

Beyond HFCs: Refrigerant Management in Design, Construction, and Operations

Since 1972, Steven Winter Associates, Inc. has been providing research, consulting, and advisory services to improve the built environment for private and public sector clients.

Our services include:

- Energy Conservation and Management
- Sustainability Consulting
- Green Building Certification
- Accessibility Consulting

We have over 125 staff across three office locations: New York, NY | Washington, DC | Norwalk, CT

For more information, visit www.swinter.com

By providing a whole-building approach to design and construction

Steven Winter Associates, Inc. Improving the Built Environment Since 1972 Steven Winter Associates is a Registered Provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to CES Records for AIA members. Certificates of completion for non-AIA members are available on request.

This program is registered with the AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA or any material of construction or any method or manner of handling, using, distributing or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation

This presentation is protected by US and International copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited © Steven Winter Associates, Inc. 2019

Upon Completion of Module

You will receive the following items via email:

- AIA Certificate of completion-can also be used for:
 - PHI Credits
 - NYS PE CEUs
- PDF of final presentation
- Link to the webinar recording

Steven Winter Associates, Inc.

Provider #: J827

THIS CERTIFICATE IS TO CERTIFY THAT Katie Zoppo

PARTICIPATED IN Module 1: Overview of PH/Net Zero Building Concepts, Techniques and Benefits

> COURSE NUMBER MIOOPHNZBCTAB

ON February 11th, 2020

> LOCATION New Paltz, NY

EARNING 4 AIA CES Learning Unit/HSW

Lois B. Arena, PE Director, Passive House Services Steven Winter Associates, Inc. even Winter Associates, Inc 61 Washington Stree Norwalk, CT 0685-203.857.020 LarenaStreiter con

Overview of Presentation

Why we are here: Directive 1B-2

- 2018 Chancellor calls for all new buildings to be zero-net-carbon & deep energy retrofits for existing buildings
- 2018 SUCF issued Directive 1B-2
 - Purpose: define and identify goals for Net Zero Carbon (NZC) new buildings and Deep Energy Retrofits (DER) of existing buildings.
 - Function: outlines the project target goals and provides direction for project designs.
 - Metrics: Site Energy as the measure of performance and energy consumption.

Why we are here: Directive 1B-2

- Design and construct highly energy efficient buildings which significantly reduce energy consumed below an energy code standard for new buildings or energy usage for an existing building.
- In the case of insufficient project funding, the design goal will be to design the building as NZC "capable" where: the design achieves the energy use intensity (EUI) limit using HVAC equipment and systems that can be electrically powered from renewable energy sources.

New Building Performance goals:

Site Energy Use Intensity (EUI) limits

Classroom building	50 kBTU/ft2/year
Office building	50 kBTU/ft2/year
Laboratory building	150 kBTU/ft2/year
Residence Hall	32 kBTU/ft2/year

These Trainings

- Module 1: Overview of PH and Net Zero
- Module 2: Construction Methods and High-Performance Products and Details
- Module 3: Air Barrier Development & Implementation
- Module 4: Net Zero HVAC Strategies and Controls + DHW
- Module 5: Construction Documents and Bidding
- Module 6: Deep Energy Retrofits
- Module 7: Refrigerant Management in Design, Construction, and Operations
- Module 8: Construction Manager/Subcontractor/Tradesperson Training

Why talk about refrigerants?

Drawdown – Summary of Solutions, by Rank

▲ Donale	\$	\$ Sector	TOTAL ATMOSPHERIC CO2-EQ REDUCTION	♦ NET COST	SAVINGS
капк	Solution	060101	(GT)	(BILLIONS US \$)	(BILLIONS US \$)
1	Refrigerant Management	Materials	89.74	N/A	\$-902.77
2	Wind Turbines (Onshore)	Electricity Generation	84.60	\$1,225.37	\$7,425.00
3	Reduced Food Waste	Food	70.53	N/A	N/A
4	Plant-Rich Diet	Food	66.11	N/A	N/A
5	Tropical Forests	Land Use	61.23	N/A	N/A
6	Educating Girls	Women and Girls	51.48	N/A	N/A
7	Family Planning	Women and Girls	51.48	N/A	N/A
8	Solar Farms	Electricity Generation	36.90	\$-80.60	\$5,023.84
9	Silvopasture	Food	31.19	\$41.59	\$699.37
10	Rooftop Solar	Electricity Generation	24.60	\$453.14	\$3,457.63

Source: https://www.drawdown.org/solutions/table-of-solutions

History of Refrigerant Management

When poll is active, respond at PollEv.com/swa335
 Text SWA335 to 22333 once to join

What are some concerns when refrigerant leaks?

History of Refrigerant Management

Health and Safety	ToxicityFlammability	Montreal Protocol - 1987
		Clean Air Act – 1990 amendment
Environmental	 Ozone Depletion Potential (ODP) Global Warming Potential (GWP) 	Kigali Amendment to the Montreal Protocol – 2016
Economic	EfficiencyPerformance	Standards like ASHRAE 15, ASHRAE 34, UL 60335-2-40

History of Refrigerants

FIGURE 1. Timeline of Refrigerant History.

Source: https://www.epa.gov/snap/refrigerant-safety

- Historically refrigerants were flammable, toxic, or both
- Search for nonflammable, good stability
 - 1926 A chlorofluorocarbon (CFC), (R-12)
 - 1936 First hydrochlorofluorocarbon (HCFC) - R-22
- CFCs and HCFCs a Success:
 - Nearly nontoxic
 - Nonflammable
 - Highly stable
 - Good thermodynamic properties

Ozone Layer Depletion

Montreal Protocol -1987

Year	Ban on	Exceptions
2010	R-22 and R-142b	Existing Equipment Servicing
2015	All HCFCs	Existing Equipment Servicing
2020	R-22 and R-142b	Servicing with recycled or stockpiled R-22
2030	All HCFCs	NA

- Regulation and phase out of CFCs & HCFCs
- 2010 ban on production, import and use of R-22 and R-142b, except for continuing servicing needs of existing equipment
- 2015 ban on production, import, and use of all HCFCs, except continuing servicing needs of equipment
- 2020 ban on remaining production and import of R-22 and R-142b. After 2020, servicing with R-22 will rely on recycled or stockpiled
- 2030 ban on remaining production and import of all HCFCs

December 31, 1970 Clean Air Act of 1970

December 2, 1970 Official Formation of EPA

https://www.epa.gov/history

Clean Air Act (1990) Section 608

R-410a

- Hydrofluorocarbon (HFC) no Chlorine
- 1991 Honeywell
- First Residential AC: 1996
- Recommended alternative in Montreal Protocol

24

• Widespread use as R-22 phased out (2010+)

Success!

Earth

Jan. 4, 2018

NASA Study: First Direct Proof of Ozone Hole Recovery Due to Chemicals Ban

For the first time, scientists have shown through direct satellite observations of the ozone hole that levels of ozone-destroying chlorine are declining, resulting in less ozone depletion.

https://www.nasa.gov/feature/goddard/2018/nasa-study-first-direct-proof-of-ozone-hole-recovery-due-to-chemicals-ban 26

1979

2006

1987

2011

Total Ozone (Dobson Units) 300 400

Solve Ozone Issue, Now GHG Issue

- Early 2000s, discovered an issue with HFCs
 - No Chlorine = No thinning of ozone
 - New Problem = Global Warming Potential (GWP)
- GWP: relative measure of how much heat a greenhouse gas can trap in the atmosphere. $CO_2 = GWP$ of 1
- Do not want these systems to leak!

When poll is active, respond at PollEv.com/swa335Text SWA335 to 22333 once to join

What do you think the GWP of R-410a is?

GWP of Common Refrigerants

Global Warming Potential (GWP)

Refrigerant Type per Equipment

Equipment Type	Typical Refrigerant Charge (Ibs.)	Ultra High	Very High	High	Medium	Low	Very Low	Ultra Low
Industrial Refrigeration	1,340 – 8,110	R-12	R-11 R-404a	R-22 R-134a			R-123	
Commercial Refrigeration	1,320 – 1,980	R-12	R-404a R-507a	R-22				
Chiller	570 – 1,150	R-12	R-11	R-22 R-134a R-407c			R-123	
Unitary AC	3.5 – 9.5			R-22 R-410a				
Window AC	1.1 – 1.3			R-22 R-410a R-407c				
Automobile AC	1.1 – 2.3	R-12		R-134a				R-1234yf

Refrigerant Blends

- Mixture of different chemical compounds
 - Zeotropic (400s)
 - Azeotropic (500s)
- Fractionation is possible
 - Charging the system in vapor phase instead of in liquid phase
 - Tank had a small leak
 - The system has a significant leak.

