and $y = \pm 2a$

: Length of **AB = 4a = 8**

PULKIT IIT ROORKEE

#FATHERPRENEUR #TRAVELLER #GAMER

UNIT-WISE WEIGHTAGE - COORDINATE GEOMETRY

	CHAPTERS	2018	%	2017	%	2016	%	2015	%	2014	%	2013	%
VECTOR-3D	VECTORS	1	3.33	1	3.33	1	3.33	1	3.33	1	3.33	1	3.33
	3-DIMENSIONAL GEOMETRY	2	6.67	2	6.67	2	6.67	2	6.67	2	6.67	2	6.67
CO-ORDINATE	STRAIGHT LINES	2	6.67	1	3.33	1	3.33	2	6.67	1	3.33	2	6.67
	CIRCLES	1	3.33	0	0.00	2	6.67	1	3.33	1	3.33	1	3.33
	PARABOLA	2	6.67	0	0.00	1	3.33	1	3.33	1	3.33	1	3.33
	ELLIPSE	0	0.00	1	3.33	0	0.00	1	3.33	1	3.33	1	3.33
	HYPERBOLA	1	3.33	1	3.33	1	3.33	0	0.00	0	0.00	0	0.00
			20%		10%		17%		17%		13%		17%

Current Session23/DEC/2020JEE Sprint04:00
PMDarabola (Conic Sections)

Parabola

- Definition of a Conic
- Parabola- Standard Equations
- Parametric form of Equation of a Parabola
- Equation of Tangent
- Problems based on:
 - Common Tangents + Pt. of Intersection of two curves

+ Angle of Intersection between two curves

Home Assignment Problems

Q1. If the tangent at (1, 7) to the curve $x^2 = y - 6$ touches the circle $x^2 + y^2 + 16x + 12y + c = 0$ then the value of c is :

A 95 **B** 195 **C** 185 **D** 85

JEE (Main) 2018

Q2. The slope of the line touching both the parabolas $y^2 = 4x$ and $x^2 = -32y$ is

A
$$\frac{1}{2}$$
 B $\frac{3}{2}$ **C** $\frac{1}{8}$ **D** $\frac{2}{3}$

Vedantu

Previously Taken Detailed Classes on Coordinate Geometry (Lectures 27 - 32)

Straight Lines - 1

Circles and Tangents

Straight Lines - 2

Parabola and Tangents

Normal to Parabola

Ellipse and Hyperbola

Crack JEE Maths in 30 Hours - Playlist:-

https://www.youtube.com/watch?v=C4pO-NnfCcY&list=PLCtUyOrCJbxxkL5dPyLJi9UmUlrP-etG3&index=27

Vedantu

Q. Let *P* be a point on the parabola, $y^2 = 12x$ and *N* be the foot of the perpendicular drawn from *P* on the axis of the parabola. A line is now drawn through the mid-point *M* of *PN*, parallel to its axis which meets the parabola

at Q. If the y-intercept of the line NQ is $\frac{4}{3}$, then:

A
$$MQ = \frac{1}{4}$$
 B $PN = 3$ **C** $PN = 4$ **D** $MQ = \frac{1}{3}$

JEE-Main 2020

1

Q. Let *P* be a point on the parabola, $y^2 = 12x$ and *N* be the foot of the perpendicular drawn from *P* on the axis of the parabola. A line is now drawn through the mid-point *M* of *PN*, parallel to its axis which meets the parabola

at Q. If the y-intercept of the line NQ is $\frac{4}{3}$, then:

A
$$MQ = \frac{1}{4}$$
 B $PN = 3$ **C** $PN = 4$ **D** $MQ = \frac{1}{3}$

JEE-Main 2020

Solution:

QN passes through
$$\left(0, \frac{4}{3}\right)$$
, then
 $\frac{4}{3} = -\frac{4}{3t}\left(-at^2\right) \Rightarrow at = 1 \Rightarrow t = \frac{1}{3}$
Now, $MQ = \frac{3}{4}at^2 = \frac{1}{4}$ and $PN = 2at$

