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A B S T R A C T

Wildfire suppression costs have been increasing since the early 1970's. With growing concern over wildfire
suppression costs, our analysis addresses restoration treatment effectiveness in reducing wildfire suppression
costs. We examine past fires across the Northern Arizona landscape to determine fire behavior characteristics
that are significant in predicting wildfire suppression costs and capable of being modeled in fire simulations
prior to wildfire events. We find burn severity metrics to be significant in predicting wildfire suppression costs.
Three proposed treatment alternatives for the Four Forest Restoration Initiative (4-FRI) are analyzed to de-
termine treatment effectiveness and policy implications in reducing burn severity metrics and wildfire sup-
pression costs. The more aggressive treatments are more effective in reducing wildfire suppression costs except
in the case of sever wind and weather events.

1. Introduction

Federal agencies, including the USDA Forest Service and
Department of Interior (DOI), experienced a rising trend in wildland
fire management expenditures beginning in 1971. A 2015 GAO report
documented the average annual expenditure on wildland fire man-
agement activities at $3.4 billion over the 2004–2014 fiscal years
(GAO, 2015). The appropriation for wildland fire management activ-
ities by the Forest Service and DOI more than doubled to an annual
average of $2.9 billion during the 2001–2007-time frame compared to
an annual average of $1.2 billion from 1996 to 2000 (GAO, 2009). This
rising trend in wildland fire management expenditures is forecasted to
continue in the future with higher frequency of wildland fire occur-
rences, longer durations of wildland fire seasons (Westerling et al.,
2006), and the expansion of residential development within the wild-
land-urban interface (WUI) (Radeloff et al., 2005a, 2005b).

In previous studies wildfire size has been shown to be correlated with
estimating suppression costs (Calkin et al., 2005; Liang et al., 2008;
Thompson et al., 2013). If fire suppression costs are to be mitigated, it
seems appropriate to focus on the factors, treatments, and policy that re-
late to fires categorized as “large” in size or where the severe wildfire
threat is greatest (Pollet and Omi, 2002; Holmes et al., 2008). Our analysis
expands on previous studies by examining burn characteristics of previous

wildland fires that are significant in predicting wildfire suppression costs.
Examining previous wildfires near our study area allows us to determine
which fire behavior characteristics are useful in predicting suppression
costs. We further seek wildfire behavior characteristics that can be mod-
eled via fire modeling programs to determine wildfire suppression costs ex
ante. Incorporating wildfire behavior results, we develop a regression
model to predict wildland fire suppression costs. However, wildfire
modeling is not without error. Incorrect use of model inputs and under-
prediction bias from the models impact the model outputs and the con-
clusions drawn from model outputs (Varner and Keyes, 2009; Cruz and
Alexander, 2010). Our results are complementary to the future application
of Risk and Cost Analysis Tools Package (R-CAT) (USDA Forest Service,
2010). R-CAT's general purpose is to standardize the methods for esti-
mating risk reduction and cost savings resulting from land management
proposals and treatments. R-CAT is required for all fire projects funded by
the USDA Forest Service Collaborative Forest Landscape Restoration Pro-
gram (CFLRP) and our results are not meant to replace the required pro-
cedure (USDA Forest Service, 2010).

2. Background

There have been considerable efforts to understand the factors af-
fecting overall costs of wildland fires (e.g. Donovan and Rideout, 2003;

https://doi.org/10.1016/j.forpol.2017.11.006
Received 17 August 2016; Received in revised form 18 April 2017; Accepted 18 November 2017

☆ This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
⁎ Corresponding author.
E-mail address: ryan.fitch@nau.edu (R.A. Fitch).



Donovan et al., 2004; Gebert et al., 2007; Liang et al., 2008; Lynch,
2004; Prestemon et al., 2008; Donovan et al., 2011). Intuitively, one
important factor is the increasing trend in total hectares (ha) burned by
large wildland fires. Wildland fires < 122 hectares (ha) in size ac-
counted for approximately 98.5% of the fires managed by the Forest
Service from 1980 to 2002 but these small fires accounted for 6.2% of
the total wildland fire suppression expenditures (Strategic Issues Panel
on Fire Suppression Costs, 2004). A comparison of the average number
of ha burned by wildland fires from 1970 to 1986 and 1987–2002
shows a stark increase from approximately 115,340 ha burned to over
405,000 ha burned annually (Calkin et al., 2005). For another com-
parison, 1700 fire ignitions burned about 1.21 million ha of forests in
the Northern Rocky Mountains in 1910, while three ignitions triggered
the Rodeo-Chediski and Hayman fires, which burned> 200,000 ha in
2002. While not studied directly, Calkin et al. (2005) reported that total
hectares burned track wildland fire suppression costs “very well” on an
annual basis. Large wildfires (> 400 ha) constitute a small number of
total wildland fires that occur across the landscape (1.1%) and these
large wildland fires accounts for 97.5% of the total hectares burned
(Calkin et al., 2005). The frequency of large wildfires has markedly
increased since the mid-1980s as there were almost four times as many
large fires burning nearly seven times more land between 1987 and
2003 than compared to 1970 through 1986. The trend in the frequency
of large wildfires has gotten worse and is projected to continue with
warmer temperatures and earlier spring onset via climate change
(Westerling et al., 2006). Although total fire size (area burned) in-
creases overall suppression cost, expected suppression cost per ha de-
creases as fire size increases due to the fixed nature of many fire sup-
pression related expenditures.

