CBSE 2022 Term II Examinations

(Series ABCD5/5 Code No. 65/5/1)
Class XII • MATHEMATICS (041)

Time Allowed : 2 Hours

Max. Marks : 40

General Instructions :

1. This question paper contains three Sections - Section A, B and C.
2. Each section is compulsory.
3. Section A carries $\mathbf{6}$ Short Answer type questions (SA1) of $\mathbf{2}$ marks each.
4. Section B carries 4 Short Answer type questions (SA2) of $\mathbf{3}$ marks each.
5. Section C carries 4 Long Answer type questions (LA) of 4 marks each.
6. There is an internal choice in some of the questions.
7. Question 14 is a case study based question with $\mathbf{2}$ sub-parts of $\mathbf{2}$ marks each.

Section A

Question numbers 1 to 6 carry 2 marks each.

Q01. Find : $\int \frac{\mathrm{dx}}{\sqrt{4 \mathrm{x}-\mathrm{x}^{2}}}$.
Sol. $\int \frac{d x}{\sqrt{4 x-x^{2}}}=\int \frac{d x}{\sqrt{2^{2}-(x-2)^{2}}}=\sin ^{-1}\left(\frac{x-2}{2}\right)+c$.
Q02. Find the general solution of the following differential equation :

$$
\frac{d y}{d x}=e^{x-y}+x^{2} e^{-y}
$$

Sol.

$$
\begin{aligned}
& \frac{d y}{d x}=e^{x-y}+x^{2} e^{-y} \\
& \Rightarrow \frac{d y}{d x}=\left(e^{x}+x^{2}\right) e^{-y} \\
& \Rightarrow \frac{d y}{e^{-y}}=\left(e^{x}+x^{2}\right) d x \\
& \Rightarrow \int e^{y} d y=\int\left(e^{x}+x^{2}\right) d x \\
& \Rightarrow e^{y}=e^{x}+\frac{x^{3}}{3}+c .
\end{aligned}
$$

Q 03 . Let X be a random variable which assumes values $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}$ such that $2 \mathrm{P}\left(\mathrm{X}=\mathrm{x}_{1}\right)=3 \mathrm{P}\left(\mathrm{X}=\mathrm{x}_{2}\right)=\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{3}\right)=5 \mathrm{P}\left(\mathrm{X}=\mathrm{x}_{4}\right)$.
Find the probability distribution of X .
Sol. Note that, $\sum \mathrm{P}(\mathrm{X})=1$
So, $\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{1}\right)+\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{2}\right)+\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{3}\right)+\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{4}\right)=1$
$\Rightarrow \frac{1}{2} \mathrm{P}\left(\mathrm{X}=\mathrm{x}_{3}\right)+\frac{1}{3} \mathrm{P}\left(\mathrm{X}=\mathrm{x}_{3}\right)+\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{3}\right)+\frac{1}{5} \mathrm{P}\left(\mathrm{X}=\mathrm{x}_{3}\right)=1$
$\Rightarrow \frac{61}{30} \mathrm{P}\left(\mathrm{X}=\mathrm{x}_{3}\right)=1$
$\Rightarrow \mathrm{P}\left(\mathrm{X}=\mathrm{x}_{3}\right)=\frac{30}{61}$
So, $\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{1}\right)=\frac{15}{61}, \mathrm{P}\left(\mathrm{X}=\mathrm{x}_{2}\right)=\frac{10}{61}, \mathrm{P}\left(\mathrm{X}=\mathrm{x}_{4}\right)=\frac{6}{61}$
Hence, the probability distribution table is :

X	x_{1}	x_{2}	x_{3}	x_{4}
$\mathrm{P}(\mathrm{X})$	$\frac{15}{61}$	$\frac{10}{61}$	$\frac{30}{61}$	$\frac{6}{61}$

Q04. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{a} \cdot \vec{b}=1$ and $\vec{a} \times \vec{b}=\hat{j}-\hat{k}$, then find $|\overrightarrow{\mathrm{b}}|$.
Sol. Here $|\overrightarrow{\mathrm{a}}|=\sqrt{1^{2}+1^{2}+1^{2}}=\sqrt{3}$ and $|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{0^{2}+1^{2}+(-1)^{2}}=\sqrt{2}$
As $|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|^{2}+(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}})^{2}=|\overrightarrow{\mathrm{a}}|^{2}|\overrightarrow{\mathrm{~b}}|^{2}$ so, $(\sqrt{2})^{2}+(1)^{2}=(\sqrt{3})^{2}|\overrightarrow{\mathrm{~b}}|^{2}$
$\Rightarrow 2+1=3 \times|\overrightarrow{\mathrm{b}}|^{2}$
$\therefore|\vec{b}|=1$

$$
\{\because|\overrightarrow{\mathrm{b}}| \neq-1 .
$$

Q05. If a line makes an angle α, β, γ with the coordinate axes, then find the value of $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma$.