Questions? 32

Refrigerant Leaks

 Estimated amount of leakage

When poll is active, respond at PollEv.com/swa335
 Text SWA335 to 22333 once to join

What percentage of equipment experiences a refrigerant leak?

Equipment Refrigerant Leaks

Window/Wall

AC Units

- WSHPs
- Chillers
- RTUs

Sources: IPCC (2014),³² World Bank (2014),²⁰⁹ EPA (2012),²¹⁰ Xiang, et al. (2014),²¹¹ ICF (2007)²¹² Figure 3-2: Estimated global GHG emissions from A/C systems in 2010

Refrigerant Leakage – Government Perspectives

Empirical Study: Impacts of Leakage from Refrigerants in Heat Pumps

- Mostly Air to Water Heat Pumps and Ground Source Heat Pumps
- 3.5% of refrigerant is leaking
- 8-10% of systems leak per year

Installation Type	Frequency of Leakage	Scenario	Leakage Rate for Systems that Leak	Equivalent Annual Leakage Rate ⁴
	8.97%	Low ¹	20%	1.81%
Non-Domestic		Central ²	42%	3.77%
		High ³	85%	7.63%
		Low ¹	18%	1.82%
Domestic	10.00%	Central ²	35%	3.48%
		High ³	100%	10.00%
Notes: 1. 25 th Centile Figure 2. Median Figure 3. 75 th Centile Figure				

4. Derived from the frequency of leakage multiplied by the leakage rate when leakage occurs. **Table 12: Operational Leakage Rates**

"The quality issues regarding this data also raised questions about the nature of log book record keeping in the UK, as our sample indicated very low levels of compliance with the EU F-Gas regulations

www.gov.uk/government/publications/impacts-of-leakage-from-refrigerants-in-heat-pumps

Refrigerant Leakage – Government Perspectives

Department of Defense – Unified Facilities Criteria: https://wbdg.org/FFC/DOD/UFC/ufc_3_410_01_2013_c4.pdf

- "(The Services estimate a current annual refrigerant leak rate of 25%.)"
- "Tracing and repairing a leak on a VRF system is many times more difficult with an additional access requirement of maintenance crews to the workspace environment."

Refrigerant Leakage – Government Perspectives

Figure 4: Comparison of Heating Results with Similar Studies

Leak Sealers?

- For the most part:
 - There is a complex chemistry situation going on in your refrigerant system
 - Probably not a good idea unless approved by the manufacturer

Real World Carbon Performance

U.S. Greenhouse Gas Emissions by Gas, 1990-2017

Gas Leakage

AND

 Recent study shows 60% higher methane loss than EPA measured

Questions? 50

10 Minute Break

Refrigerant management considerations in design

Extent of refrigerant in high efficiency buildings

Occupant safety

Code requirements

Occupant Safety

Global Warming is a major issue BUT first we have to deal with the immediate health and safety of the building occupants

Refrigerant Safety Risks

- Flammability
- Acute toxicity
- Oxygen Depletion
 Potential

_ ▲		SAFE	TY GROUP								
ILAM CREABILITY	Higher Flammability	A3	В3								
	Flammable	A2	B2								
	Lower Flammability	A2L	B2L								
	No Flame Propagation	A1	B1								
		Lower Toxicity	Higher Toxicity								

Flammability and Toxicity of Refrigerants

Refrigerant Safety

- ASHRAE Standard 15 2019
 - Refrigeration system personal safety
 - Limits max charge so a complete discharge into a small, enclosed, occupied room can not exceed the allowable limit
- ASHRAE Standard 34 2019
 - Refrigerant Naming Conventions
 - Toxicity and Flammability Assignments

When poll is active, respond at PollEv.com/swa335
 Text SWA335 to 22333 once to join

What is refrigerant charge?

ASHRAE 15-2019

Space Types

- Institutional Occupancies
- Industrial Occupancies
- Refrigerated Rooms
- Machinery Rooms

Acronyms

IDLH	immediately dangerous to life or health
LFL	lower flammability limit
OEL	occupational exposure limit
RCL	refrigerant concentration limit

ASHRAE 15-2019 Requirements Oxygen Depletion Potential

https://www.youtube.com/watch?v=ncgLDYrvN6w

ASHRAE 15 Refrigerant Detection Requirements

- 8.11.5
- Machinery rooms shall contain a detector
 - Alarm @ OEL
 - Audible and Visual
 - Inside and outside the room
 - Manual Reset
- Refrigerated rooms that exceed the RCL (7.2.2)
- Additional Requirements for Flammable
 Refrigerants
 Credit to Tom Burniston and Bacharach generally for content on refrigerant leak detection

Refrigerant Leak Detection – Not just for safety

- Refrigerant leaks
 - Reduce performance and efficiency
 - Refrigerant isn't cheap
 - Bad for the environment

Equipment	t Type	Ch	arge Sizes	s (lb)
Chillers		57	0 - 1,150	
				•

ASHRAE 15-2019 Requirements

• <6.6 lbs refrigerant:	Equipment Type	Charge Sizes (Ib						
Exempt from most requirements	Chillers	570 - 1,150						
	Cold Storage	0.017 - 0.019/ft ²						
	Commercial Refrigeration	1,320 - 1,980						
	Dehumidifiers	0.4 - 0.5						
	Domestic Refrigerators & 0.51 Freezers							
	Ice Makers	5.5 - 6.6						
	Industrial Refrigeration	1,340 - 8,110						
	PTAC/PTHP	1.3 - 1.5						
	Unitary AC	7.5 - 9.5						
	Window AC	1.1 - 1.3						

Refrigerant Recovery and Reuse

- Reuse
 - Properly evacuate
 - Reuse in the same system/Same Owner
- Recovery & Reclaiming

Box 2. Why Shouldn't I Just Vent Refrigerant?

- 1. It's illegal;
- 2. It's harmful to the environment and human health; and
- 3. You can earn money by selling recovered refrigerant to an EPA-certified refrigerant reclaimer.

Example Equipment from Tru Tech Tools

When poll is active, respond at PollEv.com/swa335
 Text SWA335 to 22333 once to join

What else is in your refrigeration system besides refrigerant?

What else is in there?

...and sometimes other things that probably shouldn't be there

Why Oil?

• Ensure mechanical components in the compressor are properly lubricated

Oil Management

Issues with Oil

- Refrigerant Migration (Liquid in Compressor)
 - Refrigerant not Evaporating completely
 - Dirty evaporator air filters
 - Failed evaporator fan
 - Excess refrigerant charge

- Moisture in the system
- Oil trapping
 - Contaminants clogging system components
 - Piping configuration issue

Acid?