Total wildland fire suppression cost has been positively correlated
with various spatial factors in addition to fire size. However, some of
these factors have produced differing results. In a study that examined
100 wildland fires > 120 ha in size between 1996 and 2005, ap-
proximately 58% of the variation in wildland fire suppression costs was
attributed to fire size and percentage of private land burned (Liang
et al., 2008). After examining 1550 wildland fires across the US, Gebert
et al. (2007) found that total housing value within 32 kilometers (km)
of the wildland fire ignition point had a positive effect on expected
suppression cost. Yoder and Gebert (2012) also found that housing
values within a 20 mile radius of the wildfire contributes to an increase
in estimated wildfire suppression costs. Complicating the hypothesis
that the proximity of houses to wildfire increases suppression costs,
Donovan et al. (2004) didn't find housing density or total housing to be
significant in predicting wildfire suppression costs. Rather, fire size was
again found to be the most significant variable (Donovan et al., 2004).

Increased wildland fire suppression expenditure has led to a
growing interest in modeling effectiveness of fuel treatments; namely,
changes in wildland fire burn probabilities and fire behavior due to fuel
treatments (e.g. Ager et al., 2011; Calkin et al., 2005; Cochrane et al.,
2012; Finney, 2005; Finney et al., 2005; Pollet and Omi, 2002; Stratton,
2004). The results of the fire modeling can be used to strategically lo-
cate fuel treatments in the landscape (Finney, 2005) and to estimate
changes in expected suppression costs due to fuel treatments (Wildland
Fire Management Risk and Cost Analysis Tools Package: R-CAT) (USDA
Forest Service, 2010).

Fire modeling used to predict fire size, characteristics, and beha-
viors has limitations. Because wildland fire behavior is modeled over a
given area of the landscape, the potential extent of a wildland fire
cannot be modeled via fire behavior modeling programs (e.g. FlamMap)
alone. ArcFuels, combined with fire behavior models was used to
strategically implement optimal fuels treatments in Region 6 (Oregon
and Washington, USA) by the US Forest Service (Vaillant et al., 2012).
With the FlamMap fire model, pixels are assessed independently of each
other regarding fire behavior.

Large wildland fires usually occur under the most extreme weather
conditions (Finney, 2005). The creation of the landscape files that are

used as inputs for modeling fire behavior are at the discretion of the
modeler. These inputs determine fire behavior, thus consultation with
an experienced fire ecologist should be considered to develop appro-
priate inputs for more accurate results. In addition, inputs such as fuel
moistures; wind speed and direction; and weather conditions are
needed in determining fire behavior. Varner and Keyes (2009) caution
and elaborate on the need for accuracy clear statements of assumptions
regarding parameter value inputs (e.g. fuel moisture and wind speed)
(Varner and Keyes, 2009).

For modeling fire size, the FARSITE simulation system could be
implemented which simulates wildland fire growth (Finney, 1998;
Finney, 2004). FARSITE incorporates the above-mentioned inputs that
FlamMap (Finney, 2006) uses but goes further to include a fire spread
model, crown fire initiation model, crown fire spread model, and dead
fuel moisture model.

Cruz and Alexander (2010) point out three main areas of bias that
occur in fire modeling (Cruz and Alexander, 2010). Of first concern is
the linkage of fire models that were created independently of one an-
other but are used in conjunction with modeling fire behavior. Sec-
ondly, Rothermel's rate of fire spread models and Van Wagner's crown
fire transition and propagation models have an underprediction bias in
assessing modeled crown fire behavior. The final point of contention is
the “crown fraction burned functions” (CFB functions) which are un-
substantiated by comparison to actual wildfire activity. We acknowl-
edge the shortcomings and complexities of current fire behavior mod-
eling tools and incorporate recommendations presented by Varner and
Keyes (2009); Cruz and Alexander (2010).

There are social and political factors that affect fire managers' de-
cisions and the expenditures committed for fire suppression efforts
(Donovan et al., 2011). In addition to fire managers' decisions, land
managers must also allocate resources to achieve goals of different
treatments types (e.g. restoration treatments vs fuel load treatments)
(Reinhardt et al., 2008; Stratton, 2004). Ecological restoration treat-
ments can differ from fuel reduction treatments; they are not analogous.
Ecological restoration is designed to return a current ecosystem to
conditions representing a range of variation from multiple references.
In the case of frequent-fire ecosystems like ponderosa pine (Pinus pon-
derosa) in the southwest USA, conditions from pre-fire exclusion (pre-
European settlement) are used to describe a restored system (Covington
and Moore, 1994). These restoration treatments include reintroducing
pre-settlement fire regimes, species composition, species spatial pat-
terns, and stand structures. Given today's overly dense ponderosa pine
stands with larger fuel loads, ecological restoration treatments attempt
to change fire behavior from high severity crown fires to low severity
surface fires in modeling studies (Stephens, 1998; Stephens and
Moghaddas, 2005; Fulé et al., 2001; Fulé et al., 2002; Roccaforte et al.,
2009; Stephens et al., 2009). Ecological restoration in ponderosa pine
meets Reinhardt et al.'s (2008) strict fuel treatment's objective as les-
sening fuel loads thereby reducing fire severity. Fuel treatments can
achieve this objective. However, in those fire regimes where infrequent,
stand-replacing fires are natural, fuel treatments could also create forest
structures that are divergent from their historical structure.