Sol.

$$
\begin{aligned}
\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma & =2 \cos ^{2} \alpha-1+2 \cos ^{2} \beta-1+2 \cos ^{2} \gamma-1 \\
& =2\left(\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma\right)-3 \\
& =2 \times 1-3=-1
\end{aligned} \quad\left(\because \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1\right.
$$

Q06. (a) Events A and B are such that $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{7}{12}$ and $\mathrm{P}(\overline{\mathrm{A}} \cup \overline{\mathrm{B}})=\frac{1}{4}$.
Find whether the events A and B are independent or not.

OR

(b) A box B_{1} contains 1 white ball and 3 red balls. Another box B_{2} contains 2 white balls and 3 red balls. If one ball is drawn at random from each of the boxes B_{1} and B_{2}, then find the probability that the two balls drawn are of the same colour.

Sol.
(a) $\mathrm{P}(\overline{\mathrm{A}} \cup \overline{\mathrm{B}})=\frac{1}{4} \quad \Rightarrow \mathrm{P}(\overline{\mathrm{A} \cap \mathrm{B}})=\frac{1}{4}$
$\Rightarrow 1-\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{4}$
$\Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{3}{4}$.

Note that, $\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})=\frac{1}{2} \times \frac{7}{12}=\frac{7}{24} \neq \mathrm{P}(\mathrm{A} \cap \mathrm{B})$
Hence, A and B are not independent events.

OR

(b) Required probability $=\mathrm{P}($ both balls are white $)+\mathrm{P}($ both balls are red $)$

$$
=\frac{1}{4} \times \frac{2}{5}+\frac{3}{4} \times \frac{3}{5}=\frac{11}{20} .
$$

Section B

Question numbers 7 to 10 carry 3 marks each.

Q07. Evaluate : $\int_{0}^{\pi / 4} \frac{\mathrm{dx}}{1+\tan \mathrm{x}}$.
Sol. Let $\mathrm{I}=\int_{0}^{\pi / 4} \frac{\mathrm{dx}}{1+\tan \mathrm{x}}$

$$
\Rightarrow \mathrm{I}=\int_{0}^{\pi / 4} \frac{\mathrm{dx}}{1+\tan \left(\frac{\pi}{4}-\mathrm{x}\right)}=\int_{0}^{\pi / 4} \frac{\mathrm{dx}}{1+\frac{\tan \frac{\pi}{4}-\tan \mathrm{x}}{1+\tan \frac{\pi}{4} \tan \mathrm{x}}}
$$

$\Rightarrow I=\int_{0}^{\pi / 4} \frac{d x}{1+\frac{1-\tan x}{1+\tan x}}=\int_{0}^{\pi / 4} \frac{(1+\tan x) d x}{1+\tan x+1-\tan x}=\int_{0}^{\pi / 4} \frac{(1+\tan x) d x}{2}$
$\Rightarrow \mathrm{I}=\frac{1}{2}[\mathrm{x}+\log |\sec \mathrm{x}|]_{0}^{\pi / 4}$
$\Rightarrow \mathrm{I}=\frac{1}{2}\left[\left(\frac{\pi}{4}+\log \left|\sec \frac{\pi}{4}\right|\right)-(0+\log |\sec 0|)\right]$
$\Rightarrow \mathrm{I}=\frac{1}{2}\left[\left(\frac{\pi}{4}+\log |\sqrt{2}|\right)-(\log |1|)\right]$
$\therefore \mathrm{I}=\frac{1}{2}\left(\frac{\pi}{4}+\frac{1}{2} \log 2\right)$ or, $\frac{1}{4}\left(\frac{\pi}{2}+\log 2\right)$.
Q08. (a) If \vec{a} and \vec{b} are two vectors such that $|\vec{a}+\vec{b}|=|\vec{b}|$, then prove that $(\vec{a}+2 \vec{b})$ is perpendicular to \vec{a}.