Oil Management System

Oil Management System General Strategies for Chillers

Magnetic Bearing Chillers

71

https://www.energy.gov/eere/femp/magnetic-bearing-chiller-compressors

	AIR-COOLED CHILLERS																													
TAG SERVICE LOCATION COO CAP/ (TO						EVAPORATOR			PE	DEEDIO	REFRIG.	COMPRES		RESSOR	AMBIENT (F)		CONDENSER FANS		ER FANS	eni	ELECTRIC (SINGLE		. DATA DINT)	DIMENSIONS		NS	OPER.			Ī
	LOCATION	CAPACITY (TONS)	GPM MIN FLOW EWT LWT MAX (GPM) (F) (F) P.D. (FT)	COP	TYPE	CHARGE (LBS)	QTY	TYPE	NO. STAGES	MAX	MIN	QTY	KW EACH	SPEED CONTROL	(dBA)	BA) MCA N	MOCP	V- Ф-НZ	L (IN)	W (IN)	H (IN)	WEIGHT (LBS)	MFR	MODEL						
CH-1	AHU-1	ROOF	80	154	96	57	45	9.75	2.85	R-410A	47	4	SCROLL	4	95	40	4	10 1/3	VFD		160	175	480-3-60	95	89	90	5,200	CARRIER	30RB020	Ī

REVOLUTIONARY ENERGY SAVINGS

Air-cooled oil-free centrifugal chillers from Smardt Chiller Group

SMARDT TD - 0081B 16 Dec 2011

Oil free centrifugal technology - Smardt Chiller

Oil-free centrifugal compressor technology boosts energy efficiency, cuts operating costs and is now well-proven worldwide. ... The totally **oil-free** Turbocor technology achieves the highest partload efficiencies for **chillers** and chilled water systems (including water-, **air**- and evaporatively**cooled** applications).

www.mcquay.com.hk > my-product > magnetic-bearing-oil-free-air-c... ▼

Magnetic Bearing Oil-free Air-cooled Chiller - McQuay

Magnetic bearing centrifugal compressor eliminates the efficiency-robbing friction inherent in traditional **chiller**. The positive pressure, **oil-free** design eliminates ...

www.daikin-ce.com > en_us > press-releases > centrifugal-oilfree-chiller 💌

Daikin introduces innovative new oil-free chiller | Daikin

Jul 24, 2018 - The new DZ Series Water-**Cooled Oil Free** Centrifugal **chiller** is fitted with centrifugal compressors which utilize frictionless magnetic bearings ...

www.lg.com > global > business > oil-free-centrifugal-chiller 💌

Oil Free Centrifugal Chiller | Air Solution | Business | LG Global

LG's **oil free chiller** has simplified the piping structure by eliminating oil-related parts. There is no need to replace oil or filters. Learn more now.

www.multistack.com > products > maglev-oil-free-centrifugal-chillers -

Maglev oil free centrifugal chillers - Multistack

Multistack's MagLev product lines utilize **oil-free** compressor technology to provide solutions that ... Packaged **Air Cooled** MagLev Centrifugal **Chiller** (ASP_F).

Oil Management System General Strategies for VRF Systems

- General Strategies for VRF Systems
 - Design of Compressor
 - Oil level monitoring
 - Compressor Oil Sharing
 - "Oil Recovery Mode"

Questions? 74

Definitions

VRF (Variable Refrigerant Flow) Outdoor Units / Indoor Units

Inverter, inverter-driven

Variable-speed (compressors)

Air-Source

Takes heat from (and rejects heat to) outdoor air
Heat Pump

- An AC unit with a reversing valve to change direction of refrigerant flow
- By reversing direction, heat pump changes from cooling to heating
- Heat is rejected/absorbed through an outdoor unit or condenser water loop
- Heating and cooling

Air Source vs Water Source

• Air Source

- Heat is rejected/absorbed directly from the outdoor unit to outside air
- Does not require a condenser water loop with heat rejection/injection

Water Source

- Makes use of a condenser water loop and condenser water pumps to take the heat from the condenser to the cooling tower
- For heating mode to occur for VRFs and heat pumps, the condenser needs to absorb heat from the condenser water. Therefore, the condenser water loop also has a method of heat injection typically from boilers.

ASHP Tree

1:1 ASHPs

- One indoor unit to one outdoor unit
- Cooling and Heating

1:1 Split ACs

- Typically wall mounted indoor unit
 - EMRs and mech rooms
- Exterior air-cooled condensing unit
- One indoor unit to one outdoor unit
- Cooling Only

VRFs – Heat Pump VRF

VRFs – Heat Recovery

Heating and Cooling Systems Employing Heat Pumps

50°E BTUs out

BTUs in

Cool air out

Low Temp Hydronic

Water/Ground Source Heat Pump

Heat Pump Water Heaters - Residential

Heat Pump Water Heaters Large Scale

Questions? 87

10 Minute Break

When poll is active, respond at PollEv.com/swa335
 Text SWA335 to 22333 once to join

Why are we concerned about the volume of spaces that contain components of a refrigerant based system?

"need_enough_free_air"

"Exhaust"

"Low oxygen levels"

"Oxygen level"

"Oxygen_depletion"

"Exhaust"

"Keep refrigerant levels at save level during leakage"

Applying Standard 15 in VRF System Design

- 1. Layout of system
- 2. Calculate amount of R-410a
 - Many VRF manufacturers have calculation software
- 3. Verification of Standard 15 compliance
 - Occupancy classification
 - Room volumes
 - Confirm no room is too small
 - Review refrigerant piping requirements

VRFs = Direct System

Direct System = High Probability System

Figure 5-1 Refrigerating system designation.

Determine Room Volumes

- Calculate room volume of smallest occupied room
- Based on the volume of space refrigerant disperses in case of a leak
- The plenum space above a suspended ceiling can be part of the room if it is a part of the air supply or return system

Confirm No Room is Too Small

If Room is Too Small – Increase Room Volume

- Use louvers, transfer grilles, etc. to "connect" space to other rooms
- Raise ceiling height

If Room is Too Small - Relocate indoor unit

Duct to several rooms

Move to Plenum

If Room is Too Small – Optimize Piping

 Reduced lengths of the main distribution piping can decrease the refrigerant charge in the circuit

If Room is Too Small – Divide System

Refrigerant Piping Requirements – Standard 15

- Cannot be:
 - <7.25' above the floor</p>
 - In a shaft with moving object
 - In an enclosed means of egress
- Protect piping or cause obstruction
- Field installed joints to remain exposed for visual inspection before covered or enclosed

Questions? 100

Pipe Installation

- Protection of Piping
- Brazing
 - Flow nitrogen
 - Copper Oxide = bad
- Proper insulation

Pipe Testing

Airtight test procedure	Restriction				
(1) After obtaining to the design pressure (4.15 MPa) using nitrogen gas, allow the system to stand for about one day. If the pressure does not drop, airtightness is good. However, if the pressure drops, and the leakage area is unknown, the following bubble test may also be performed.	If a flammable gas or air (oxygen) is used as the pressurization gas, it may catch fire or explode.				
(2) After the pressurization described above, spray the flare connection parts, brazed parts, and other potential leakage areas with a bubbling agent (Kyuboflex, etc.) and visually check for bubbles.	Pressure				\$
(3) After the airtight test, wipe off the bubbling agent.		4.15	=	601.9066	
		Megapascal 💠		Pound-force per square inch	\$

1108.1 General. Every refrigerant-containing part of every system that is erected on the premises, except compressors, condensers, vessels, evaporators, safety devices, pressure gauges and control mechanisms that are listed and factory tested, shall be tested and proved tight after complete installation, and before operation. Tests shall include both the high- and low-pressure sides of each system at not less than the lower of the design pressures or the setting of the pressure relief device(s). The design pressures for testing shall be those listed on the condensing unit. compressor or compressor unit name-plate, as required by ASHRAE 15.

Nitrogen Pressure Testing Considerations

Example

Pressure test at 8:00 am @ 600 psi at a ambient temperature of 87° F

Pressure test check the next day at 8:00 am at a ambient of 66° F and a gauge reading of 583 psi. Since Nitrogen is subject to expansion and contraction due to ambient temperatures, we must use a formula to compensate for temperature changes from one day to the next when performing the 24 hour pressure test. The following formula will help you do this.

Take the temperature when the system is pressurized (Tp) and subtracting the temperature when the pressure is checked (Tc) and multiplying by a factor of 0.80 to get the pressure drop (PD).

$$(\underline{Tp} - \underline{Tc}) \times 0.80 = PD$$

 $37^{\circ}- 66^{\circ} \times 0.80 = 16.8$ psi pressure drop.

Starting Pressure 600 psi Pressure drop -16.8 psi 583.2 psi

<u>No Leaks</u>

Do you have a leak ?

Be careful what you ask for...

Evacuation

- Micron Scale
- Confirm no leaks
- Confirm no moisture

Evacuate and Charge

	LotBlock	N-101			
		Chk NA Iss			
Evac and Charge					
Confirm test pressure at 95 -100 PSI					
Confirm CU connected to the correct Apt.					
Evacuate to 30" hg and Charge by weight.					
0-15Ft 0 lbs-0 ozs					

Charging

• Measure twice charge once

FW: Pipe Testing

To Kelly Westby

Сс

i) You replied to this message on 8/19/2015 5:40 PM.

~

.

