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Abstract

Despite the recent success of deep neural networks, it

remains challenging to effectively model the long-tail class

distribution in visual recognition tasks. To address this prob-

lem, we first investigate the performance bottleneck of the

two-stage learning framework via ablative study. Motivated

by our discovery, we propose a unified distribution alignment

strategy for long-tail visual recognition. Specifically, we de-

velop an adaptive calibration function that enables us to

adjust the classification scores for each data point. We then

introduce a generalized re-weight method in the two-stage

learning to balance the class prior, which provides a flexible

and unified solution to diverse scenarios in visual recogni-

tion tasks. We validate our method by extensive experiments

on four tasks, including image classification, semantic seg-

mentation, object detection, and instance segmentation. Our

approach achieves the state-of-the-art results across all four

recognition tasks with a simple and unified framework.

1. Introduction

While deep convolutional networks have achieved great

successes in many vision tasks, it usually requires a large

number of training examples for each visual category. More

importantly, prior research mostly focuses on learning from

a balanced dataset [22], where different object classes are

approximately evenly distributed. However, for large-scale

vision recognition tasks, partially due to the non-uniform

distribution of natural object classes and varying annotation

costs, we typically learn from datasets with a long-tail class

label distribution. In such scenarios, the number of training

instances per class varies significantly, from as few as one

example for tail classes to hundreds or thousands for head

classes [48, 26, 14, 51, 49, 36].
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Figure 1: Per-class performance of the two-stage learn-

ing baseline and our empirical classification bound on

ImageNet-LT val split. Two methods share the same repre-

sentation while our bound setting retrains the classifier head

with the balanced full dataset.

The intrinsic long-tail property of our visual data in-

troduces a multitude of challenges for recognition in the

wild [1], as a deep network model has to simultaneously cope

with imbalanced annotations among the head and medium-

sized classes, and few-shot learning in the tail classes. A

naively learned model would be largely dominated by those

few head classes while its performance is much degraded for

many other tail classes.

Early works on re-balancing data distribution focus on

learning one-stage models, which achieve limited successes

due to lack of principled design in their strategies [2, 33, 3,

9, 26, 41]. More recent efforts aim to improve the long-tail

prediction by decoupling the representation learning and

classifier head learning [19, 28, 35, 38, 23]. However, such

a two-stage strategy typically relies on heuristic design to

adjust the decision boundary of the initially learned classifier

head, which often requires tedious hyper-parameter tuning

in practice. This severely limits its capacity to resolve the

mismatch between imbalanced training data distribution

and balanced evaluation metrics.

In this work, we first perform an ablative analysis on the

two-stage learning strategy to shed light on its performance

bottleneck. Specifically, our study estimates an ‘ideal’ clas-
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sification accuracy using a balanced dataset to retrain the

classifier head while keeping the first-stage representation

fixed. Interestingly, as shown in Fig. 1, we find a substan-

tial gap between this ideal performance and the baseline

network, which indicates that the first-stage learning with

unbalanced data provides a good representation, but there is

a large room for improvement in the second stage due to the

biased decision boundary (See Sec. 3.1 for details).

Based on those findings, we propose a simple and yet ef-

fective two-stage learning scheme for long-tail visual recog-

nition problems. Our approach focuses on improving the

second-stage training of the classifier after learning a fea-

ture representation in a standard manner. To this end, we

develop a unified distribution alignment strategy to calibrate

the classifier output via matching it to a reference distribu-

tion of classes that favors the balanced prediction. Such

an alignment strategy enables us to exploit the class prior

and data input in a principled manner for learning class

decision boundary, which eliminates the needs for tedious

hyper-parameter tuning and can be easily applied to various

visual recognition tasks.

Specifically, we develop a light-weight distribution align-

ment module for calibrating classification scores, which con-

sists of two main components. In the first component, we in-

troduce an adaptive calibration function that equips the class

scores with an input-dependent, learnable magnitude and

margin. This allows us to achieve a flexible and confidence-

aware distribution alignment for each data point. Our second

component explicitly incorporates a balanced class prior by

employing a generalized re-weight design for the reference

class distribution, which provides a unified strategy to cope

with diverse scenarios of label imbalance in different visual

recognition tasks.

We extensively validate our model on four typical vi-

sual recognition tasks, including image classification on

three benchmarks (ImageNet-LT [26], iNaturalist [36] and

Places365-LT [26]), semantic segmentation on ADE20k

dataset [49], object detection and instance segmentation on

LVIS dataset [14]. The empirical results and ablative study

show our method consistently outperforms the state-of-the-

art approaches on all the benchmarks. To summarize, the

main contributions of our works are three-folds:

• We conduct an empirical study to investigate the perfor-

mance bottleneck of long-tail recognition and reveal a

critical gap caused by biased decision boundary.