OR

(b) If \vec{a} and \vec{b} are unit vectors and θ is the angle between them, then prove that $\sin \frac{\theta}{2}=\frac{1}{2}|\vec{a}-\vec{b}|$.
Sol. (a) Consider $|\vec{a}+\vec{b}|^{2}=|\vec{b}|^{2}$
$\Rightarrow(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=|\vec{b}|^{2}$
$\Rightarrow|\overrightarrow{\mathrm{a}}|^{2}+|\overrightarrow{\mathrm{b}}|^{2}+2 \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{b}}|^{2}$
$\Rightarrow|\vec{a}|^{2}+2 \vec{a} \cdot \vec{b}=0$
$\Rightarrow \vec{a} \cdot \vec{a}+2 \vec{a} \cdot \vec{b}=0$
$\Rightarrow \vec{a} \cdot(\vec{a}+2 \vec{b})=0$
$\therefore \overrightarrow{\mathrm{a}} \perp(\overrightarrow{\mathrm{a}}+2 \overrightarrow{\mathrm{~b}})=0$
Hence, $(\vec{a}+2 \vec{b})$ is perpendicular to \vec{a}.

OR

(b) Consider $|\vec{a}-\vec{b}|^{2}=(\vec{a}-\vec{b}) \cdot(\vec{a}-\vec{b})$
$\Rightarrow|\vec{a}-\vec{b}|^{2}=|\vec{a}|^{2}-2 \vec{a} \cdot \vec{b}+|\vec{b}|^{2}$
$\Rightarrow|\vec{a}-\vec{b}|^{2}=1^{2}-2|\vec{a}||\vec{b}| \cos \theta+1^{2} \quad[\because \vec{a}$ and \vec{b} are unit vectors and θ is the angle betwen them
$\Rightarrow|\vec{a}-\vec{b}|^{2}=2(1-\cos \theta)=4 \sin ^{2} \frac{\theta}{2}$
$\Rightarrow \sin ^{2} \frac{\theta}{2}=\frac{1}{4}|\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}|^{2}$
$\therefore \sin \frac{\theta}{2}=\frac{1}{2}|\vec{a}-\vec{b}|$.
Q09. Find the equation of the plane passing through the line of intersection of planes $\overrightarrow{\mathrm{r}} .(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})=10$ and $\overrightarrow{\mathrm{r}} .(2 \hat{i}+3 \hat{j}-\hat{k})+4=0$ and passing through the point $(-2,3,1)$.
Sol. Required plane $\pi: \overrightarrow{\mathrm{r}} .(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})-10+\lambda[\overrightarrow{\mathrm{r}} .(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}})+4]=0$
That is, $\overrightarrow{\mathrm{r}} .[(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})+(2 \lambda \hat{\mathrm{i}}+3 \lambda \hat{\mathrm{j}}-\lambda \hat{\mathrm{k}})]-10+4 \lambda=0$.
As (i) passes through $(-2,3,1)$ so, $(-2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+\hat{\mathrm{k}}) \cdot[(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})+(2 \lambda \hat{\mathrm{i}}+3 \lambda \hat{\mathrm{j}}-\lambda \hat{\mathrm{k}})]-10+4 \lambda=0$
$\Rightarrow(-2+3+1)+(-4 \lambda+9 \lambda-\lambda)-10+4 \lambda=0$
$\Rightarrow \lambda=1$
Replacing value of λ in (i), we get $\overrightarrow{\mathrm{r}} \cdot[(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})+(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}})]-10+4=0$
$\Rightarrow \overrightarrow{\mathrm{r}} .(3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}})-6=0$.
Q10. (a) Find : $\int e^{x} \cdot \sin 2 x d x$.

OR

(b) Find : $\int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+2\right)} d x$.

Sol. (a) Let $I=\int e^{x} \cdot \sin 2 x d x$
$\Rightarrow I=\sin 2 x \int e^{x} d x-\int\left(\frac{d}{d x}(\sin 2 x) \int e^{x} d x\right) d x$

$$
\begin{aligned}
& \Rightarrow \mathrm{I}=\mathrm{e}^{\mathrm{x}} \sin 2 \mathrm{x}-\int 2 \cos 2 \mathrm{x} \times \mathrm{e}^{\mathrm{x}} \mathrm{dx} \\
& \Rightarrow \mathrm{I}=\mathrm{e}^{\mathrm{x}} \sin 2 \mathrm{x}-2\left[\cos 2 \mathrm{x} \int \mathrm{e}^{\mathrm{x}} \mathrm{dx}-\int\left(\frac{\mathrm{d}}{\mathrm{dx}}(\cos 2 \mathrm{x}) \int \mathrm{e}^{\mathrm{x}} \mathrm{dx}\right) \mathrm{dx}\right] \\
& \Rightarrow \mathrm{I}=\mathrm{e}^{\mathrm{x}} \sin 2 \mathrm{x}-2\left[\mathrm{e}^{\mathrm{x}} \cos 2 \mathrm{x}+2 \int \mathrm{e}^{\mathrm{x}} \sin 2 \mathrm{xdx}\right]
\end{aligned}
$$