Mitsubishi Submittal.pdf 7 MB

Hi Kelly-

Mechanical Contrcator believes that the calculations regarding the refrigerant charging you are looking for are included within the Mitsubishi condenser/FCU/branch controller submittal attached. Please take a look and let me know if you require further information. Thank you.

K Generation Y Series Charge Caclulation					
	Feet	oz/foot	Y/N	Add Oz	Total
Liquid Pipe					
7/8 Pipe (ft)		4.19			0
3/4 Pipe (ft)	215	3.12			670.8
5/8 Pipe (ft)	8	2.16			17.28
1/2 Pipe (ft)	64	1.3			83.2
3/8 Pipe (ft)	341	0.65			221.65
1/4 Pipe (ft)	79	0.26			20.54
otal IU Capacity					
Models ~ 27				71	
Models 28 ~ 54				89	
Models 55 ~ 126				106	
Models 127 ~ 144				124	
Models 145 ~ 180				159	
Models 181 ~ 234				177	
Models 235 ~ 273				212	
Models 274 ~ 307				283	
Models 308 ~ 342				318	
Models 343 ~ 411			v	353	353
Models 412 ~ 480				424	
Models 481 ~				494	
OU Capacity					
P72				0	
P96				71	
P120				283	
P144 (Single)				283	
P144 (Dual Module)				0	
P168				71	
P192				283	
P216				354	
P240				566	
P264				283	
P288				354	
P312				566	
P326				637	
F330			v	849	849
P350			,		

3D	03/12/12	START UP	
	04/10/13	NO HEAT	LOW REFRIGERANT
	08/27/13	NO COOLING	LOW REFRIGERANT
	01/08/14	NO HEAT	LOW REFRIGERANT
3E	03/12/12	START UP	
	02/04/13	UNIT NOT WORKING	LOW REFRIGERANT
	02/20/13	NO HEAT	DISCHARGE AIR
a starts	12/30/13	NO HEAT	LOW REFRIGERANT
3F	03/12/12	START UP	
	02/12/13		REFRIGERANT LEAK
	07/31/13	NO COOLING	REFRIGERANT LEAK
	01/17/14	NO HEAT	LOW REFRIGERANT

(Re) Charging

Track it

 Prior to adding additional refrigerant, evacuate refrigerant and check for leaks

Pipe Insulation

FLUID OPERATING	INSULATION CO	NOMINAL PIPE OR TUBE SIZE (inches)					
TEMPERATURE RANGE AND USAGE (°F)	Conductivity Btu · in./(h · ft ^{2 .} °F) ^b	Mean Rating Temperature, °F	< 1	1 to < $1^{1}/_{2}$	$1^{1}/_{2}$ to < 4	4 to < 8	≥ 8
> 350	0.32 - 0.34	250	4.5	5.0	5.0	5.0	5.0
251 - 350	0.29 - 0.32	200	3.0	4.0	4.5	4.5	4.5
201 - 250	0.27 - 0.30	150	2.5	2.5	2.5	3.0	3.0
141 - 200	0.25 - 0.29	125	1.5	1.5	2.0	2.0	2.0
105 - 140	0.21 - 0.28	100	1.0	1.0	1.5	1.5	1.5
40 - 60	0.21 - 0.27	75	0.5	0.5	1.0	1.0	1.0
< 40	0.20 - 0.26	50	0.5	1.0	1.0	1.0	1.5

TABLE C403.2.10 MINIMUM PIPE INSULATION THICKNESS (in inches)^{a, c}

Questions? 111

10 Minute Break
Where is industry going?

- Advantages and disadvantages of refrigerants on the horizon
- Future-proofing of designs utilizing refrigerant

Where is Industry Going What can we do now?

Improved test procedures and performance criteria/standards for Split systems

Addressing refrigerant usage and leaks

Increase workforce training on proper system installation

Refrigerant Management -LEED

Prerequisite:
 Fundamental Refrigerant Management

INTENT

To reduce stratospheric ozone depletion.

Credit:

Enhanced Refrigerant Management

- Option 1: ODP = 0, GWP<50
- Option 2: Refrigerant Impact Calculation
- Separate requirements for commercial refrigeration equipment

Packaged Equipment

Since the 1950s, Packaged Terminal Air Conditioners (PTACs) have been used as a cost-effective means of conditioning hotels, apartments, dormitories and similar properties. Heat pump technology allowed more efficient heating, but was limited by poor low ambient temperature performance. Until now...

Ice Air's **Breakthrough Cold Climate Technology** has changed all that – allowing Packaged Terminal Heat Pumps (PTHPs) and Single Packaged Heat Pumps (SPHPs) units to function efficiently down to -5°F. And our advanced VRF technology ensures that your unit is pinpointing the exact amount of high-efficiency heating or cooling required for the desired room conditions.

Kigali Amendment

- Adds HFCs to the scope of the Montreal Protocol
- Performance Based: reduction in production/consumption of CO_{2eq} not a ban on particular refrigerants
- <80% reduction in HFCs by 2047</p>
- Expected to avoid up to 0.5°C temperature rise by 2100
- Amendment from October 28th
- Enters into force January 1, 2019

https://www.k-cep.org/wp-content/themes/kigali/page-templates/map/MapRatification.html

Oh SNAP!

U.S. EPA SNAP Regulations

The U.S. Environmental Protection Agency (EPA) issued Significant New Alternatives Policy (SNAP) regulations in 2015 and 2016 to prohibit certain end uses of HFCs where safer alternatives are available (SNAP Rules 20 and 21). The rules set deadlines for adopting HFC alternatives in commercial refrigeration, vehicle air conditioning, building chillers, foam manufacture, aerosol products, and more. In 2017, a federal court decision limited EPA's authority over HFCs under the "Safe Alternatives" provision of the Clean Air Act. The SNAP rules would have avoided about 68 million metric tons of CO₂-equivalent HFC emissions in 2025. States are now filling the gap left by the court decision.

https://www.nrdc.org/sites/default/files/media-uploads/fact sheet on state hfc action 0.pdf

California Air Resources Board (CARB) Regulations

- GOAL: Reduce HFC emissions 40 percent below 2013 levels by 2030
- Current Regulation Covers:
 - Chillers
 - Retail Food Refrigeration
 - Cold Storage Warehouses
 - Vending Machines
 - Residential Refrigeration Appliances
 - Other Non-refrigerant Items (Foams, Aerosols)

CARB Regulations: Proposed

- New residential and commercial air conditioners in buildings (excl. chillers) may use only refrigerants with GWP < 750 starting in 2023.
- New commercial refrigeration systems containing more than 50 pounds of refrigerant and installed and sold starting in 2022 may use only refrigerants with GWP < 150.
- Sales, distribution, or import for use in California of refrigerants with GWP > 1500 is prohibited starting in 2022.

NYS to follow?

NYS to follow?

NYS to follow?

- HFCs 5% of current emissions in New York State
- Projected to be 10% of 2030 emissions
- GWP typically sets the baseline as CO2 over a 100-year period
- We can also look at the impact over a 20-year period for more immediateterm impacts
- 100-year ->20-year HFCs become a bigger part of the remaining budget

SECTOR SUMMARY BUILDINGS

- Enhance Efficiency. Whether for building retrofits or brand new construction, energy-efficiency solutions are largely the same. Many address the building "envelope" and insulation—means of keeping conditioned air in and unconditioned air out—while others use technology to optimize energy use.
- Shift Energy Sources. Clean alternatives can replace more polluting fossil energy sources typically used to heat space, warm water, or prepare meals.
- Address Refrigerants. The gases used as refrigerants today are potent greenhouse gases. We can reduce emissions by managing leaks that often happen within buildings, as well as properly disposing of refrigerants (a waste process that falls under industry, above). Ultimately, these fluorinated gases can be replaced with alternatives that are not greenhouse gases.

- Safe to use
- No toxicity
- Zero flammability risk
- Compatible with all materials used in constructing cooling appliances
- Readily available
- Cost efficient
- Chemically stable
- Energy efficient

Why R32 refrigerant is the intelligent choice

08 June, 2017

Dickinson

f 🗾 🕀 🔤 🕂 🚺

Not only is the global-warming potential of R32 much lower than the refrigerants it is designed to replace, but a smaller charge is needed two wins for the price of one refrigerant. Carl Dickinson of Mitsubishi Electric discusses why R32 is the logical fit for the HVAC industry.