• We develop a simple and effective distribution align-

ment strategy with a generalized re-weight method,

which can be easily optimized for various long-tail

recognition tasks without whistles and bells.

• Our models outperform previous work with a large mar-

gin and achieve state-of-the-art performance on long-

tail image classification, semantic segmentation, object

detection, and instance segmentation.

2. Related Works

One-stage Imbalance Learning To alleviate the adverse

effect of the long-tail class distribution in visual recogni-

tion, prior work have extensively studied the one-stage meth-

ods, which either leverage the re-balancing ideas or explore

knowledge transfer from head categories. The basic idea of

resample-based methods is to over-sample the minority cate-

gories [4, 15] or to under-sample the frequent categories in

the training process [10, 2]. Class-aware sampling [33] pro-

poses to choose samples of each category with equal proba-

bilities, which is widely used in vision tasks [26, 11]. Repeat

factor sampling [27] is a smoothed sampling method con-

ducting repeated sampling for tail categories, which demon-

strates its efficacy in instance segmentation [14]. In addition,

[37] proposes to increase the sampling rate for categories

with low performance after each training epoch and balances

the feature learning for under-privileged categories.

An alternative strategy is to re-weight the loss func-

tion in training. Class-level methods typically re-weight

the standard loss with category-specific coefficients corre-

lated with the sample distributions [18, 9, 3, 21, 20, 34].

Sample-level methods [24, 30] try to introduce a more fine-

grained control of loss for imbalanced learning. Other

work aim to enhance the representation or classifier head

of tail categories by transferring knowledge from the head

classes [41, 40, 26, 46, 8, 43, 42]. Nevertheless, these meth-

ods require designing a task specific network module or

structure, which is usually non-trivial to be generalized to

different vision tasks.

Two-stage Imbalance Learning More recent efforts aims

to improve the long-tail prediction by decoupling the learn-

ing of representation and classifier head. Decouple [19] pro-

poses an instance-balanced sampling scheme, which gener-

ates more generalizable representations and achieves strong

performance after properly re-balancing the classifier heads.

The similar idea is adopted in [38, 39, 23], which develop ef-

fective strategies for long-tail object detection tasks. [28, 35]

improve the two-stage ideas by introducing a post-process

to adjust the prediction score. However, such a two-stage

strategy typically relies on heuristic design in order to ad-

just the decision boundary of initially learned classifiers and

requires tedious hyper-parameter tuning in practice.

Visual Recognition Tasks Visual recognition community

has witnessed significant progress with deep convolutional

networks in recent years. In this study, we focus on four

types of visual tasks, including image classification, object

detection, semantic and instance segmentation, which have

been actively studied in a large amount of prior work. For

object detection, we consider the typical deep network archi-

tecture used in the R-CNN series method [13, 12, 31], which

detects objects based on the region proposals. For instance

segmentation, we take the Mask R-CNN [16] as our example,
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which extends the Faster R-CNN[31] by adding a branch

for predicting the object masks in parallel with the existing

branch for bounding box recognition. For the pixel-wise task,

semantic segmentation, we use the FCN-based methods [32]

and the widely-adopted encoder-decoder structures [7, 5, 6].

Despite those specific choices, we note that our strategy can

be easily extended to other types of deep network methods

for those visual recognition tasks.

3. Our Approach

Our goal is to address the problem of large-scale long-tail

visual recognition, which typically has a large number of

classes and severe class imbalance in its training data. To

this end, we adopt a two-stage learning framework that first

learns a feature representation and a classifier head from the

unbalanced data, followed by a calibration stage that adjusts

the classification scores. Inspired by our ablative study on

existing two-stage methods, we propose a principled calibra-

tion method that aligns the model prediction with a reference

class distribution favoring the balanced evaluation metrics.

Our distribution alignment strategy is simple and yet ef-

fective, enabling us to tackle different types of large-scale

long-tail visual recognition tasks in a unified framework.

Below we start with a brief introduction to the long-tail

classification and an empirical study of two-stage methods

in Sec.3.1. We then describe our proposed distribution align-

ment strategy in Sec.3.2. Finally, we present a comparison

with previous methods from the distribution match perspec-

tive in Sec.3.3.

