Т. Л. Сулейко, Е. И. Семёнова, доц. канд. техн. наук; Н. А. Бублиенко, доц., канд. техн. наук (НУПТ, Украина, г. Киев)

ПРИРОДООХРАННАЯ БИОТЕХНОЛОГИЯ: РЕШЕНИЕ ПРОБЛЕМЫ УТИЛИЗАЦИИ СТОКОВ МАСЛОСЫРЗАВОДА

Вода – это основа жизни на Земле, без живительной влаги ни одно живое существо в природе не способно долго прожить. Свойства воды очень разнообразны, благодаря чему она смогла найти самое широкое применение на нашей планете. Несмотря на это, человек в процессе своей деятельности нещадно загрязняет ее. Таким образом, очень большой объем пресных вод сейчас стал совершенно непригодным. Резкое ухудшение качества пресной воды произошло в результате загрязнения ее радиоактивными веществами, ядохимикатами, химическими синтетическими удобрениями бытовыми промышленными канализационными стоками и это уже глобальная экологическая проблема современности [1].

На решение этой проблемы призваны современные способы очистки сточных вод, наиболее традиционным из которых называют биотехнологический способ посредством анаэробной и аэробной ферментации стоков.

В зависимости от концентрации загрязняющих веществ в сточных водах в качестве основного этапа очистки рекомендуются анаэробная стадия (метановое брожение), аэробная ферментация или комплексное сочетание этих двух стадий. Если ХПК не превышает 2000 мг О/дм³, необходимо использование аэробной ферментации [2], если же превышает, то целесообразно в качестве основной стадии применять метановое брожение, а для доочистки - аэробный способ.

Анаэробная технология имеет целый ряд существенных преимуществ в сравнении с общепринятой аэробной [3].

Метановая ферментация значительно расширяет диапазон сточных вод, пригодных для биологической очистки. Анаэробный процесс использование меньшего количества биогенных предусматривает элементов, что является особенно важным при обработке сточных вод. Так, сточные воды с соотношением БПК₅: N : P = $(300 \div 500)$: 7 : 1 пригодны анаэробной очистки. При аэробной ДЛЯ необходимо добавление биогенных элементов; указанное соотношение будет составлять 100:5:1.

Цель данной работы — определение параметров процессов анаэробной и аэробной ферментации, при которых основные показатели очистки сточных вод достигали бы своих максимальных значений.

Проведены исследования по утилизации сточных вод молокозавода (в частности, маслосырзавода) с ХПК 4000 мг О/дм³. Метановую ферментацию этих сточных вод проводили при 50 °C, что соответствует термофильному режиму брожения. Для исследования основных показателей процесса метанового брожения сначала было проведено сбраживание сточных вод в периодическом режиме.

Наиболее интенсивно процессы трансформации загрязняющих газогенерации происходят В экспоненциальной стационарной фазах роста микроорганизмов активного ила, что и подтверждается опытными данными. Прослеживается взаимосвязь между очисткой и синтезом биогаза; наибольшее выделение биогаза наблюдается при максимальном потреблении питательных веществ сточных вод. При увеличении дозы загрузки интенсивность процессов очистки и газогенерации уменьшается, что подтверждает классические представления о жизнедеятельности микроорганизмов в условиях повышенного содержания загрязняющих веществ (таблица 1).

Таблица 1 - Основные показатели очистки и газогенерации при периодическом брожении сточных вод маслосырзавода в зависимости от доз загрузки

Сточная вода	Доза загрузки, %	$X\Pi K_{\text{кон}},$ мг O_2 /дм 3	Выход биогаза, дм ³ /дм ³	Содержание СН ₄ , %	Степень очистки, %
Масло-	30	190	3,80	73	95,3
сырзавод	50	240	3,50	67	94,0

Проведение непрерывного брожения показало, что при выбранных скоростях разведения можно достичь значительной степени очистки (таблица 2).

Таблица 2 - Основные показатели очистки и газогенерации при непрерывном сбраживании сточных вод маслосырзавода в зависимости от скорости разбавления

pusoubitemin							
Сточная вода	D×10 ⁻² , ч ⁻¹	$X\Pi K_{\text{кон}}, \text{мг} \ O_2/д \text{м}^3$	Выход биогаза, дм ³ /дм ³	Содержание СН ₄ , %	Степень очистки, %		
Масло-	1,39	550	4,1	75	86,3		
сырзавод	2,08	670	3,6	73	83,3		

Полученные данные свидетельствуют, что непрерывный режим брожения исследованных сточных вод позволяет достичь значительного

извлечения загрязняющих веществ и получить дополнительный источник энергии - биогаз.

Аэробную доочистку проводили в периодическом режиме в аэротенке-смесителе. Основное его преимущество по сравнению с другими типами аэротеиков — возможность достижения одинаковой концентрации загрязняющих веществ, активного ила и кислорода воздуха по всему объему сооружения, что обеспечивает высокую эффективность очистки [4].

Нагрузка на ил непосредственно влияет на конечные показатели процесса очистки сточных вод. При ее увеличении происходит снижение эффективности очистки.

 Таблица 3 - Основные показатели аэробной доочистки сточных вод маслосырзавода

Сточная вода	ХПК _{нач} , мг О ₂ /дм ³	ХПК _{кон} , мг О ₂ /дм ³	Продолжи- тельность аэрации, ч	Нагрузка на ил, гХПК/г	Степень очистки, %	Прирост ила, мг/дм ³
Масло-	550	20	8	0,215	96,4	205
сырзавод	670	45	12	0,295	93,3	215

Проведенные опыты показали, что использование анаэробноаэробной технологии очистки сточных вод обеспечивает практически полное извлечение загрязняющих веществ по ХПК. Таким образом, степень очистки сточных вод маслосырзавода составляет 99,5 %, что вполне удовлетворяет требованиям сброса сточной воды в водоем открытого типа.

ЛИТЕРАТУРА

- 1 Загрязнение воды, важной составляющей всего живого на Земле проблема мирового масштаба [Электронный ресурс]. М., 2020. Режим доступа: https://greenologia.ru/eko-problemy/gidrosfera/problemy-zagryazneniya-vody.html.
- 2 Ткаченко Т. JI., Семенова О. І., Бублієнко Н. О., Левандовський Л. В. И Матеріали Ш Всеукр. з'їзду екологів з міжнарод. участю (Бкологія/Ecology 2011) (Вінниця, 21-24 вересня 2011 р.). Вінниця: ВНТУ, 2011.-T.1.-C.31-34.
- 3 Лукашевич Є. А. Розробка біотехнології очистки стічних вод і виробництва біогазу на відходах молочних заводів: Автореф. дис... канд. техн. наук. К., 2003. 20 с.
- 4 Олійник О. Я., Зябликов С. В. // Пробл. водопостачання, водовідведення та гідравліки. -2005. —Вип. 4. С. 46 53.