Budgeting practices have been implemented as a method to help
reduce expenditures on wildfire suppression costs. Efforts for better fire
budgeting and planning started with the 1995 Federal Wildland Fire
Policy and the National Fire Management Analysis System (NFMAS), a
tool developed by the Forest Service (DOI Office of Policy Analysis,
2012). The efforts continue with the 2009 Federal Land Assistance,
Management and Enhancement (FLAME) Act, which requires develop-
ment of a National Cohesive Wildland Fire Management Strategy. The
NFMAS seeks to optimize the Forest Service's fire budget for a given
geographical area by minimizing wildland fire related costs, utilizing
the known monetary costs associated with the “Cost plus Net Value
Change” (C + NVC). However, after reviewing over 300 re-
commendations in the previous five years, the Strategic Issues Panel on
Fire Suppression Costs (2004) characterized the federal agencies
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approach to fire suppression costs as “blank check management”. Since
that time, several other spatial wildfire risk assessment tools have been
developed (e.g. Rapid Assessment of Values At Risk (RAVAR) and the
National Wildfire Hazard and Risk Assessment) (Calkin and Gebert,
2009). The key question remains unanswered: if and how fuel treat-
ments or ecological restoration treatments reduce wildland fire sup-
pression costs in any significant magnitude. The development of R-CAT
is to directly address this question for collaborative forest landscape
restoration programs. Namely, R-CAT provides a standardized tool for
assessing wildfire risk reductions and cost savings for projects that
might be funded through the USDA Forest Service CFLRP. CFLRP al-
locates Forest Service funds to projects that are competitively chosen
with the goals of reducing fuel loads and implementing ecological re-
storation treatments and monitoring. Up to 50% of these costs can be
covered by CFLRP funds.

The C + NVC model offers a theoretical framework to the re-
lationship between wildland fire suppression costs and fuel treatments.
The total of wildland fire costs is represented by C + NVC. In the
general case of the C + NVC, costs, denoted by C (our cost measure of
interest in this analysis), are all costs associated with wildland fire
suppression and presuppression efforts, including fuel treatments; NVC
represents all other fire related loss including property damage, fatal-
ities and other value changes in marketable goods and non-market
ecosystem services. Some aspects of fuel treatments can be considered
as substitutes for suppression costs for a given level of NVC, while some
components of fuel treatments can complement those in fire suppres-
sion (Donovan and Rideout, 2003; Rideout et al., 2008). Thus, an in-
crease in fuel treatments does not necessarily imply a reduction in
suppression costs unless the desired level of NVC is held fixed. Rather
than viewing fuel treatments as a substitute for fire suppression, fuel
treatments and fire suppression expenditures should be viewed as in-
puts to NVC. Fuel treatments and fire suppression expenditures have
their individual marginal and joint effects to changes in NVC (Rideout
et al., 2008). Therefore, if we analyze tradeoffs between treatments and
suppression costs, the NVC must be held constant to directly compare
the impacts of the two decision variable inputs on costs.

3. Methods

3.1. Modeling of fire behavior characteristics

Our initial study area for fire behavior modeling is a portion of the
Coconino National Forest (southwestern U.S.A.), south/southeast of the
city of Flagstaff, Arizona, designated as restoration unit 1 (RU1)
(Appendix A). At the time of this analyses we utilized the Draft En-
vironmental Impact Statement proposed by 4FRI. Three of the four
treatment alternatives were selected for analysis. We summarize the
three treatment alternatives as the no treatment option, the preferred
treatment option, and the medium treatment option. The preferred
treatment option is the most aggressive in terms of treatment thinning
intensity. Under the preferred alternative, 175,640 ha would be me-
chanically treated across the entire 4FRI treatment area. In addition,
240,072 ha would undergo prescribed fire. The medium treatment op-
tion proposes mechanically treating 157,221 ha. Additionally,
72,356 ha would be treated using prescribed fire. In this study, we are
defining prescribed fire as fire's incorporation into land management
protocols (Ryan et al., 2013). The medium treatment alternative was
designed to address concerns about prescribed fire emissions. Treat-
ments alternatives were based on 4FRI's 2013 proposed environmental
impact statement (EIS) and final treatment parameters are expected to
change.

The current conditions of the entire 4FRI landscape were used as a
starting point to create the landscape files (LCPs) for the fire modeling
carried out in FlamMap version 3 (Mary Lata, 2013 personal commu-
nication). LCPs consist of a compilation of data layers that include fuel
models, canopy cover, height to live crown (canopy base height),

canopy bulk density, slope, aspect, and elevation. For the RU1 area,
31% of the landscape had sampled data with the remaining proportion
extrapolated to create the LPC's. Fuel models and canopy characteristics
were altered to better capture regionally specific fire behavior and ef-
fects based on the recent Schultz Fire. Fuel models represent the fuel
bed inputs that include the load, bulk density, fuel particle size, heat
content, and moisture of extinction (Scott and Burgan, 2005). The
proposed treatments were then implemented at the stand level across
the LCP file and the Forest Vegetation Simulator (FVS) (Dixon, 2002;
Crookston and Dixon, 2005) was used to project forest structure
changes for the three treatment scenarios.

The Schultz Fire burned over 6070 ha north/northeast of Flagstaff
in 2010. We utilized the fuel moisture conditions from the Schulz Fire
for the RU1 area during the three-month fire season of the analysis
(Mary Lata, 2013 personal communication). The wind and weather
conditions for the fire behavior simulations were obtained from the
Mormon Lake, Arizona remote automated weather station (RAWS) lo-
cated within the RU1 study area. Wind and weather conditioning files
were created from the RAWS weather data from the years 2008–2012
for the months of May, June, and July which comprise the fire season of
our analysis. RAWS wind data was used in modeling wildfire behavior
characteristics as an input for average wind speed and direction (azi-
muth degrees, where 0° implies north to south and 90° implies east to
west up to 360°). Fire behavior characteristics we modeled at average
wind speed, average wind speed plus one standard deviation, and
average wind speed plus two standard deviations.