3.1. Problem Setting and Empirical Study

We now introduce the problem setting of long-tail clas-

sification and review the two-stage learning framework for

deep networks. Subsequently, we perform an empirical abla-

tive study on a large-scale image classification task, which

motivates our proposed approach.

Problem Definition The task of long-tail recognition aims

to learn a classification model from a training dataset with

long-tail class distribution. Formally, we denote the input

as I, and the target label space as C = {c1, · · · , cK}, where

K is the number of classes. The classification model M
defines a mapping from the input to the label space: y =
M(I; Θ), where y ∈ C and Θ are its parameters. Our goal

is to learn the model parameter from an imbalanced training

dataset Dtr so that M achieves optimal performance on an

evaluation dataset Deval with respect to certain balanced

metrics (e.g., mean accuracy).

In the two-stage framework, we typically consider a deep

network model M with two main components: a feature

extractor network f(·) and a classifier head h(·). The feature

extractor f first extracts an input representation x, which is
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Figure 2: Empirical analysis of the performance bottle-

neck. Left: Baseline vs. ideal performance for representa-

tions learned with different sampling strategy. Right: Com-

parison of prior arts and ideal performance for the classifier

head calibration. Cls-Bound: ideal performance bound. IB:

instance-balanced sampling. CB: class-balanced sampling.

SR: square-root sampling.

then fed into the classifier head h to compute class prediction

scores z as follows:

x = f(I, θf ) ∈ R
d, z = h(x, θh) ∈ R

K (1)

where θf and θh are the parameter of f(·) and h(·), respec-

tively. Here z = {z1, · · · , zK} indicate the class prediction

scores for K classes and the model predicts the class label

by taking y = argmax (z).
In this work, we instantiate the classifier head h as a linear

classifier or a cosine similarity classifier as follows:

Linear : zj = w
⊺

j x (2)

Cosine Similarity : zj = s ·
w

⊺

j x

||wj ||||x||
(3)

where wj ∈ R
d is the parameter of j-th class and the s is a

scale factor as in [29]. We note that the above formulation

can be instantiated for multiple visual recognition tasks by

changing the input I: e.g., an image for image classification,

an image with a pixel location for semantic segmentation, or

an image with a bounding box for object detection.

Empirical Analysis on Performance Bound The two-

stage learning method tackles the long-tail classification by

decoupling the representation and the classifier head learn-

ing [19]. Specifically, it first learns the feature extractor f
and classifier head h jointly, and then with the representation

fixed, re-learns the classifier head with a class balancing

strategy. While such design achieves certain success, an

interesting question to ask is which model component(s)

impose a bottleneck on its balanced performance. In the

following, we attempt to address the question by exploiting

the full set of the ImageNet dataset. Particularly, we follow

the decoupling idea to conduct a series of ablative studies on

two model components under an ‘ideal’ balanced setting.
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We first investigate whether the feature representation

learned on the imbalanced dataset is restrictive for the bal-

anced performance. To this end, we start from learning the

feature extractor on the imbalanced ImageNet-LT training set

with several re-balancing strategies (e.g. instance-balanced,

class-balanced, or square-root sampling). We then keep the

representation fixed and re-train the classifier head with the

ideal balanced ImageNet train set (excluding ImageNet-LT

val set). Our results are shown in the left panel of Fig. 2,

which indicate that the first stage produces a strong feature

representation that can potentially lead to large performance

gain and the instance-based sampling achieves better overall

results (cf. [19]).

Moreover, we conduct an empirical study on the effec-

tiveness of the recent decoupling method (e.g. cRT [19])

compared with the above ’ideal’ classifier head learning.

The right panel of Fig. 2 shows that there remains a large

performance gap between the existing methods and the

upper-bound. Those empirical results indicate that the bi-

ased decision boundary in the feature space seems to be

the performance bottleneck of the existing long-tail meth-

ods. Consequently, a better strategy to address this problem

would further improve the two-stage learning for the long-

tail classification.

3.2. Distribution Alignment

To tackle the aforementioned issue, we now introduce a

unified distribution alignment strategy to calibrate the clas-

sifier output via matching it to a reference distribution of

classes that favors the balanced prediction. In this work,

we adopt a two-stage learning scheme for all visual recog-

nition tasks, which consists of a joint learning stage and a

distribution calibration stage as follows.

1) Joint Learning Stage. The feature extractor f(·) and

original classifier head (denoted as ho(·) for clarity) are

jointly learned on imbalanced Dtr with instance-balanced

strategy in the first stage, where the original ho(·) is severely

biased due to the imbalanced data distribution.