JEE MAIN 2021 CRASH COURSE

- Cover entire JEE Main Syllabus (as per the new pattern) with India's Best Teachers in 90 Sessions
- Solve unlimited doubts with Doubt experts on our Doubt App from till Exam 8 AM to 11 PM
- ✤ 1 Batch Classes will be over in 10 Weeks
- ✤ 10 full and 10 Part syllabus test to make you exam ready
- Amazing tricks & tips to crack JEE Main 2021 Questions in power-packed 90 Min sessions

Batch Starts From : Every Monday

*Crash Course Link Available in Description

Apply Coupon Code: PJCC

DISCOUNT

Join Vedantu JEE Telegram channel

Assignments

Notes

Daily Update

https://vdnt.in/jeepro

Standard parabolas having vertex at origin

Parabola Standard parabolas having vertex at origin Vedantu

Vedantu

Standard parabolas having vertex at any point

Consider the following equations for a > 0 and remember their graphs.

(1) $(y-k)^2 = 4a(x-h)$

Q. Axis of a parabola lies along x-axis. If its vertex and focus are at distance 2 and 4 respectively from the origin, on the positive x-axis then which of the following points does not lie on it?

A
$$(5, 2\sqrt{6})$$
 B $(8, 6)$ **C** $(6, 4\sqrt{2})$ **D** $(4, -4)$
JEE-Main 2019

Q. Axis of a parabola lies along x-axis. If its vertex and focus are at distance 2 and 4 respectively from the origin, on the positive x-axis then which of the following points does not lie on it?

A
$$(5, 2\sqrt{6})$$
 B $(8, 6)$ **C** $(6, 4\sqrt{2})$ **D** $(4, -4)$
JEE-Main 2019

Since, vertex and focus of given parabola is (2, 0) and (4, 0) respectively. Then, equation of parabola is

$$egin{aligned} &(y-0)^2 = 4 imes 2\,(x-2)\ \Rightarrow y^2 = 8x-16 \end{aligned}$$

Hence, the point (8, 6) does not lie on given parabola.

Standard parabolas having vertex at any point

Consider the following equations for a > 0 and remember their graphs.

Standard parabolas having vertex at any point

Consider the following equations for a > 0 and remember their graphs.

(3)
$$(x-h)^2 = 4a(y-k)$$
 (4) $(x-h)^2 = -4a(y-k)$

Vedantu

Q. If the area of the triangle whose one vertex is at the vertex of the parabola, $y^2 + 4 (x - a^2) = 0$ and the other two vertices are the points of intersection of the parabola and y-axis, is 250 sq. units, then a value of 'a' is____.

(Numerical type)

JEE-Main 2019

Q. If the area of the triangle whose one vertex is at the vertex of the parabola, $y^2 + 4 (x - a^2) = 0$ and the other two vertices are the points of intersection of the parabola and y-axis, is 250 sq. units, then a value of 'a' is____.

(Numerical type)

Solution:

$$y^2 = -4 \left(x - a^2\right)$$

Area $= \frac{1}{2}(4a) \left(a^2\right) = 2a^3$
Since $2a^3 = 250 \Rightarrow a = 5$

JEE-Main 2019

Vedantu

Q. If one end of a focal chord of the parabola, $y^2 = 16x$ is at (1, 4), then the length of this focal chord is:

A 25 B 22 C 24 D 20 JEE-Main 2019

Properties of Focal Chord

• If PQ is a Focal chord ; then

$$S(a,o)$$
 must satisfy $Eqn(i)$
 $\Rightarrow (t_1 + t_2)0 = 2a + 2at_1t_2$
 $\Rightarrow [t_1t_2 = -1]$

Properties of Focal Chord

Description

If one extremity of a focal chord is $(at_1^2, 2at_1)$, then the other extremity $(at_2^2, 2at_2)$ becomes $(\frac{a}{t_1^2}, \frac{-2a}{t_1})$ by virtue of relation $t_1 t_2 = -1$.