FlamMap version 5.0.1.3 was used to simulate the fire behavior
characteristics of flame length and crown fire activity (Finney, 2006).
FlamMap is a PC-based fire mapping and analysis program that esti-
mates potential fire behavior characteristics for given weather and fuel
conditions (Finney, 2006; Stratton, 2006). Flame length outputs were
transformed into hauling categories as summarized in Ager et al.'s
(2011) flame length categorization. Flame length categorization pro-
vides a metric as to how effective initial wildland fire suppression ac-
tivities might be. Ager et al. (2011) summarize hauling category flame
lengths of 0–1.2 m as being able to be held by hand lines at the front or
on the flanks; 1.2–2.4 m flames are too large for hand lines to attack
head on but dozers and engines can be effective; 2.4–3.4 m flames
present problems such as torching, crowning, and spotting and head on
attacks of the fire are usually ineffective; and 3.4 + meter flames result
in crowing and spotting problems and head on attack efforts are in-
effective.

Crown fire activity outputs from FlamMap are expressed in crown
activity potential. The outputs are classified by active crown fire, pas-
sive crown fire, surface fire, and unburned. Crown fire activity was used
in conjunction with flame length to estimate areas of high burn se-
verity. In response to Varner and Keyes' (2009) crown fire under-
prediction bias, we used flame length in conjunction with crown fire
activity to create a more robust approach for estimating high burn se-
verity. Flame lengths are derived from fire line intensity outputs
(Stratton, 2006). Our assumption of high burn severity incorporates a
fire line intensity model output and a crown fire model output for burn
severity estimations. If a pixel is in the active crown fire category or had
a flame length of> 3.4 m, that pixel was estimated as high burn se-
verity. The Scott and Reinhardt (2001) Crown Fire Calculation Method
was used to calculate flame length and crown fire activity outputs in
FlamMap (Scott and Reinhardt, 2001).

FlamMap outputs were transferred into ArcGIS Desktop 10 Service
Pack 5 for geospatial referencing and analysis. Specifically, ArcGIS was
used to categorize flame lengths and crown fire activity into the metrics
discussed above and crop the FlamMap outputs within the boundaries
of the RU1 treatment area. The spatial analyst tool, “Raster Calculator,”
was used to combine the fire behavior metrics of flame length and
crown fire activity to estimate burn severity. The number of hectares in
each of the combined fire behavior metrics within the treatment area
was calculated. The analysis for categorizing burn severity was grouped
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as follows: High burn severity was assumed if any given pixel had a
flame length > 3.4 m or had an active crown fire classification. Mixed
burn severity was assumed if any given pixel had a flame length >
2.4 m or had a torching or active crown fire classification.

3.2. Regression analysis and suppression costs estimation

We conducted a regression analysis based on wildland fires that
occurred on the four national forests regionally specific to the treatment
area proposed by 4FRI (Apache-Sitgreaves, Coconino, Kaibab, and
Tonto National Forests), with the addition of the Prescott National
Forest, to estimate wildland fire suppression costs. The Prescott
National Forest was included to increase sample size in an area with
ponderosa pine as a landscape cover type. Burn severity maps were
obtained from the Monitoring Trends in Burn Severity website (MTBS)
(MTBS, 2013). Data on 67 fires> 324 ha in size on northern Arizona
National Forests between 2001 and 2011 was collected for the regres-
sion analysis. Historical wildfire suppression cost data was provided by
the USFS Rocky Mountain Research Station.

Variables of interest identified and collected to predict wildfire
suppression cost include dominant vegetation cover type, distance of
the fire perimeter to the WUI (meters), proportion of private land
burned, and total wildfire size (ha) (Table 1). Distance to WUI was
calculated using designated WUI areas as defined by each of the na-
tional forests within the sample. A natural log transformed linear re-
gression equation for predicting total expenditure and cost per hectare
of suppression was utilized for analysis (Liang et al., 2008).

4. Results

4.1. Fire behavior characteristics

A lower proportion of the landscape burned at high and mixed se-
verities in July compared to May and June. May also had the highest
proportion of the landscape with high and mixed burn severities due to
dryer weather conditions and higher wind speeds. As expected, the
proportion of the landscape that burns with high and mixed severities
increased as wind speed increased across all months.

Comparing high burn severity proportions of the landscape across
treatment types, there is a large decrease between no treatment and the
preferred and medium treatment alternatives. The preferred treatment
type is the most effective in terms of reducing the proportion of the
landscape that burns at high severity. With no treatment, the simulated
proportion of the landscape burning at a high severity under the three
different wind speeds would range between 4.28% and 33.85% (May);
1.98% and 2.13% (June); and 0.9% and 1.76% (July). The preferred
treatment alternative results in the largest reductions in the proportion
of the landscape burning at high severity under the three different wind
speeds with ranges between 0.72% and 4.01% (May); 0.33% and 0.43%
(June); and 0.02% and 0.13% (July). The medium treatment with less
prescribed fire also reduces proportions of the landscape burning at
high severity compared with the no treatment alternative but is not as

effective as the preferred treatment alternative. The medium treatment
alternative has proportions of the landscape burning at high severity
under the three different wind speeds ranging between 2.38% and
8.48% (May); 1.14% and 1.42% (June); and 0.73% and 0.88% (July).
Thus, treatment effectiveness in reducing burn severity would be
greater during the month of May. The proportion of the landscape
burning at high severity during the month of May would be six to eight
times smaller under the preferred treatment alternative than under the
no treatment alternative. The preferred treatment alternative reduces
high burn severity by 2250–18,889 ha. While the reductions in per-
centage of landscape burning at high severity for different treatment
types over the month of July are not as large compared to the month of
May, the scale at which the reductions took place was much higher. The
preferred treatment alternative is 13.5–45 times lower than the no
treatment alternative in percentage of the landscape burning at high
severity, corresponding to 558–1037 ha. The medium treatment alter-
native, in each scenario, falls between the no treatment alternative and
the preferred treatment alternative in the percentage of the landscape
burning at high severity.