2) Distribution Calibration Stage. For the second stage,

the parameters of f(·) are frozen and we only focus on the

classifier head to adjust the decision boundary. To this end,

we introduce an adaptive calibration function (in Sec. 3.2.1)

and a distribution alignment strategy with generalized re-

weighting (in Sec. 3.2.2) to calibrate the class scores.

3.2.1 Adaptive Calibration Function

To learn the classifier head h(·) in the second stage, we

propose an adaptive calibration strategy that fuses the orig-

inal classifier head ho(·) (parameters of ho(·) are frozen)

and a learned class prior in an input-dependent manner. As

shown below, unlike previous work (e.g. cRT[19]), our de-

sign does not require a re-training of the classifier head from
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Figure 3: The category frequency ri is plotted in gray color

and the right axis denotes the re-weight coefficient at differ-

ent scale ρ on ImageNet-LT dataset.

scratch and has much fewer free parameters. This enables

us to reduce the adverse impact from the limited training

data of the tail categories. Moreover, we introduce a flexible

fusion mechanism capable of controlling the magnitude of

calibration based on input features.

Specifically, denote the class scores from ho(·) as zo =
[zo1 , · · · , z

o
K ], we first introduce a class-specific linear trans-

form to adjust the score as follows:

sj = αj · z
o
j + βj , ∀j ∈ C (4)

where αj and βj are the calibration parameters for each class,

which will be learned from data. As mentioned above, we

then define a confidence score function σ(x) to adaptively

combine the original and the transformed class scores:

ẑj = σ(x) · sj + (1− σ(x)) · zoj (5)

= (1 + σ(x)αj) · z
o
j + σ(x) · βj (6)

where the confidence score has a form of g(v⊺
x), which is

implemented as a linear layer followed by a non-linear acti-

vation function (e.g., sigmoid function) for all input x. The

confidence σ(x) controls how much calibration is needed

for a specific input x. Given the calibrated class scores, we

finally define a prediction distribution for our model with the

Softmax function:

pm(y = j|x) =
exp(ẑj)

∑C
k=1

exp(ẑk)
. (7)

3.2.2 Alignment with Generalized Re-weighting

Given a train dataset Dtr = {(xi, yi)}
N
i=1, we introduce a

calibration strategy based on distribution alignment between

our model prediction pm(·) and a reference distribution of

classes that favors the balanced prediction.

Formally, denote the reference distribution as pr(y|x),
we aim to minimize the expected KL-divergence between
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Method Align Type
Top-1 Accuracy@R-50 Top-1 Accuracy@X-50

Average Many Medium Few Average Many Medium Few

Baseline[19] - 41.6 64.0 33.8 5.8 44.4 65.9 37.5 7.7

Baseline∗ - 48.4 68.4 41.7 15.2 49.2 68.9 42.8 15.6

NCM[19]

Hand-Craft

44.3 53.1 42.3 26.5 47.3 56.6 45.3 28.1

τ -Norm[19] 46.7 56.6 44.2 27.4 49.4 59.1 46.9 30.7

Logit Adjust(post)[28] 50.4 - - - - - - -

Deconfound∗[35] - - - - 51.8 62.7 48.8 31.6

cRT[19]

Learnable

47.3 58.8 44.0 26.1 49.6 61.8 46.2 27.4

cRT∗[19] - - - - 49.7 60.4 46.8 29.3

LWS[19] 47.7 57.1 45.2 29.3 49.9 60.2 47.2 30.3

DisAlign 51.3 59.9 49.9 31.8 52.6 61.5 50.7 33.1

DisAlign∗ 52.9 61.3 52.2 31.4 53.4 62.7 52.1 31.4

Table 1: Quantitative results on ImageNet-LT. ∗ denotes the model uses cosine classifier. R-50 and X-50 means the

ResNet-50 and ResNeXt-50, respectively.

pr(y|x) and the model prediction pm(y|x) as follows:

L = EDtr
[KL(pr(y|x)||pm(y|x))] (8)

≈ −
1

N

N
∑

i=1





∑

y∈C

pr(y|xi) log(pm(y|xi))



+ C (9)

where the expectation is approximated by an empirical aver-

age on Dtr and C is a constant.