If one end of the focal chord of parabola is (at², 2at), then other end will be $(at^2, \frac{-2a}{t})$ and length of chord = $a(t + \frac{1}{t})^2$.

The focal chord of parabola $y^2 = 4ax$ making an angle α with the x-axis is of length $4a \operatorname{cosec}^2 \alpha$ and perpendicular on it from the vertex is $a \sin \alpha$.

Vedantu

Q. If one end of a focal chord of the parabola, $y^2 = 16x$ is at (1, 4), then the length of this focal chord is:

25 22 24 20 B С D $y^2 = 16x$ **JEE-Main 2019** $\Rightarrow a = 4$ One end of focus of the parabola is at (1, 4)y – coordinate of focal chord is 2at2 at = 4 $\Rightarrow t = \frac{1}{2}$ Hence, the required length of focal chord $a = a \left(t + \frac{1}{t}\right)^2 = 4 \times \left(2 + \frac{1}{2}\right)^2 = 25$ Vedantu

Vedantu

Vedantu

Equation of Tangent to Parabola in Diffuent Forms:

Parabola Various equations of tangents to $y^2 = 4ax$ Vedantu

Vedantu

Previously Taken Detailed Classes on Coordinate Geometry (Lectures 27 - 32)

Straight Lines - 1

Circles and Tangents

Straight Lines - 2

Parabola and Tangents

Normal to Parabola

Ellipse and Hyperbola

Crack JEE Maths in 30 Hours - Playlist:-

https://www.youtube.com/watch?v=C4pO-NnfCcY&list=PLCtUyOrCJbxxkL5dPyLJi9UmUlrP-etG3&index=27

Vedantu

Q. If one end of a focal chord AB of the parabola $y^2 = 8x$ is at $A\left(\frac{1}{2}, -2\right)$ then the equation of the tangent to it at B is :

A x - 2y + 8 = 0 **B** x + 2y + 8 = 0

c 2x - y - 24 = 0 **d** 2x + y - 24 = 0

JEE-Main 2020

Q. If one end of a focal chord AB of the parabola $y^2 = 8x$ is at $A\left(\frac{1}{2}, -2\right)$ then the equation of the tangent to it at B is :

$$x - 2y + 8 = 0$$

c
$$2x - y - 24 = 0$$

B x + 2y + 8 = 0

D
$$2x + y - 24 = 0$$

JEE-Main 2020

Solution:

Let
$$\left(\frac{1}{2}, -2\right)$$
 is $\left(2t^2, 4t\right) \Rightarrow t = \frac{-1}{2}$

Parameter of other end of focal chord is 2

- \Rightarrow point is (8, 8)
- ⇒ Equation of tangent is 8y 4(x+8) = 0

 $\Rightarrow 2y - x = 8$

Q. The equation of a tangent to the parabola, $x^2 = 8y$, which makes an angle θ with the positive direction of x-axis, is:

- **A** $y = x \tan\theta + 2\cot\theta$
- **C** $x = y \cot\theta + 2 \tan\theta$

- **B** $y = x \tan \theta 2 \operatorname{Cot} \theta$
- **D** $x = y \cot \theta 2 \tan \theta$

JEE-Main 2019

Q. The equation of a tangent to the parabola, $x^2 = 8y$, which makes an angle θ with the positive direction of x-axis, is:

A
$$y = x \tan\theta + 2\cot\theta$$

c $x = y \cot\theta + 2 \tan\theta$

D
$$x = ycot\theta - 2 tan\theta$$

JEE-Main 2019

$$x^2 = 8y$$

Then, equation of tangent at P $tx = u + at^2$

$$\Rightarrow y = tx - at^2$$

Then, slope $t = \tan \theta$

Now,
$$y = an heta x - 2 an^2 heta$$

 $\Rightarrow \cot heta y = x - 2 \tan heta \Rightarrow x = y \cot heta + 2 \tan heta$