Refrigerant R32 is a hot topic in the HVAC

R32 and R454B "mildly flammable" A2L gases, suitable for smaller units but not acceptable for larger-charge VRF systems

...(Remember the 6.6 lbs thing)

the		JE	EV	VS)		
Magazine	News	Products	Multimedia	Refrigeration	Service	Business 101	Residentia
Home » Refrigera HVAC Comment Refrige	nt Choices fo rcial Market	or Chillers Remai	in Complex Towers Refrig es for C	eration Refrigera	^{ants}	n Comple	X
Low-GWP alternatives that are nonflammable and efficient still elusive							

Advantages and disadvantages of refrigerants on the horizon

Table 4-1: Refrigerant Changes Over Time

Refrigerant Category	Timeline	Example Refrigerants
1 st Generation "Whatever Worked"	1830-1930	HCs, NH ₃ , CO ₂
2 nd Generation "Safety and Durability"	1931-1990	CFCs, HCFCs (e.g., R-12, R-22)
3 rd Generation "Ozone Protection"	1990-2010s	HFCs (e.g., R-410A, R-134a)
4 th Generation "Global Warming"	2010-future	Low-GWP HFCs (e.g., R-32), HFOs (e.g., R-1234yf), HCs, others

Source: Calm (2008)59

Table 4-2: Summary of Refrigerant Environmental Properties

Refrigerant Type	Ozone Depletion Potential	Global Warming Potential
CFC	High	Very High
HCFC	Very Low	Very High
HFC	Zero	High
HFO	Zero	Lower
HC	Zero	Negligible
CO ₂	Zero	Negligible

Source: Adapted from Refrigerants, Naturally!60

Working with Lower GWP Refrigerants

The Danfoss Turbocor* Portfolio of Oil-Free Compressors

Environmentally Friendly: The new TGS490 is the world's first oil-free, magnetic bearing centrifugal compressor that offers the flexibility to be used with either ultra low GWP HFO-1234ze or R-515B. R-515B has a GWP of 299 and an ASHRAE A1 safety classification – allowing users to be compliant with applicable refrigerant regulations and safety codes.

R1234ze(E) and small amounts of the HFC R227ea

Back to Heat Pumps

Real World Carbon Performance

Real World Carbon Performance

Heating GHG per SF [LbCO2e/SF]

■ Gas Heated ■ Elec GHG ■ Fuel GHG ■ 5%/yr Leakage GHG

Promising results for R466A in VRF air con tests

• 10 JAN 2019

50% R32 + 50% R125 = R410A, Add trifluoroiodomethane (CF3I) Fire suppressant GWP = 0.4

- Appears to offer non-flammable, low GWP (733) alternative for R410A.
- According to Honeywell: efficiency, cooling and heating capacity of VRF systems using R466A is "very similar" to those using R410A.

www.coolingpost.com/world-news/promising-results-for-r466a-in-vrf-air-con-tests/

Real World Carbon Performance

Recap

REFRIGERANT CHOICES

		Low Pressure			Medium Pressure			High Pressure						
		R-123	R-1233zd	R-514A	R-134a	R-513A	R-1234ze	R-1234yf	R-22	R-410A	R-466A	R-452B	R-454B	R-32
Flammability	ASHRAE Class	1	1	1	1	1	2L	2L	1	1	1	2L	2L	2L
Taviaitul	ASHRAE Class	Higher (B)	Lower (A)	Higher (B)	Lower (A)	Lower (A)	Lower (A)	Lower (A)	Lower (A)	Lower (A)	Lower (A)	Lower (A)	Lower (A)	Lower (A)
loxicity'	OEL	50	800	320	1000	650	800	500	1000	1000	860	870	850	1000
Efficie	ncy (COP)	8.95	8.85	8.91	8.47	8.28	8.45	8.17	8.48	7.99	8.14	8.14	8.15	8.22
Capac	ity Change	baseline	~35% gain	~5% loss	baseline	similar	~25% loss	~5% loss		baseline	~1% loss	~2% loss	~3% loss	~9% gain
G	WP ²	79	1	2	1300	573	1	1	1760	1924	703	675	466	677
Atmospheric Life		1.3 years	26 days	22 days	13.4 years	5.9 years	16 days	11 days	11.9 years	17 years	5.6 years	5.5 years	3.6 years	5.2 years

¹None of the refrigerants shown in the table are considered "toxic" or "highly toxic" as defined by the IFC, UFC, NFPA 1 or OSHA regulations. ²GWP values reported are per the Fifth Assessment Report (AR5) of the IPCC (Intergovernmental Panel on Climate Change).

https://www.achrnews.com/articles/141178-refrigerant-choices-for-chillers-remain-complex

Working with Ultra-Low GWP Refrigerants

https://emersonclimateconversations.com/2015/04/30/co2-as-a-refrigerant-criteria-for-choosing-refrigerants/

When poll is active, respond at PollEv.com/swa335
 Text SWA335 to 22333 once to join

What is the GWP of R-744?

Working with Lower GWP Refrigerants

What is the GWP of CO2?

Criteria	How well does R744 meet the criteria?
Cooling capacity	Significantly higher volumetric capacity than conventional refrigerants
Efficiency	Varies, depending on system type and ambient temperature
Operating conditions	Operating and standstill pressures significantly higher than for all other common refrigerants
Environmental impact	Global Warming Potential (GWP) = 1, significantly lower than for commonly used HFCs
Availability of refrigerant	Varies globally, but generally available
Availability of system components	Many components differ from those used in HFC retail systems, but all are now generally available
Availability of competent service technicians	Varies globally, but generally low; service technicians must have a good understanding of refrigeration best practices and will require training for R744

https://emersonclimateconversations.com/2015/04/30/co2-as-a-refrigerant-criteriafor-choosing-refrigerants/

Criteria	How well does R744 meet the criteria?
Cost	Refrigerant cost significantly lower than for HFCs, but system costs are generally higher
Safety	Low toxicity and nonflammable; high pressures and associated hazards present challenges
Ease of use	High pressure and low critical point drive the need for more complex systems
Availability of appropriate standards	Europe standards: EN378; ISO 51491 U.S. standards: ASME B31.5; ASHRAE 15; UL 1995/CSA 22.2 No. 236-11; UL 60335-1; UL 60335-2- 40; 60335-2-34
Composition	Single molecule, no temperature glide in subcritical operations
Suitability as a retrofit refrigerant	Not suitable because of higher pressures

https://emersonclimateconversations.com/2015/04/30/co2-as-a-refrigerant-criteria-for-choosing-refrigerants/

Where is the Industry Going?

Figure ES-2: Elements of sustainable, low-emissions A/C systems

SUNY New Paltz

- Reducing building loads reduces the amount of refrigerant needed
- Consider packaged equipment
- Reduce refrigerant line lengths make sure piping is protected from damage
- Stay up-to-date with new alternatives
- Manufacturers do not always take the "if you build it they will come approach": ASK for what you want.