In this work, we adopt a re-weighting approach [9] and

introduce a generalized re-weight strategy for the alignment

in order to exploit the class prior. Formally, we represent the

reference distribution as a weighted empirical distribution

on the training set,

pr(y = c|xi) = wc · δc(yi), ∀c ∈ C (10)

where wc is the class weight, and δc(yi) is the Kronecker

delta function(equals 1 if yi = c, otherwise equals 0). We

then define the reference weight based on the empirical class

frequencies r = [r1, · · · , rK ] on the training set:

wc =
(1/rc)

ρ

∑K
k=1

(1/rk)ρ
, ∀c ∈ C (11)

where ρ is a scale hyper-parameter to provide more flexibility

in encoding class prior. Note that our scheme reduces to the

instance-balance re-weight method with ρ = 0, and to the

class-balanced re-weight method with ρ = 1. We illustrate

the curve of re-weight coefficients based on ImageNet-LT

dataset in Fig. 3.

3.3. Connection with Recent Work

Below we discuss the connections between our proposed

distribution alignment strategy and recent two-stage methods.

Detailed comparison is reported in Tab. 2. Notably, Logit

Adjustment[28] and Deconfound[35] introduce a hand-craft

Method
Align Method

Type Balance Magnitude Margin

Joint - - - -

LWS[19] L CB-RS αj 0

τ -Normalized[19] H CB-RS 1/||wj ||
τ 0

Logit Adjust[28] H - 1.0 −λ log(rj)
Deconfound∗[35] H - 1.0 −λd(x, e)w⊺

j e

DisAlign L G-RW 1 + σ(x)αj σ(x)βj

DisAlign∗ L G-RW 1 + σ(x)αj σ(x)βj

Table 2: Comparison with related methods. ∗ denotes

cosine classifier, L: learnable, H:hand-craft, CB-RS: class-

balanced resampling, G-RW: generalized re-weight, rj :

class frequency for the j-th class, λ: hypper-parameter, e:

mean feature of training data, d(·): cosine distance.

margin to adjust the distribution while keep the magnitude

as 1.0, and incorporate the class prior directly in ri or wi

without re-training. LWS[19] and τ -normalized[19] try to

achieve a similar goal by learning a magnitude scale and

discarding the margin adjustment.

All these methods can be considered as the special cases

of our DisAlign approach, which provides a unified and sim-

ple form to model the distribution mismatch in a learnable

way. Moreover, the resample based strategy is not easy to

be applied for the instance-level (object detection/instance

segmentation) or pixel-level (semantic segmentation) tasks,

our generalized re-weight provides an alternative solution to

incorporate the class prior in a simple and effective manner.

Experimental results in Sec. 4 also demonstrate the strength

of our method compared with the aforementioned works.

4. Experiments

In this section, we conduct a series of experiments to

validate the effectiveness of our method. Below we present

our experimental analysis and ablation study on the image
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Method
ResNet-50 ResNet-152

90 E 200 E 90 E 200 E

LDAM[3] 68.0 - - -

Baseline 61.7 65.8 65.0 69.0

Baseline∗ 64.8 66.2 67.3 69.0

cRT[19] 65.2 68.2 68.5 71.2

τ -norm[19] 65.6 69.3 68.8 72.5

LWS[19] 65.9 69.5 69.1 72.1

BBN[47] 66.3 69.6 - -

DisAlign 67.8 70.6 71.3 74.1

DisAlign∗ 69.5 70.2 71.7 72.8

Table 3: Average accuracy on iNaturalist-2018. ∗ denotes

the cosine classifier.

Method
ResNet-152

Average Many Medium Few

Focal Loss[26] 34.6 41.1 34.8 22.4

Range Loss[26] 35.1 41.1 35.4 23.2

OLTR[26] 35.9 44.7 37.0 25.3

Feature Aug[8] 36.4 42.8 37.5 22.7

Baseline 30.2 45.7 27.3 8.2

NCM 36.4 40.4 37.1 27.3

cRT 36.7 42.0 37.6 24.9

LWS 37.6 40.6 39.1 28.6

τ -norm 37.9 37.8 40.7 31.8

DisAlign 39.3 40.4 42.4 30.1

Table 4: Results on Place365-LT with ResNet-152.

classification task in Sec. 4.1, followed by our results on

semantic segmentation task in Sec. 4.2. In addition, we

further evaluate our methods on object detection and instance

segmentation tasks in Sec. 4.3.

4.1. Image Classification

Experimental Details To demonstrate our methods, we

conduct experiments on three large-scale long-tail datasets,

including ImageNet-LT [26], iNaturalist 2018 [36], and

Places-LT [26]. We follow the experimental setting and

implementation of [19] 1. For the ImageNet-LT dataset,

we report performance with ResNet/ResNeXt-{50,101,152}
as backbone, and mainly use ResNet-50 for ablation study.