Proportions of the landscape expected to burn at a mixed severity
exhibited more variability between treatment types. In general, simu-
lated outcomes of the medium treatment alternative were similar to the
no treatment alternative for the months of July and June. However, a
larger proportion of the landscape is expected to burn at mixed severity
under the no treatment alternative than the medium treatment alter-
native for the month of May. Again, the preferred treatment alternative
was the most effective in reducing mixed burn severity across the
landscape for the months of June and July. With wind conditions two
standard deviations above the average for the month of May, the pre-
ferred treatment alternative would generate the highest proportion of
the landscape burning at a mixed severity. The no treatment alternative
exhibited simulated mixed burn severity ranges under the three dif-
ferent wind speeds between 13.43% and 68.19% (May); 2.3% and
2.68% (June); and 1.9% and 1.96% (July). Under the preferred treat-
ment alternative, the simulated ranges of mixed burn severity under the
three different wind speeds were between 2.09% and 72.95% (May);
0.59% and 0.7% (June); and 0.12% and 0.24% (July). The simulated
proportions of landscape burning at mixed severity under the three
different wind speeds for the medium treatment alternative range be-
tween 4.18% and 58.33% (May); 2.54% and 2.72% (June); and 1.83%
and 1.97% (July). The correlation between implementing treatments
and reductions in burn severity were not as distinct using the mixed
burn severity metric. Under the medium treatment alternative, the si-
mulated landscape showed increases in the percentage burning at
mixed severity compared with the no treatment alternative during the
month of June. Additionally, for the month of July, the medium
treatment alternative has a higher proportion of the landscape burning
at mixed severity on the upper range of the simulations compared with
the no treatment alternative. Comparing simulations of the no treat-
ment alternative and the preferred treatment alternative at high and
mixed burn severities, we observe similar patterns of burn severity re-
ductions over the months of June and July. However, for the month of

Table 1
Dependent and independent variables used in the regression analysis.

Variable Description Source

Cost Forest Service and DOI suppression expenditure US Forest Service
Size Number of hectares burned www.mtbs.gov
Distance to WUI Shortest distance from WUI perimeter to fire perimeter National Forest website and www.mtbs.gov
Burn severity Proportion of fire that burned at high, medium, and low severity www.mtbs.gov
Private land Proportion of fire burned in private land www.land.state.az.us
Dominant vegetation type Vegetation type that had the highest percent cover within the fire perimeter National Forest website
Forest Dummy variable for the National Forest in which the fire occurred National Forest website
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May with wind speeds two standard deviations above the mean, the
simulation for the preferred treatment alternative predicts 72.95% of
the landscape burning at the mixed burn severity compared to 68.19%
of the landscape burning at a mixed severity under the no treatment
alternative. The more open conditions of the landscape resulting from
the preferred treatment alternative are allowing wind conditions to

impact flame lengths and crown fire activity more drastically compared
with the no treatment alternative. Appendix B demonstrates the dis-
tributions of high burn severities across the RU1 treatment area. Tables
2–4 report the predicted number of ha and percentage of the RU1
treatment area that burned at high and mixed burn severities for each of
the treatment types.

Table 2
Estimated high and mixed burn severities in hectares and percentage of landscape burned for the no treatment alternative.

Total hectares Estimated high burn severity
area (hectares)

Estimated proportion of high
burn severity

Estimated mixed burn severity
area (hectares)

Estimated proportions of mixed
burn severity

May avg. high wind 63,298 2710 4.3% 8500 13.4%
May avg. high wind

+ 1 std.
63,298 12,352 19.5% 19,818 31.3%

May avg. high wind
+ 2 std.

63,298 21,427 33.9% 43,161 68.2%

June avg. high wind 63,298 1255 2.0% 1457 2.3%
June avg. high wind

+ 1 std.
63,298 1304 2.1% 1564 2.5%

June avg. high wind
+ 2 std.

63,298 1349 2.1% 1694 2.7%

July avg. high wind 63,298 569 0.9% 1201 1.9%
July avg. high wind

+ 1 std.
63,298 790 1.2% 1216 1.9%

July avg. high wind
+ 2 std.

63,298 1117 1.8% 1238 2.0%

Table 3
Estimated high and mixed burn severities in hectares and percentage of landscape burned for the preferred treatment alternative.

Total hectares Estimated high burn severity
area (hectares)

Estimated proportion of high
burn severity

Estimated mixed burn severity
area (hectares)

Estimated proportion of mixed
burn severity

May avg. high wind 63,298 459 0.7% 1326 2.1%
May avg. high wind

+ 1 std.
63,298 1211 1.9% 17,219 27.2%

May avg. high wind
+ 2 std.

63,298 2538 4.0% 46,175 72.9%

June avg. high wind 63,298 211 0.3% 375 0.6%
June avg. high wind

+ 1 std.
63,298 245 0.4% 413 0.7%

June avg. high wind
+ 2 std.

63,298 273 0.4% 443 0.7%

July avg. high wind 63,298 11 0.0% 75 0.1%
July avg. high wind

+ 1 std.
63,298 24 0.0% 94 0.1%

July avg. high wind
+ 2 std.

63,298 80 0.1% 152 0.2%

Table 4
Estimated high and mixed burn severities in hectares and percentage of landscape burned for the medium treatment alternative.

Total hectares Estimated high burn severity
area (hectares)

Estimated proportion of high
burn severity

Estimated mixed burn severity
area (hectares)

Estimated proportion of mixed
burn severity

May avg. high wind 63,298 1506 2.4% 2644 4.2%
May avg. high wind

+ 1 std.
63,298 2686 4.2% 10,625 16.8%

May avg. high wind
+ 2 std.