SUNY New Paltz

- For new projects with field installed refrigerant piping:
 - Refrigerant pipe installation inspections
 - Verification of proper system charge
 - Commissioning design review, install checks, functional testing
 - Future-proof buildings
- For new projects with packaged equipment
 - Confirm charge on site (or sample)
- For existing buildings:
 - Refer to re-charging procedures

Questions? 144

When poll is active, respond at PollEv.com/swa335
 Text SWA335 to 22333 once to join

What are some issues you have experienced or heard about VRF systems?

units oversized problems without refrigerant installed charge. refrigerant scale nitro control flow balance condensers airflow complicated software

Heat Pumps vs Heat Recovery

Heat Pump Benefits: Less pipe runs

Drawbacks:

Less user operability – all indoor units either in heating \underline{OR} cooling

Heat Recovery

Benefits:

- Greater user operability each area gets to determine heating/cooling
- In theory, more energy efficient

Drawbacks:

- More pipe runs (therefore more refrigerant -> increased leak potential)
- More equipment (branch controller)

- Do not apply Heat Pumps to any application where individual users MUST have heating or cooling whenever they need it regardless of season. Hotels, Apartment Buildings, Assisted Living etc....
- Heat Recovery

(2) 54x36 HEAT REJECTION AIR DUCTS TERMINATE IN SCREEN AT FACADE

Capacity & Efficiency

Dependent on:

- Line lengths
- Configuration
- Return temperature at indoor unit
- Ambient Temperature at outdoor unit

Capacity & Efficiency

Oversizing **IS** a problem

€≣(≽

0	Operation Status Monitor (Trend)												
	Return	n T	ime-Sea	irching	Print	View	Optior	n Wir	ndow He	elp			
P													
	IC												
		QJ	G_No	B_No	TH1	TH2	TH3	TH4	SH/SC	Li	то	Save	O/F
	001	4	1	0	70.7	81.0	81.7		1.4	270	75.0	100	Stopping
	002	4	2	0	70.7	81.0	81.7		0.7	290	75.0	100	Stopping
	003	4	3	0	69.8	81.0	82.6		1.4	290	75.0	100	Stopping
	004	4	4	0	69.8	81.0	86.9		5.9	290	75.0	100	Stopping
	005	4	5	0	71.6	81.0	94.6		13.5	290	75.0	100	Stopping
	006	4	6	0	71.8	81.7	100.4		18.5	290	74.0	100	Stopping
	007	4	7	0	69.6	81.0	104.5		23.4	290	75.0	100	Stopping
	008	4	8	0	71.1	81.0	108.9		27.9	290	75.0	100	Stopping
	009	4	9	0	71.8	81.0	108.9		27.9	290	75.0	100	Stopping
	010	4	10	0	72.5	81.0	108.0		27.0	290	75.0	100	Stopping
	011	4	11	0	72.5	81.0	104.5		23.4	290	75.0	100	Stopping
	012	4	12	0	71.6	81.7	102.9		21.1	290	75.0	100	Stopping
	013	4	13	0	72.5	81.0	98.8		17.6	290	75.0	100	Stopping

Location, Location, Location

Access

Show All Equipment

Temperature Sensors

Thermostat Location and Programming

- Don't place it:
 - Near a window
 - Directly under a supply vent
 - On an exterior wall

- Place it in a location representative of the space temperature
- Bad location of thermostat = under/over conditioning of space

Thermostat Location and Programming

- Most manufacturers have an option of controlling based on space temperature or return temperature and some have a default to measure return temperature.
- Return air temperature sensors might not accurately reflect the space conditions if:
 - The elevation of the indoor unit is significantly above the occupied space
 - The return air is not directly ducted from the space (e.g. a plenum return), or if outdoor air is ducted to the unit (whether conditioned or not).

Thermostat & Remote Sensor

Ducted Return

Plenum Return

Multiple Indoor Units In the Same Space

Fan Control

shutterstock.com • 677289067

Deadband and Differential

Standard Pneumatic Thermostat Behavior (Typical, Direct Acting)

Deadband Pneumatic Thermostat Behavior (Typical, Direct Acting)

*Minimum and Maximum Setpoints are selectable by user or building manager Applicable in systems where there is an automatic changeover between heating and cooling modes

Typical Thermostat

Heat Pump VRF Mode Changeover

Start Up

	Mode C	Inn Mode	E	Ecc. 0	0.03	l Vde	Ide	lu.	Jac 1	EVINU						
Ord	inary	C.Only	76	76 6	7 0	274.0	0.0	22.4	22.1	23						
63H5	51 63L8	S TH4	TH5	TH7	TH8	FAN-Ve	r Save	s(%) Op	e Stati	us Atti	ibute	MHNE	T Supply U	Jnit S	tart-up unit	
332	8 105.0	3 141.1	41.2	81.9	97.9		10	0		(C		0C		00	
Tc	Te	THHS	THINV	21\$4	SV1	a SV4a	SV4b	SV4d	SV7a	SV7b	SV9					
103.3	34.0	125.8	61.9	0	0	1	1	0	0	0	1					
DEM	IAND D	EMAND2	NIG	HT NIG	HT2	Rotation	Timer	UNIT C	N/OFF							
0	F	OFF	OF	F O	FF	0.00)		1							
BC	Adres:0	52 Ver1.10														• 8
BC :	Sig OC	Sig SC	1 SH	2 SC6	SVM	L1	L3		1 2 ;	3 4 5	6 7	89	ABC	DE	FO	
C.0.0	ON C.C	Inly 29	9 0.	7 36.0	1	2000	152	а	1 1	1 1 1	0 0	0 0	0 0 0	0 0	0 0	
PS1	PS3	dPHM	PT1	PT3	T1	T2 1	т <u>5</u> Т	16 b	0 0	0 0 0	0 0	0 0	0 0 0	0 0	0 0	
	3115	8.5	100.6	99.0	71.1	44.1 4	3.3 63	2.6 C	1 1	1 1 1	0 0	0 0	0 0 0	0 0	0 0	
321.4	011.0															
321.4 IC	011.0															• 83
321.4 IC	Model	G_No	B_Nc	TH1	TH2	TH3	TH4	SH/SC	Li	TO	Save	O/F	Mode	State	ICS	■ ¤ Fan ′
321.4 IC 001	Model	G_No 1	B_Nc	TH1	TH2 46.9	TH3 57.7	TH4	SH/SC 10.6	Li 367	TO 67.0	Save	O/F Test	Mode Cooling	State ON	IC S Cool ON	© ∞ Fan ′
321.4 IC 001 002	Model 18 12	G_No 1 2	B_No 1 4	TH1 77.0 72.3	TH2 46.9 46.9	TH3 57.7 53.4	TH4	SH/SC 10.6 7.0	Li 367 225	TO 67.0 70.0	Save 100 100	O/F Test Test	Mode Cooling Cooling	State ON ON	IC S Cool ON Cool ON	■ 🛛 Fan Hi Hi
321.4 IC 001 002 003	Model 18 12 48	G_No 1 2 3	B_No 1 4 3	TH1 77.0 72.3 73.0	TH2 46.9 46.9 49.8	TH3 57.7 53.4 58.5	TH4	SH/SC 10.6 7.0 8.5	Li 367 225 294	TO 67.0 70.0 67.0	Save 100 100 100	O/F Test Test Test	Mode Cooling Cooling Cooling	State ON ON	IC S Cool ON Cool ON Cool ON	Fan Hi Hi Hi
321.4 10 001 002 003 004	Model 18 12 48 18	G_No 1 2 3 4	B_No 1 4 3 2	TH1 77.0 72.3 73.0 75.2	TH2 46.9 46.9 49.8 46.2	TH3 57.7 53.4 58.5 54.9	TH4	SH/SC 10.6 7.0 8.5 8.5	Li 367 225 294 308	TO 67.0 70.0 67.0 70.0	Save 100 100 100 100	O/F Test Test Test Test	Mode Cooling Cooling Cooling Cooling	State ON ON ON	IC S Cool ON Cool ON Cool ON Cool ON	Fan ' Hi Hi Hi

- Varied Startups Procedure
- Varied Manufacturer's Rep experience
- Charge confirmation procedure
- Most startups do not focus on each FCU
- Data may be difficult to interpret

Start Up

DESCRIPTION OF WORK PERFORMED 5th + 6th Addressed units Turned power on to us all units. During startup we add the addition Refrigerant 410 A = 14. Pounds. 7th + 8th - Started addressing all units. Unit 1 is Disconnected. set all addresses. Started equipment NEW and added additional Refrigerart 14 #\$ R410A. 9th + 10th FIR - Changed up System w/ 14ths R410A

Refrigeration Piping	Yes	No
Has all system piping been completed in accordance with installation guidelines?		
Total Refrigerant Charge	2116	30tbs/Ozs
Refrigerant Charge marked on data plate?	13,	165
Crankcase heater energized?	V.	
Condenser installed with proper clearances?		
Service Checker run and data stored?	1	
Has all system piping been insulated, including RefNET and flare connections?		