Parabola Point(s) of intersection of two curves

Q. The tangent to the parabola $y^2 = 4x$ at the point where it intersects the circle $x^2 + y^2 = 5$ in the first quadrant, passes through the point :

A
$$\left(-\frac{1}{3}, \frac{4}{3}\right)$$
 B $\left(\frac{1}{3}, \frac{3}{4}\right)$ **C** $\left(\frac{3}{4}, \frac{7}{4}\right)$ **D** $\left(-\frac{1}{4}, \frac{1}{2}\right)$
JEE-Main 2019

Parabola Point(s) of intersection of two curves

Q. The tangent to the parabola $y^2 = 4x$ at the point where it intersects the circle $x^2 + y^2 = 5$ in the first quadrant, passes through the point :

A
$$\left(-\frac{1}{3}, \frac{4}{3}\right)$$
 B $\left(\frac{1}{3}, \frac{3}{4}\right)$ C $\left(\frac{3}{4}, \frac{7}{4}\right)$ D $\left(-\frac{1}{4}, \frac{1}{2}\right)$
Solution: JEE-Main 2019

To find intersection point of
$$x^2 + y^2 = 5$$
 and $y^2 = 4x$,
substitute $y^2 = 4ax$ in $x^2 + y^2 = 5$, we get
 $x^2 + 4x - 5 = 0 \Rightarrow x^2 + 5x - x - 5 = 0$
 $\Rightarrow x (x + 5) - 1 (x + 5) = 0$
 $x = 1, -5$

Intersection point in 1st quadrant be (1, 2).

Vedantu

Parabola Point(s) of intersection of two curves

Q. The tangent to the parabola $y^2 = 4x$ at the point where it intersects the circle $x^2 + y^2 = 5$ in the first quadrant, passes through the point :

A
$$\left(-\frac{1}{3}, \frac{4}{3}\right)$$
 B $\left(\frac{1}{3}, \frac{3}{4}\right)$ C $\left(\frac{3}{4}, \frac{7}{4}\right)$ D $\left(-\frac{1}{4}, \frac{1}{2}\right)$
JEE-Main 2019

Intersection point in 1st quadrant be (1, 2).

Now, equation of tangent to $y^2 = 4x$ at (1, 2) is $y imes 2=2\,(x+1)\Rightarrow y=x+1$ $\Rightarrow x - y + 1 = 0....(i)$ Hence, $\left(\frac{3}{4}, \frac{7}{4}\right)$ lies on (i)

Q. Equation of a common tangent to the circle, $x^2 + y^2 - 6x = 0$ and the parabola, $y^2 = 4x$, is:

- **A** $2\sqrt{3}y = 12x + 1$ **B** $\sqrt{3}y = x + 3$
- **C** $2\sqrt{3}y = -x 12$ **D** $\sqrt{3}y = 3x + 1$ **JEE-Main 2019**

Perpendicular Distance of a line from a point.

Common Tangent

Q. Equation of a common tangent to the circle, $x^2 + y^2 - 6x = 0$ and the parabola, $y^2 = 4x$, is:

D

A
$$2\sqrt{3}y = 12x + 1$$

$$2\sqrt{3}y = -x - 12$$

$$\begin{array}{c} \textbf{B} \\ \hline & \sqrt{3}y = x+3 \\ \hline & \sqrt{3}y = 3x+1 \end{array} \end{array}$$

JEE-Main 2019

Solution:

$$egin{array}{l} ty = x + t^2 \ \left|rac{3+t^2}{\sqrt{1+t^2}}
ight| = 3 \end{array}$$

$$\Rightarrow t=\sqrt{3}$$

$$\Rightarrow \sqrt{3}y = x + 3$$

Common Tangent

Q. If the line **ax** + **y** = **c**, touches both the curves $x^2 + y^2 = 1$ and $y^2 = 4\sqrt{2}x$, then **lcl** is equal to