63,298 5366 8.5% 36,923 58.3%

June avg. high wind 63,298 723 1.1% 1608 2.5%
June avg. high wind

+ 1 std.
63,298 803 1.3% 1655 2.6%

June avg. high wind
+ 2 std.

63,298 900 1.4% 1722 2.7%

July avg. high wind 63,298 465 0.7% 1160 1.8%
July avg. high wind

+ 1 std.
63,298 516 0.8% 1178 1.9%

July avg. high wind
+ 2 std.

63,298 556 0.9% 1248 2.0%
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4.2. Regression analysis and suppression costs

The explanatory power of our model is comparable to and exceeds
other regression equations predicting suppression costs (Donovan et al.,
2004; Gebert et al., 2007; Liang et al., 2008; Yoder and Gebert, 2012).
Our regression equations for total suppression costs using the high and
mixed burn severity metrics have a R2 of 0.62 and 0.61 respectively.

As expected, total area burned was significant in predicting wild-
land fire suppression costs. However, we also found that the proportion
of the wildfire that burned at high and mixed severity was significant
and the overall model explained more variation in predicting fire sup-
pression costs than previous studies (Liang et al., 2008). From the re-
gression equations based on wildfires specific to five National Forests in
northern Arizona, the model including the “high burn severity” ex-
planatory variable rather than the “mixed burn severity” explanatory
variable showed slightly more predictive power between the two
models (higher R2 with equal number of predictive variables).

Our analysis reveals a 1% increase in distance from the WUI results
in an approximate 0.16% decrease in wildfire suppression costs using
the high burn severity explanatory variable. Using the mixed burn se-
verity explanatory variable, a 1% increase in distance from the WUI
results in an approximate 0.17% decrease in wildfire suppression costs.
A 1% increase in the proportion of the wildfire burning at high severity
would increase suppression costs by approximately 6.43%.
Alternatively, a 1% increase in the proportion of the wildfire burning at
mixed severity would increase suppression costs by approximately
4.91%. Examining wildfire size, a 1% increase in ha burned results in an
approximate increase of 0.53% and 0.7% in total wildfire suppression
costs for the high and mixed burn severity equations respectively. A 1%
increase in wildfire ha burned results in an approximate decrease of
0.47% and 0.3% in per hectare wildfire suppression costs for high and
mixed burn severity equations respectively. The RU1 treatment area
falls within the Coconino National Forest so this brings about a decrease
of approximately 78.27% and 67.96% for high and mixed burn seve-
rities respectively. The Coconino National Forest neighbors the city of
Flagstaff, the largest city in northern Arizona. We hypothesize the
Coconino National Forest's proximity to Flagstaff's infrastructure and
human capital for fire suppression as drivers in reducing wildfire sup-
pression costs. All our regression models had p-values < 0.0001. In
addition, each independent variable was significant at the 95% con-
fidence interval. Table 5 summarizes the regression equations

predicting suppression costs.
Fire behavior is the only explanatory variable that we allowed to

vary throughout the regression estimations. Ranges in predicted total
and per ha costs are similar between high and mixed burn severity for
the June and July months with a much higher range for the month of
May. Because of the drier weather conditions and stronger winds, more
of the landscape is predicted to burn at a mixed severity in the month of
May resulting in larger cost predictions using the mixed burn severity
regression equation. The highest estimated wildfire suppression costs
occur when wind inputs were modeled at two standard deviations
above their mean (24 km/h) during the month of May. In this analysis,
the no treatment alternative has a total predicted suppression cost
ranging between $2.4 million and $15.3 million with per ha estimates
ranging between $38 and $242/ha if a wildfire burns the entire study
area using the high burn severity metric. Under the medium burn se-
verity metric, the total predicted suppression cost. The preferred
treatment alternative results in approximately 73% of the landscape
estimated to burn at mixed severity. From the regression sample, the
highest proportion mixed severity fire was at approximately 68% of the
landscape. Because the preferred treatment alternative exceeds the
upper bound of the sample, we are not using this regression analysis to
predict fire suppression costs outside the range of model calibration.
The estimated suppression costs would range between $3.1 million and
exceeding $19.4 million with cost per ha estimates ranging between
$20 and exceeding $124/ha. The total predicted suppression costs of
the medium treatment alternative range between $3.9 million and
$14.2 million with per ha costs ranging between $25 and $91. Tables
6–8 summarize all estimated suppression costs under the varying wind
conditions. However, if other factors of wildland fire costs, including
rehabilitation and ecosystem service loss, are included in addition to
suppression costs, the total cost of wildfires has been estimated to be in
the range of 2 to 30 times greater than the costs associated with sup-
pression alone (Western Forestry Leadership Coalition, 2010).

5. Discussion and conclusions

Much of the recent literature on forecasting suppression costs of
large wildfires has indicated that the size of the wildfire is a significant
explanatory variable (Calkin et al., 2005; Liang et al., 2008; Thompson
et al., 2013). However, using wildfire behavior characteristics has not
been examined. Our analysis expands the methodology of predicting
wildfire suppression costs by incorporating a statistically significant,
burn severity variable into a semi-log transformed regression equation.
Fire behavior characteristics (e.g. burn severity) can be estimated
through various wildfire models. Our analysis links the outputs of
wildfire models into methodology land managers can use to assess the
effects of fuels and restoration treatments on wildfire suppression costs.
However, using wildfire models to predict changes in wildfire behavior
should be approached with caution (Varner and Keyes, 2009; Cruz and
Alexander, 2010).