			14
		COMPRESSOR#:	ENB62FB-U
		INVERTER:	YES
		CONSTANT:	YES
		VOLTS:	214
		PHASE:	3
		FLA:	24
		ACTUAL L1:	17
		ACTUAL L2:	17
DATE: Ap	ril 24, 2017	ACTUAL L3:	18
TO:	Kelly Westby	SUCTION PRESSURE:	124
	Steven Winter Associates 307.7h Avenue #1701	HEAD PRESSURE:	334
	New York, NY 10001	HEATING/COOLING MODE:	COOLING
FROM		DISCHARGE LINE TEMPERATURE:	44
			_
			-
The follow	ing units and systems have been satisf	actorily started at the above referenced project:	-
The follow	ring units and systems have been satisf plex domestic water pumps	actorily started at the above referenced project:	-
The follow	ving units and systems have been satisf plex domestic water pumps CWP-1 mestic hot water heaters	actorily started at the above referenced project:	_
The follow	ring units and systems have been satisf plex domestic water pumps CWP-1 mestic hot water heaters HWH-1 HWH-1 HWH-2	actorily started at the above referenced project:	
 Du Du De En 	ring units and systems have been satisf plex domestic water pumps CWP-1 mestic hot water heaters HWH-1 HWH-2 supr Recovery Ventilator	actorily started at the above referenced project:	_
 Du Du En 	ing units and systems have been satisf plex downs in water pumps CWP-1 mestic hot water heaters HWH-1 HWH-2 sayrs Recovery Ventilator ERV-1 chemetic headting units	actorily started at the above referenced project:	_
The follow Du Do En Ro	ing units and systems have been satisf plex domestic water pumps CWP-1 mestic hot water heaters HWH-1 HWH-2 engry Recovery Ventilator ERV-1 oftop air handling units AHU-1	actorily started at the above referenced project:	_
The follow Du Du En	ring units and systems have been satisf plex downs in water pumps CWP-1 meetic hot water heaters HWH-1 HWH-2 engry Recovery Ventilator ERV-1 oflop air handling units AHU-1 AHU-2	actorily started at the above referenced project:	_
The follow Du Do En Ro	ving units and systems have been satisf plex domestic water pumps CWP-1 mestic bot water heaters HWH-2 engry Recovery Ventilistor ERV-1 oftop air handling units AHU-1 AHU-2 ariment evaporators and associated cor EVAP-1	actorily started at the above referenced project: adensing units for floors 3 through 25	_
The follow Du Do En Ro	ving units and systems have been satisf plex domestic water pumps CWP-1 mestic bot water heaters HWH-1 HWH-2 engry Recovery Ventilator ERV-1 oflop air handling units AHU-1 AHU-2 artment evaporators and associated con EVAP-1A	actorily started at the above referenced project: ndensing units for floces 3 through 25	_
The follow Du Du Enn Ro Ap	ving units and systems have been satisf plex domestic water pumps CWP-1 mestic bot water heaters HWH-1 HWH-2 engry Recovery Ventilator ERV-1 oflop air handling units AHU-1 AHU-2 atiment evaporators and associated con EVAP-1 EVAP-1 EVAP-2	actorily started at the above referenced project: ndensing units for floces 3 through 25	_
The follow Du Do En	ring units and systems have been satisf plex domestic water pumps CWP-1 mestic hot water heaters HWH-2 engry Recovery Ventilator ERV-1 oftop air handling units AHU-1 AHU-2 attment evaporators and associated cor EVAP-1 EVAP-1 EVAP-1 EVAP-2 ACCU-TYP1 ACU-TYP2	actorily started at the above referenced project: adensing units for floces 3 through 25	_
The follow Du Do En Ro	ring units and systems have been satisf plex domestic water pumps CWP-1 mestic hot water heaters HWH-1 HWH-2 engry Recovery Ventilator ERV-1 oftop air handling units AHU-1 AHU-2 entment evaporators and associated cor EVAP-1 EVAP-1 EVAP-2 ACCU-TYP1 ACCU-TYP2 ACCU-TYP2 ACCU-TYP2 ACCU-TYP2	actorily started at the above referenced project: adensing units for floors 3 through 25	_

26th floor evaporators and associated condensing units

ACCU-26

SUPER HEAT AT CONDENSER:

27.2

Communication and Controls

	unit can be controlled.
Dry	In Dry mode, the unit dehumidifies the indoor air.
Ean	In Fan mode, the unit ventilates the area to maintain a comfortable indoor environment

Opera	tion St	tatus Mo	nitor (Tr	end)															
Retu	ım '	Time-Sea	arching	Print	View	Optio	n W	indow H	lelp										
2	B	B	ð 🖓	1-1	-														
		_				~	_											_	
IC																		83	
	QJ	G_No	B_No	TH1	TH2	TH3	TH4	SH/SC	Li	TO	Save	O/F	Mode	State	IC S	Fan	^		
001	1 4	1	0	75.2	75.2	78.1		23.0	1400	75.0	100	Operating	Heating	Defrost	Heat OFF	Stop			
002	2 4	2	0	74.3	69.6	74.5		18.5	1400	75.0	100	Operating	Heating	Defrost	Heat OFF	Stop			
003	3 4	3	0	73.4	54.9	70.3		23.9	1800	75.0	100	Operating	Heating	Defrost	Heat ON	Stop			
004	4 4	4	0	72.5	73.0	77.4		16.9	1400	72.0	100	Stopping	Heating	Stop	Stop	Stop			
005	5 4	5	0	74.3	65.3	75.2		22.1	1400	72.0	100	Operating	Heating	Defrost	Heat OFF	Stop			
006	6 4	6	0	76.1	57.7	78.1		27.9	1400	72.0	100	Operating	Heating	Defrost	Heat OFF	Stop			
007	1 4	7	0	74.3	52.7	74.5		13.5	1400	72.0	100	Stopping	Heating	Stop	Stop	Stop			

- Setpoint satisfied (Fan on or off)
- "Pre-heating", "standby"
- Several other modes besides heating/cooling (defrost)

Communication & Controls

- Controller/ BMS Integration
- Integration with Auxiliary Equipment
- Heat Pump Only: Transition from heating to cooling

Heat Pump Changeover

The Various Heat/Cool Changeover Options

There are no less than six ways to provide heat/cool changeover

Commissioning

- Check discharge air temperatures
 - max heating
 - max cooling
 - combo (heat recovery)
- 'Plug' into system

Commissioning

Maintenance Tool Data IC = Indoor coil address 3/1.04 GC G/D G/D SOG 362 361 1 0.000 310 41 Normal MODEL= Indoor coil capacity FAN-Ver Save(%) Ope Status Attribute M-NET Supply Unit Status Attribute M-NET Supply Unit Status

												01000						
63	MOD	= n	door	coi	capa	acity.	FAN	-Ver Sa	ve(%)	Ope St	tatus	Attribut	e M-N	ET Supply	/ Unit	Start-u	unit unit	AF
41			4001	001	oup	iony) З)	01 1	00	-		00		00		0	0	0
10							4	ld SV5b	5V9	AK								
127.9		G		Grou	un nu	mhor	2	1	0	41								
EEM/	AND	<u> </u>		0101	սթուս	mber		r(Hz) R	otation	Timer	Rep	M-NET	Supply	IH				
OF	F	OFF	OF	F	OFF	OFF	6	0	0.1	1	1		1	0				
-			.			- D	•	da a su da a										_
DS PL	JRY-P72	тки	в_и	0= F	sranc	n Por	t num	iber										
Otri N	Mode C	Dpe Mode					01010	aa ru	Iw	/ AL	FAN	(rpm)	LEV5a	FAN -Fre	e			
Ordin	nany	H.Only			_				5	.7 1	3	300	41	Normal				
5 HS	1 63L	з тнз		"H1 =	= Roc	om (re	eturn	air) ter	np 🛛	Ope St	tatus	Attribut	e AF					
459.4	4 126.	6 26.9	1			-	-			-		OS1	0					
Fo	Te	THHS	21S4a	• S														
127.2	3.5	109.9	1		TH	2 = P	ipe (li	auid) (temp									
CEM/		EMAND2	NIG	HE			.be (quiu)	comp		Rep	M-NET	Supply					
OF	F	OFF	OF	e T	OFF	OFF		<u> </u>		~	-		0	1				
-						тц	214 -	Dino (ane)	tomp					_			_
BC(m	nair) A	dres:053	Ver]	1.02			3/4 -	Lihe (yasj	temp								
EO S	Sig OC	Sig SC	1 SF	-1: S	SC6 S	VM S	0.40	4 10	1.2		0 0	4 5 5	78	9 A B	CD	EF	0	
H.O.(ON H.C	Dnly 56	12	85 4	40.1	0	eu/e	c = e	unarl		Suba	a a l	0 0	0 0 0	0 0	0 0	0	
151	PS3	dPHM	PT1	PT	3 T1	Т	36/3	0 - 3	upen	leau.	Subc	.001	0 0	0 0 0	0 0	0 0	0	
433.7	7 06.8	6.9	26.0	117	7.7 69	.6 49.	57.7	0.0			~ ~		0 0	0 0 0	0 0	0 0	0	
Y		1	1	1	_							1 = 1	deer		aitia	-		
IC												LI – IN	door	∟⊑v po	ositio	n		
	Model	G_No I	3_No	TH1	TH2	TH3	TH4	SH/SC	LI	TO	Save			- Allen -		, rai	h 🔶	
001	24	1	1	67.3	107.2	168.3	164.7	21.6	538	99.0	00	TO	0.4			- NC		
002	24	2	2	62.4	78.8	166.5	-	50.4	653	0.99	100	- 10 =	Set p	oint te	mp	- ИС		
003	8	3	з	73.0	75.2	148.6	-	52.6	409	99.0	100					- NC		
004	54	4	4	70.9	102.0	170.1	-	27.2	537	99.0	100	Test	Heating	Heater	Heat 0	- NC		
005	24	5	5	69.4	98.8	164.7	-	29.2	621	83.0	100	Test	Heating	Heater	Heat	- MC		
006	30	0	1	70.2	81.0	162.9	_	46.4	013	99.0	100	Test	Heating	Heater	Heat 0		-	
007 1	: 8	/	2	/5.2	108.0	162.9	-	18.4	385	99.0	100	lest	Heating	Heater	Heat (JNI -		