For iNaturalist 2018 and Places-LT, our comparisons are

performed under the settings of ResNet-{50,101,152}.

Comparison with previous methods 1) ImageNet-LT.

We present the quantitative results for ImageNet-LT in Tab. 1.

Our approach achieves 52.9% in per-class average accu-

racy based on ResNet-50 backbone and 53.4% based on

ResNeXt-50, which outperform the state-of-the-art methods

by a significant margin of 2.5% and 1.6%, respectively. 2)

iNaturalist. In Tab. 3, our method DisAlign with cosine

1Detailed configuration and results are provided in the supplementary

materials.

GR MT MG Average Many Medium Few

✗ ✗ ✗ 41.6 64.0 33.8 5.8

✓ ✓ ✗ 50.1 60.4 48.0 28.8

✓ ✗ ✓ 49.9 63.9 46.9 21.2

✓ ✓ ✓ 51.3 59.9 49.9 31.8

Table 5: Ablation study of DisAlign. GR means the gener-

alized reweight strategy. MT means the learnable magnitude

parameter (1+σ(x)α) and MG is the learnable margin pa-

rameter σ(x)β.
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Figure 4: Performance of DisAlign with different back-

bone on ImageNet-LT. Detailed results will be reported in

supplementary material.

classifier achieves 69.5% per-class average accuracy using

ResNet-50 backbone and 90 epochs of training, surpassing

the prior art LDAM by a large margin at 1.5%. It also shows

that our performance can be further improved with larger

backbone and/or more training epochs. 3) Places-LT. In

Tab. 4, we show the experimental results under the same

setting as [19] on Places-LT. Our method achieves 39.3%

per-class average accuracy based on ResNet-152, with a no-

table performance gain at 1.4% over the prior methods. We

also report the detailed performance of these three datasets

with ResNet-{50,101,152} in the supplementary materials.

Ablation Study 1) Different Backbone: We validate our

method on different types of backbone networks, ranging

from ResNet-{50,101,152} to ResNeXt-{50, 101, 152}, re-

ported in Fig. 4. Our method achieves 54.9% with ResNet-

152, and 55.0% with ResNeXt-152. It’s worth noting that

even when adopting stronger backbones, the gain of Dis-

Align compared to the state-of-the-art methods is still signifi-

cant. This demonstrates that our DisAlign is complementary

to the capacity of backbone networks. 2) Model Compo-

nents: We conduct a series of ablation studies to evaluate

the importance of each component used in our DisAlign

method. Tab. 5 summarizes the results of our ablation ex-

periments, in which we compare our full model with several

partial model settings. From the table, we find the learnable

magnitude has a significant improvement compared with
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Framework Method B
Mean IoU(%) Mean Accuracy(%)

Average Head Body Tail Average Head Body Tail

FCN[32]

Baseline
R-50

38.1 64.6 40.0 29.6 46.3 78.6 49.3 35.4

DisAlign 40.1(+2.0) 65.0(+0.4) 42.8(+2.8) 31.3(+1.7) 51.4(+5.1) 78.6(+0.0) 56.1(+6.8) 40.6(+5.2)

Baseline
R-101

41.4 67.0 43.3 33.2 50.2 80.6 52.9 40.1

DisAlign 43.7(+2.3) 67.4(+0.4) 46.1(+2.8) 35.7(+2.5) 55.9(+5.7) 80.6(+0.0) 59.7(+6.8) 46.4(+6.3)

Baseline
S-101

46.2 67.6 48.0 39.1 57.3 79.4 61.7 48.2

DisAlign 46.9(+0.7) 67.7(+0.1) 48.2(+0.2) 40.3(+1.2) 60.1(+2.8) 79.7(+0.3) 64.2(+2.5) 51.9(+3.7)

DeepLabV3+[7]

Baseline
R-50

44.9 67.7 48.3 36.4 55.0 80.1 60.8 44.1

DisAlign 45.7(+0.8) 67.7(+0.0) 48.6(+0.3) 37.8(+1.4) 57.3(+2.3) 80.8(+0.7) 63.0(+2.2) 46.9(+2.8)

Baseline
R-101

46.4 68.7 49.0 38.4 56.7 80.9 61.5 46.7

DisAlign 47.1(+0.7) 68.7(+0.0) 49.4(+0.4) 39.6(+1.2) 59.5(+2.8) 81.4(+0.5) 64.2(+2.7) 50.3(+3.6)