A 2 **B**
$$\frac{1}{\sqrt{2}}$$
 C $\frac{1}{2}$ **D** $\sqrt{2}$
JEE-Main 2019

Common Tangent

Vedantu

Q. If the line **ax** + **y** = **c**, touches both the curves $x^2 + y^2 = 1$ and $y^2 = 4\sqrt{2}x$, then **|c|** is equal to

A 2
B
$$\frac{1}{\sqrt{2}}$$
 C $\frac{1}{2}$ D $\sqrt{2}$
JEE-Main 2019
Fequation of tangent on $y^2 = 4\sqrt{2}x$ is $yt = x + \sqrt{2}t^2$
This is also tangent on circle
 $\left|\frac{\sqrt{2}t^2}{\sqrt{1+t^2}}\right| = 1$
 $\Rightarrow 2t^4 = 1 + t^2$
 $\Rightarrow t^2 = 1$

Hence, equation is $\pm y = x + \sqrt{2} \Rightarrow |c| = \sqrt{2}$

Q. If θ denotes the acute angle between the curves, **y** = **10** - **x**² and **y** = **2** + **x**² at the point of their intersection, then Itan θ I is equal to:

Angle of intersection between two curves

Parabola

A
$$\frac{4}{9}$$
 B $\frac{8}{15}$ **C** $\frac{7}{17}$ **D** $\frac{8}{17}$
JEE-Main 2019

nti.

Parabola Angle of intersection between two curves

Q. If θ denotes the acute angle between the curves, **y** = **10** - **x**² and **y** = **2** + **x**² at the point of their intersection, then Itan θ I is equal to:

Solution:

Since, the equation of curves are $y = 10 - x^2 \dots (1)$ $y = 2 + x^2 \dots (2)$ Adding eqn (1) and (2), we get $2y = 12 \Rightarrow y = 6$ Then, from eqn (1) $x = \pm 2$

Parabola Angle of intersection between two curves

Q. If θ denotes the acute angle between the curves, $y = 10 - x^2$ and $y = 2 + x^2$ at the point of their intersection, then $|\tan \theta|$ is equal to:

A
$$\frac{4}{9}$$
 B $\frac{8}{15}$ C $\frac{7}{17}$ D $\frac{8}{17}$
Differentiate equation (2) with respect to x
 $\frac{dy}{dx} = 2x \Rightarrow \left(\frac{dy}{dx}\right)_{(2,6)} = 4$ and $\left(\frac{dy}{dx}\right)_{(-2,6)} = -4$
At $(2,6) \tan \theta = \left(\frac{(-4)-(4)}{1+(-4)\times(4)}\right) = \frac{-8}{15}$

At
$$(-2, 6) \tan \theta = \left(\frac{(4) - (4)}{1 + (4) \times (-4)}\right) = \frac{8}{-15}$$

 $\Rightarrow |\tan \theta| = \frac{8}{15}$

Vedantu

Vedantu

Q. Let A (4, -4) and B (9, 6) be points on the parabola, $y^2 = 4x$. Let C be chosen on the arc AOB of the parabola, where O is the origin, such that the area of Δ ACB is maximum. Then, the area (in sq. units) of Δ ACB, is:

A
$$31\frac{1}{4}$$
 B $30\frac{1}{2}$ **C** 32 **D** $31\frac{3}{4}$
JEE-Main 20

Q. Let A (4, -4) and B (9, 6) be points on the parabola, $y^2 = 4x$. Let C be chosen on the arc AOB of the parabola, where O is the origin, such that the area of Δ ACB is maximum. Then, the area (in sq. units) of Δ ACB, is:

Vedantu

Solution:

Alternate Approach:

Home Assignment Problems

Q1. If the tangent at (1, 7) to the curve $x^2 = y - 6$ touches the circle $x^2 + y^2 + 16x + 12y + c = 0$ then the value of c is :

A 95 **B** 195 **C** 185 **D** 85

JEE (Main) 2018

Q2. The slope of the line touching both the parabolas $y^2 = 4x$ and $x^2 = -32y$ is

A
$$\frac{1}{2}$$
 B $\frac{3}{2}$ **C** $\frac{1}{8}$ **D** $\frac{2}{3}$

Vedantu

Previously Taken Detailed Classes on Coordinate Geometry (Lectures 27 - 32)

Straight Lines - 1

Circles and Tangents

Straight Lines - 2

Parabola and Tangents

Normal to Parabola

Ellipse and Hyperbola

Crack JEE Maths in 30 Hours - Playlist:-

https://www.youtube.com/watch?v=C4pO-NnfCcY&list=PLCtUyOrCJbxxkL5dPyLJi9UmUlrP-etG3&index=27

Vedantu

JEE MAIN 2021 CRASH COURSE

- Cover entire JEE Main Syllabus (as per the new pattern) with India's Best Teachers in 90 Sessions
- Solve unlimited doubts with Doubt experts on our Doubt App from till Exam 8 AM to 11 PM
- ✤ 1 Batch Classes will be over in 10 Weeks
- ✤ 10 full and 10 Part syllabus test to make you exam ready
- Amazing tricks & tips to crack JEE Main 2021 Questions in power-packed 90 Min sessions

Batch Starts From : Every Monday

*Crash Course Link Available in Description

Apply Coupon Code: PJCC

DISCOUNT

Join Vedantu JEE Telegram channel

Assignments

Notes

Daily Update

https://vdnt.in/jeepro

#LearningWon'tStop

All the very best :-)

DREAM ON!

Solutions to Home Assignment Problems

Q1. If the tangent at (1, 7) to the curve $x^2 = y - 6$ touches the circle $x^2 + y^2 + 16x + 12y + c = 0$ then the value of c is :

A 95 **B** 195 **C** 185 **D** 85

JEE (Main) 2018

Q1. If the tangent at (1, 7) to the curve $x^2 = y - 6$ touches the circle $x^2 + y^2 + 16x + 12y + c = 0$ then the value of c is :

JEE (Main) 2018

A 95Solution:

B 195 **C** 185 **D** 85
Equation tangent at
$$(1, 7)$$

 $\Rightarrow 2x - y + 5 = 0$
perpendicular $(-8, -6)$ to line
 $= \frac{|2(-8) - (-6) + 5|}{\sqrt{5}} = \sqrt{8^2 + 6^2 - c}$
 $\Rightarrow \sqrt{5} = \sqrt{8^2 + 6^2 - c}$
 $c = 95.$

Vedantu

Q2. The slope of the line touching both the parabolas $y^2 = 4x$ and $x^2 = -32y$ is

A
$$\frac{1}{2}$$
 B $\frac{3}{2}$ **C** $\frac{1}{8}$ **D** $\frac{2}{3}$

Vedantu

Previously Taken Detailed Classes on Coordinate Geometry (Lectures 27 - 32)

Straight Lines - 1

Circles and Tangents

Straight Lines - 2

Parabola and Tangents

Normal to Parabola

Ellipse and Hyperbola

Crack JEE Maths in 30 Hours - Playlist:-

https://www.youtube.com/watch?v=C4pO-NnfCcY&list=PLCtUyOrCJbxxkL5dPyLJi9UmUlrP-etG3&index=27

Vedantu

Approach: Let the tangent to parabola
$$(y^2 = 4ax)$$

be $(y = mx + \frac{a}{m}) - (i)$
gf it touches other curve, solre(i)
curve eqn. of arve & make its
 $(D = 0)$ to get value of m.
 $x^2 = -32y$