Comparing actual wildfire behavior to modeled wildfire behavior
shows an underprediction bias in the models (Cruz and Alexander,
2010). Wind and weather conditions have a major impact on fire model
outputs and errors can occur with incorrect inputs (Varner and Keyes,
2009). FlamMap holds wind and weather conditions constant across the
landscape (Stratton, 2006). Wildfires never operate under the constant
inputs used in the fire models thereby influencing model outputs. In
addition, our study assumes that burn severity can be derived from the
FlamMap fire model outputs of “crown fire activity” and “flame length”.
Understanding the limitations of the fire models and limiting model
bias from wind and weather inputs is a necessity. We used onsite wind
and weather data to address potential model bias from decision variable
inputs. Our assumption for measuring burn severity was implemented
to address the underprediction bias of wildfire models (Cruz and
Alexander, 2010). Until more dynamic fire modeling programs are
developed, the assumptions and constraints of current fire models must

Table 5
Regression Results for Wildfire Suppression Estimations. Standard errors are reported in
parentheses.

ln total cost
with high
burn severity

ln total cost
with mixed
burn severity

ln per hectare
cost with
high burn
severity

ln per hectare
cost with
mixed burn
severity

Constant 10.1208
(1.2969)

8.44
(1.3219)

10.1208
(1.2969)

8.44
(1.3219)

ln fire size 0.5282b

(0.1526)
0.697b

(0.1441)
−0.4718b

(0.1526)
−0.303a

(0.1441)
ln distance to

WUI
−0.1565b

(0.0463)
−0.1715b

(0.0458)
−0.1565b

(0.0463)
−0.1715b

(0.0458)
% of high burn

severity
0.0624b

(0.0188)
0.0624b

(0.0188)
% of mixed burn

severity
0.0479b

(0.0149)
0.0479b

(0.0149)
Coconino

national
forest

−1.5265b

(0.4899)
−1.1382a

(0.5022)
−1.5265b

(0.4899)
−1.1382a

(0.5022)

R-squared 0.6173 0.6139 0.3525 0.3469
Number of

observations
67

a Indicates significance at the 95%.
b Indicates significance at the 99%.
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be understood to interpret the outputs. Our analysis acknowledges
these constraints but shows how fire modeling techniques can be im-
plemented into the wildfire suppression cost estimation process.

The results of this study identify several management implications
and important research areas for the future. Our wildfire simulations
show high severity burn conditions are interspersed throughout the
landscape under the current conditions while the post-treatment con-
figurations change to a disconnected, spotty, configuration (Appendix
B). This may affect the wildfire suppression cost estimates as areas
under “severe” conditions could be allowed to burn until the wildfire
reaches areas with decreased severity measures where suppression ef-
forts are more effective. For example, hand crews are not able to deal
with excessively high flame lengths and crown fire activity (Vaillant
et al., 2012). Focusing hand crew suppression efforts on areas that
exhibit lower predicted severity (smaller flame length or surface fires)
would be more effective. Fuel treatments may create unintended ne-
gative externalities as they reduce burn severity of the treated area but
may increase severity in adjacent, non-treated areas. Values at risk in
the adjacent areas should be examined before treatment implementa-
tion with respect to wind direction and fire spread probabilities (Calkin
et al., 2014).

Results have differed in quantifying the effects that proximity of
values at risk (e.g. homes) have on wildfire suppression costs. This
study and others (Gebert et al., 2007; Liang et al., 2008; and Yoder and

Gebert, 2012) found the wildfire's proximity to homes or WUI areas to
be significant in predicting suppression costs. However, Donovan et al.
(2004) found no such relationship significant. Other non-spatial factors
that have been used in predicting wildfire suppression costs include
media coverage and political influence (Donovan et al., 2011). Given
the large number of factors that have been shown to influence wildfire
suppression costs, further investigation into non-spatial factors of
wildfire costs (e.g. length of time the wildfire burns and types of re-
sources deployed, and number of fire crews used) could increase model
precision.

Our analysis holds the net value change of ecosystem goods and
services constant across the landscape to allow for the analysis of tra-
deoffs between suppression costs and treatments (Rideout et al., 2008).
However, an ecosystem's ability to deal with disturbances (e.g. fire)
influences the net value change. A low severity fire in a fire adapted
ecosystem is not expected to cause a shift in the ecosystem type or the
services the ecosystem carries out; a low severity surface might even be
beneficial to the ecosystem and increase or provide beneficial inputs for
NVC (Hurteau and North, 2009). High burn severity fires have the
ability to change the southwest ponderosa pine ecosystem and its
functions (Savage and Mast, 2005). Whether society gains or losses
from an ecosystem change is beyond the scope of this paper but worth
further investigation to determine society's preferences and values of
ecosystem types.

Table 6
The no treatment alternative's total cost and per hectare cost estimations under the different wind and weather conditions for the fire season months of May, June and July.

Total cost under high burn
severity

Total cost under mixed burn
severity

Per hectare cost under high burn
severity

Per hectare cost under mixed burn
severity

May avg. high wind $2,424,239 $6,266,865 $38 $99
May avg. high wind + 1

std.
$6,271,644 $14,757,512 $99 $233

May avg. high wind + 2
std.

$15,343,070 $86,332,461 $242 $1364

June avg. high wind $2,100,303 $3,677,767 $33 $58
June avg. high wind + 1

std.
$2,110,473 $3,707,667 $33 $59

June avg. high wind + 2
std.

$2,119,856 $3,744,321 $33 $59

July avg. high wind $1,962,963 $3,607,205 $31 $57
July avg. high wind + 1

std.
$2,006,198 $3,611,302 $32 $57

July avg. high wind + 2
std.

$2,071,924 $3,617,319 $33 $57

Table 7
The preferred treatment alternative's total cost and per hectare cost estimations under the different wind and weather conditions for the fire season months of May, June and July.