Baseline
S-101

47.3 69.0 49.7 39.7 58.1 80.8 63.4 48.2

DisAlign 47.8(+0.5) 68.9(-0.1) 49.8(+0.1) 40.7(+1.0) 60.1(+2.0) 81.0(+0.2) 65.5(+2.1) 52.0(+3.8)

Table 6: Performance of semantic segmentation on ADE-20K: All baseline models are trained with an image size of

512×512 and 160K iteration in total. B is backbone network(R-50, R-101, S-101 denote ResNet-50, ResNet-101 and

ResNeSt-101, respectively).
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Figure 5: Effects of the different generalized re-weight

scale. Performance is reported on ImageNet-LT val split.

baseline and the learnable margin also achieves competitive

results at 49.9%, which demonstrate the effectiveness of in-

dividual modules in our design. 3) Generalized Re-weight

Scale We also investigate the influence of the generalized

re-weight scale on the validation set of ImageNet-LT and

plot the accuracy-scale curve in Fig. 5. It is evident that

adjusting generalized reweight is able to achieve significant

performance improvement. Moreover, we find the setting

of ρ > 1 is able to outperform the class-balanced re-weight

(ρ = 1), which indicates that the generalized re-weight is

more effective in coping with long-tail distributions.

4.2. Semantic Semgnetaion on ADE20k Dataset

To further validate our method, we apply DisAlign strat-

egy to segmentation networks and report our performance

on the semantic segmentation benchmark, ADE20k [49].

Dataset and Implementation Details Follow a similar

protocol as in image classification, we divide the 150 cate-

gories into 3 subsets according to the percentage of pixels

in every category over the entire dataset. Specifically, we

define three disjoint subsets as follows: head classes (each

with more than 1.0% of total pixels), body classes (each with

B Method
Mask R-CNN Cascade R-CNN

APbbox APmask APbbox APmask

R-50

Baseline 20.8 21.2 25.2 23.0

DisAlign 23.9(+3.1) 24.2(+3.0) 28.7(+3.5) 26.1(+3.1)

Baseline∗ 22.8 23.8 28.8 26.2

DisAlign∗ 25.6(+2.8) 26.3(+2.5) 32.2(+3.4) 29.4(+3.2)

R-101

Baseline 22.2 22.6 26.1 24.0

DisAlign 25.6(+3.4) 25.8(+3.2) 29.7(+3.6) 27.3(+3.3)

Baseline∗ 24.5 25.1 30.4 28.1

DisAlign∗ 27.5(+3.0) 28.2(+3.1) 33.7(+3.3) 30.9(+2.8)

X-101

Baseline 24.5 25.0 28.4 26.1

DisAlign 26.8(+2.3) 27.4(+2.4) 31.3(+2.9) 28.7(+2.6)

Baseline∗ 26.9 27.7 32.6 29.8

DisAlign∗ 29.5(+2.6) 30.0(+2.3) 34.7(+2.1) 31.8(+2.0)

Table 7: Results on LVIS v0.5 dataset with different back-

bones and different architectures. The results are reported

based on the Detectron2[44, 50] framework. We refer the

reader to the supplementary material for the detailed com-

parison with the state of art.

a percentage ranging from 0.1% to 1% of total pixels) and

tail classes (each with less than 0.1% of total pixels). 2

Quantitative Results We evaluate our method using

two widely-adopted segmentation models (FCN [32] and

DeepLabV3+ [7]) based on different backbone networks,

ranging from ResNet-50, ResNet-101 to the latest ResNeSt-

101, and report the performance in Tab. 6. Our method

achieves 2.0 and 2.3 improvement in mIoU using FCN-8s

with ResNet-50 and ResNet-101, respectively. The perfor-

mance on the body and tail are improved significantly. More-

over, our method outperforms the baseline with large margin

at 5.7 in mean accuracy with ResNet-101 backbone. Even

with a stronger backbone: ResNeSt-101 [45], our method

also achieves 0.7 mIoU and 2.8 improvement in mean accu-

2The complete list of the split is reported in supplementary material.
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Pre-Train Method
BBox AP Mask AP