Looks like CN52 Pins 1&4 for heating mode indication – requires PAC-725AD wiring harness If CN25 is available, that can be used instead.

 Struggle to get manufacturer's and reps to site

- Technology changing too quickly
- Literature not always clear and accurate

PEFY-P##NMAU-E2 Service Manual provided for your reference as well.

What to do?

- Set expectations
- Provide checklist for install and start up
- Witness installation and testing when possible
- Perform functional tests
- Stay up-to date with manufacturer's requirements

6. VRF Outdoor Unit - This section must be completed for all VRF outdoor units serving dwelling units or common spaces	FT Agent Verified	N/A
6.1 Installation Checks		
6.1.1 Pressure testing on refrigerant piping has been completed for this system (indicate exact test in / test out pressure (psig) / time (hours)):///////		
6.1.2 Vacuum testing has been completed (indicate exact test in / test out pressure (psig) / time (hours))://		
6.1.3 Refrigerant line lengths and height differences have been recorded from as-built shop drawings or field measured, and documentation of the measurement is available, if requested		
6.1.4 Indicate required additional charge amount (lbs):		

Design Review – Which VRF system is heat recovery?

Design Review – How many thermostats?

Design Review - Return Air Temp or Space Temp

□ When poll is active, respond at PollEv.com/swa335
□ Text SWA335 to 22333 once to join

Should the unit be controlled off of return air temp or space temp?

Common WSHP Issues

• Central Plant Programming

WSHPs

Figure 1 - January 11-12 Heat Injection and Heat Rejection

WSHPs

Figure 2 - Heat Injection and Rejection Feb 10, 2018

WSHPs

Outdoor Air DB Temp 80 041_Value 70 65 60 Heat Inj Valve Position PCWP Status CMP1_Status SCWS Temperature SCWS Temp 06 08 which define the distribution of the sets. 2/21/2018 2:00:00 AM 2/21/2018 6:00:00 AM 2/21/2018 10:00:00 AM 2/21/2018 2:00:00 PM 2/21/2018 6:00:00 PM 2/21/2018 10:00:00 PM 21/2018 12:00:00 AM 2/21/2018 4:00:00 AM 2/21/2018 8:00:00 AM 2/21/2018 12:00:00 PM 2/21/2018 4:00:00 PM 2/21/2018 8:00:00 PM 2/22/2018 12:00: Time

Figure 3 - Heat Injection and Rejection Feb 21, 2018

Discussion 180

Join Us for More Trainings!

 Module 8: Construction Manager/Subcontractor/Tradesperson Training: Classroom and Field Training

Register here: <u>https://www.newpaltz.edu/sustainability/view-programs-and-progress/zero-net-carbon-training/workshop-schedule-registration--details/</u>

Contact Us

Steven Winter Associates, Inc. 307 7th Ave., New York, NY 10001

Jenny Powell, PE Senior Building Systems Engineer | CEM

jpowell@swinter.com

212.564.5800 x1250

www.swinter.com

Future Proofing

- Occupant Behavior Your Problem

- Energy Model **‡** Actual Energy Performance

Future Proofing

Hindsight is 2020

The future is murky

But there are things we KNOW we should consider

Consider This: Future Proof Design

- Infrastructure for the future
 - Master/Submeter Configuration
 - Robust Monitoring and Control Systems
 - Incorporate design details that enable lowcost future electrification
 - For hydronics: LOW temperature loop
 - For DHW: Allow space for or include storage (MF/Hospitality)
- Enclosure
 - Get the details right now!

Consider This: Electrify

- Plan for & Maximize Solar Now
- Consider Electrification
 - Electrify if you can
- Pay attention to new Refrigerant Options

Consider This: Watch it!

- Verification
- Commissioning
- Ongoing Monitoring

Resources

- <u>https://www.drawdown.org/solutions/materials/refrigerant-management</u>
- <u>https://www.epa.gov/snap/refrigerant-safety</u>
- <u>https://refrigeranthq.com/r-410a-refrigerant-history/</u>
- <u>https://www.epa.gov/sites/production/files/2015-</u>
 <u>07/documents/phasing out hcfc refrigerants to protect the ozone layer.pdf</u>
- <u>https://www.epa.gov/sites/production/files/2015-</u> 08/documents/section 608 of the clean air act.pdf
- <u>https://www.epa.gov/sites/production/files/documents/ConstrAndDemo_EquipDisposal.pdf</u>
- <u>http://www.daikinac.com/content/assets/DOC/White-papers-/TAVRVUSE13-05C-ASHRAE-Standard-15-Article-May-2013.pdf</u>
- <u>https://www.fluorineproducts-honeywell.com/refrigerants/press-releases/honeywell-unveils-new-nonflammable-refrigerant-with-low-global-warming-potential-for-chillers-and-heat-pumps/</u>
- <u>https://www.danfoss.com/en-us/about-danfoss/news/cf/three-danfoss-technologies-named-winners-of-2020-ahr-expo-innovation-awards/</u>

Resources

- <u>https://emersonclimateconversations.com/2015/04/30/co2-as-a-refrigerant-criteria-for-choosing-refrigerants/</u>
- https://www.energy.gov/eere/femp/magnetic-bearing-chiller-compressors
- <u>https://www.energy.gov/sites/prod/files/2016/07/f33/The%20Future%20of%20AC%20Report%20-%20Full%20Report_0.pdf</u>
- https://wbdg.org/FFC/DOD/UFC/ufc_3_410_01_2013_c4.pdf
- <u>https://www.gov.uk/government/publications/impacts-of-leakage-from-refrigerants-in-heat-pumps</u>
- <u>https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file</u> /303689/Eunomia - DECC Refrigerants in Heat Pumps Final Report.pdf

190

<u>https://www.hvacrschool.com/new-refrigerants-from-honeywell/</u>

Resources

- <u>https://www.epa.gov/ghgemissions/overview-greenhouse-gases#carbon-dioxide</u>
- <u>https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks</u>
- https://science.sciencemag.org/content/361/6398/186
- <u>https://www1.eere.energy.gov/buildings/publications/pdfs/building_america/inverter-driven-heat-pumps-cold.pdf</u>
- <u>http://ma-eeac.org/wordpress/wp-content/uploads/Ductless-Mini-Split-Heat-Pump-Impact-Evaluation.pdf</u>
- <u>https://publicservice.vermont.gov/sites/dps/files/documents/Energy_Efficiency/Reports/Evaluation</u> %20of%20Cold%20Climate%20Heat%20Pumps%20in%20Vermont.pdf