Total cost under high burn
severity

Total cost under mixed burn
severity

Per hectare cost under high burn
severity

Per hectare cost under mixed burn
severity

May avg. high wind $1,941,791 $3,641,488 $31 $58
May avg. high wind + 1

std.
$2,091,213 $12,122,655 $33 $192

May avg. high wind + 2
std.

$2,383,480 N\A $38 N\A

June avg. high wind $1,894,894 $3,388,633 $30 $54
June avg. high wind + 1

std.
$1,901,256 $3,398,391 $30 $54

June avg. high wind + 2
std.

$1,906,511 $3,406,115 $30 $54

July avg. high wind $1,857,899 $3,312,570 $29 $52
July avg. high wind + 1

std.
$1,860,282 $3,317,337 $29 $52

July avg. high wind + 2
std.

$1,870,580 $3,331,929 $30 $53
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Low intensity fire regimes, corresponding to smaller flame length
fires (0–1.2 m) with crown fire being a low probability event are the
desired fire type for southwest ponderosa pine ecosystems (Covington
and Moore, 1994; Swetnam, 1990). Restoration treatments in the
southwest ponderosa pine ecosystem seek to reintroduce low intensity
fire as an objective. There are costs associated with these types of fires,
but we would expect the suppression costs to be lower as fire behavior
is changed from high and mixed severity to a low severity. Instances
with a naturally occurring wildfire under low burn severity conditions
could be used as a management tool and ecological benefits of fire
could outweigh the associated costs in suppressing these wildfire types
(Ryan et al., 2013). This analysis shows that changing wildfire behavior
correlates to changes wildfire suppression costs.

As with any restoration treatment, reducing the number of severe
wildland fires is only one of the benefits. Other benefits include en-
hancement of additional ecosystem services like carbon storage, water
yields and filtration, wildlife habitat, aesthetic quality enhancement,

and recreational opportunities (Chazdon, 2008). Non-market benefits
and costs should be included in the overall benefit-cost analysis of
implementing restoration treatments. Further analysis of the NVC of the
landscape following treatments and the effects of fire on the landscape
needs to be carried out to determine a more holistic view of landscape
value change. Our analysis shows the estimation of wildfire suppression
costs is correlated with wildfire burn characteristics. Through wildfire
modeling techniques, land managers can compare the effectiveness of
restoration and fuel treatment projects in the context of wildfire sup-
pression expenditure changes.
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Appendix A. Appendix A (Study Area)

Fig. A1. Location of Arizona within the contiguous 48 states.

Table 8
The medium treatment alternative's total cost and per hectare cost estimations under the different wind and weather conditions for the fire season months of May, June and July.

Total cost under high burn
severity

Total cost under mixed burn
severity

Per hectare cost under high burn
severity

Per hectare cost under mixed burn
severity

May avg. high wind $2,155,714 $4,027,835 $34 $64
May avg. high wind + 1

std.
$2,411,966 $7,365,220 $38 $116

May avg. high wind + 2
std.

$3,154,286 $53,764,797 $50 $849

June avg. high wind $1,987,748 $3,712,847 $31 $59
June avg. high wind + 1

std.
$2,012710 $3,730,674 $32 $59

June avg. high wind + 2
std.

$2,025,309 $3,748,587 $32 $59

July avg. high wind $1,938,747 $3,590,419 $31 $57
July avg. high wind + 1

std.
$1,950,883 $3,607,658 $31 $57

July avg. high wind + 2
std.

$1,963,095 $3,624,981 $31 $57
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Fig. A2. Overview of the Four Forest Restoration Initiative's boundaries within four of the National Forests in northern Arizona.
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Fig. A3. Study Area of Restoration Unit 1 within the Coconino National Forest of the Four Forest Restoration Initiative's treatment area in northern Arizona.

Appendix B. Appendix B (High Burn Severity)

Fig. B1. Estimated high burn severity area (active crown fire or flame length > 3.4 m) of Restoration Unit 1 for May average wind conditions (24.8 kph at 160° azimuth) under the three
treatment alternatives.
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Fig. B2. Estimated high burn severity area (active crown fire or flame length > 3.4 m) of Restoration Unit 1 for May average wind conditions plus one standard deviation (31.2 kph at
160° azimuth) under the three treatment alternatives.

Fig. B3. Estimated high burn severity area (active crown fire or flame length > 3.4 m) of Restoration Unit 1 for May average wind conditions plus two standard deviations (37.7 kph at
160° azimuth) under the three treatment alternatives.

Fig. B4. Estimated high burn severity area (active crown fire or flame length > 3.4 m) of Restoration Unit 1 for June average wind conditions (21.2 kph at 173° azimuth) under the three
treatment alternatives.
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Fig. B5. Estimated high burn severity area (active crown fire or flame length > 3.4 m) of Restoration Unit 1 for June average wind conditions plus one standard deviation (22.5 kph at
173° azimuth) under the three treatment alternatives.

Fig. B6. Estimated high burn severity area (active crown fire or flame length > 3.4 m) of Restoration Unit 1 for June average wind conditions plus two standard deviations (23.8 kph at
173° azimuth) under the three treatment alternatives.

Fig. B7. Estimated high burn severity area (active crown fire or flame length > 3.4 m) of Restoration Unit 1 for July average wind conditions (17.7 kph at 178° azimuth) under the three
treatment alternatives.
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Fig. B8. Estimated high burn severity area (active crown fire or flame length > 3.4 m) of Restoration Unit 1 for July average wind conditions plus one standard deviation (19.6 kph at
178° azimuth) under the three treatment alternatives.

Fig. B9. Estimated high burn severity area (active crown fire or flame length > 3.4 m) of Restoration Unit 1 for July average wind conditions plus two standard deviations (21.6 kph at
178° azimuth) under the three treatment alternatives.
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