APbbox APr
bbox APc

bbox AP
f
bbox APmask APr

mask APc
mask AP

f
mask

ImageNet

Baseline 20.8 3.3 19.5 29.4 21.2 3.7 21.6 28.4

Baseline∗ 22.8 10.2 21.1 30.1 23.8 11.5 23.7 28.9

Focal Loss[24] 21.9 - - - 21.0 9.3 21.0 25.8

SimCal[38] 22.6 13.7 20.6 28.7 23.4 16.4 22.5 27.2

LST[17] 22.6 - - - 23.0 - - -

RFS[14] 23.6 12.8 22.3 29.4 24.3 14.6 24.0 28.5

EQL[34] 23.3 - - - 22.8 11.3 24.7 25.1

DisAlign 23.9 7.5 25.0 29.1 24.3 8.5 26.3 28.1

DisAlign∗ 25.6 13.7 25.6 30.5 26.3 14.9 27.6 29.2

COCO

Baseline 22.8 2.6 21.8 32.0 23.9 2.8 23.4 30.5

Baseline∗ 25.0 10.2 23.9 32.3 25.3 11.0 25.5 30.7

GroupSoftmax[23] 25.8 15.0 25.5 30.4 26.3 18.0 26.9 28.7

DisAlign 25.5 8.2 26.3 32.4 25.7 9.4 27.6 29.7

DisAlign∗ 27.6 14.8 27.9 32.4 27.9 16.2 29.3 30.8

Table 8: Comparison with the-state-of-art on LVIS with Mask-R-CNN-FPN(ResNet-50 backbone). All results are

evaluated on the LVIS v0.5 validation set with the score threshold at 0.0001. (∗ denotes cosine classifier for bbox classification.)

Backbone Method
BBox AP Mask AP

APbbox APr
bbox APc

bbox AP
f
bbox APmask APr

mask APc
mask AP

f
mask

ResNet-50
Baseline∗ 26.5 8.7 25.0 36.0 23.5 8.1 22.4 31.5

DisAlign∗ 30.5 17.9 30.1 36.5 27.0 15.7 27.0 31.9

ResNet-101

De-confound[35] 25.8 - - - 23.5 5.2 22.7 32.3

De-confound TDE[35] 30.0 - - - 27.1 16.0 26.9 32.1

Baseline∗ 28.9 11.8 27.7 37.8 25.6 10.5 24.9 33.0

DisAlign∗ 32.7 20.5 32.8 38.1 28.9 18.0 29.3 33.3

ResNeXt-101
Baseline∗ 30.7 14.2 29.3 39.6 27.3 13.0 26.4 34.6

DisAlign∗ 33.7 21.4 33.1 39.7 29.7 18.4 29.7 34.7

Table 9: Results on LVIS v1.0 dataset with Cascade R-CNN. * denotes cosine classifier head.

racy, where the tail categories have a performance gain of

1.2 in mIoU and 3.7 in mean accuracy. We further validate

our method using DeepLabV3+, which is a more powerful

semantic segmentation model. Our DisAlign improves the

performance of DeepLabV3+ by a margin of 0.5 based on

ResNeSt-101, which achieves the new state-of-the-art (47.8

in mIoU) on the ADE20k dataset.

4.3. Object Detection and Instance Segmentation

Experimental Configuration We conduct experiments

on LVIS [14] dataset. For evaluation, we use a COCO-style

average precision (AP) metric that averages over categories

and different box/mask IoU threshold [25].

Quantitative Results and Ablation Study We first com-

pare our method with recent work and report quantitative

results in Tab. 8. We find our DisAlign with cosine classifier

head achieves 25.6 in APbbox, and 26.3 in APmask when

applied to the Mask R-CNN+FPN with the ImageNet pre-

trained ResNet-50 backbone. Moreover, our strategy can

be further improved to achieve 27.6 in APbbox and 27.9 in

APmask based on the COCO pre-trained model. In both

cases, our method is able to maintain the performance of the

frequent (also called head) categories, and gain significant

improvement on common (also called body) and rare (also

called tail) categories. We also report performance with

more power detection framework (e.g.Cascade R-CNN) and

stronger backbones (e.g. ResNet-50/101, and ResNeXt-101)

in Tab. 7 and Tab. 9. It is worth noting that even with the

stronger backbones or frameworks, the performance gain of

our DisAlign over the baseline is still significant.

5. Conclusion

In this paper, we have presented a unified two-stage learn-

ing strategy for the large-scale long-tail visual recognition

tasks. To tackle the biased label prediction, we develop a

confidence-aware distribution alignment method to calibrate

initial classification predictions. In particular, we design a

generalized re-weight scheme to leverage the category prior

for the alignment process. Extensive experiments show that

our method outperforms previous works with a large margin

on a variety of visual recognition tasks(image classification,

semantic segmentation, and object detection/segmentation).
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