By (i), $I=e^{x} \sin 2 x-2\left[e^{x} \cos 2 x+2 I\right]$
$\Rightarrow 5 \mathrm{I}=\mathrm{e}^{\mathrm{x}} \sin 2 \mathrm{x}-2 \mathrm{e}^{\mathrm{x}} \cos 2 \mathrm{x}$
$\Rightarrow \mathrm{I}=\frac{\mathrm{e}^{\mathrm{x}}}{5}(\sin 2 \mathrm{x}-2 \cos 2 \mathrm{x})+\mathrm{c}$.

OR

(b) Put $\left(\mathrm{x}^{2}+1\right)=\mathrm{t} \Rightarrow 2 \mathrm{xdx}=\mathrm{dt}$

$$
\begin{aligned}
& \int \frac{2 \mathrm{x}}{\left(\mathrm{x}^{2}+1\right)\left(\mathrm{x}^{2}+2\right)} \mathrm{dx}=\int \frac{\mathrm{dt}}{\mathrm{t}(\mathrm{t}+1)}=\int\left(\frac{1}{\mathrm{t}}-\frac{1}{(\mathrm{t}+1)}\right) \mathrm{dt} \\
& \Rightarrow \quad=\log |\mathrm{t}|-\log |\mathrm{t}+1|+\mathrm{c} \\
& \Rightarrow \quad=\log \left|\mathrm{x}^{2}+1\right|-\log \left|\mathrm{x}^{2}+2\right|+\mathrm{c} \text { or, } \log \left|\frac{\mathrm{x}^{2}+1}{\mathrm{x}^{2}+2}\right|+\mathrm{c} .
\end{aligned}
$$

Section C

Question numbers 11 to 14 carry 4 marks each.

Q11. Three persons A, B and C apply for a job of manager in a private company. Chances of their selection are in the ratio $1: 2: 4$. The probability that A, B and C can introduce changes to increase the profits of a company are $0.8,0.5$ and 0.3 respectively. If increase in the profit does not take place, find the probability that it is due to the appointment of A.
Sol. Let E : the change doesn't take place
Let E_{1} : person A is appointed, E_{2} : person B is appointed, E_{3} : person C is appointed.
Clearly we have $\mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{1}{7}, \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{2}{7}, \mathrm{P}\left(\mathrm{E}_{3}\right)=\frac{4}{7}$,
$\mathrm{P}\left(\mathrm{E} \mid \mathrm{E}_{1}\right)=\frac{2}{10}, \mathrm{P}\left(\mathrm{E} \mid \mathrm{E}_{2}\right)=\frac{5}{10}, \mathrm{P}\left(\mathrm{E} \mid \mathrm{E}_{3}\right)=\frac{7}{10}$.
By Bayes' theorem, $P\left(E_{1} \mid E\right)=\frac{P\left(E \mid E_{1}\right) P\left(E_{1}\right)}{P\left(E \mid E_{1}\right) P\left(E_{1}\right)+P\left(E \mid E_{2}\right) P\left(E_{2}\right)+P\left(E \mid E_{3}\right) P\left(E_{3}\right)}$
$\Rightarrow \mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{E}\right)=\frac{\frac{2}{10} \times \frac{1}{7}}{\frac{2}{10} \times \frac{1}{7}+\frac{5}{10} \times \frac{2}{7}+\frac{7}{10} \times \frac{4}{7}}$
$\Rightarrow \mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{E}\right)=\frac{2}{2+10+28}$
$\therefore \mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{E}\right)=\frac{2}{40}$ or, $\frac{1}{20}$.
Q12. Find the area bounded by the curve $y=|x-1|$ and $y=1$, using integration.

Sol. Consider the diagram.

Required area, is ar(ABCA).
So, $\operatorname{ar}(\mathrm{ABCA})=\int_{0}^{2} 1 \mathrm{dx}-\int_{0}^{2}|x-1| \mathrm{dx}$
$\Rightarrow \operatorname{ar}(\mathrm{ABCA})=[\mathrm{x}]_{0}^{2}-\left[\int_{0}^{1}-(\mathrm{x}-1) \mathrm{dx}+\int_{1}^{2}(\mathrm{x}-1) \mathrm{dx}\right]$
$\Rightarrow \operatorname{ar}(\mathrm{ABCA})=[2-0]-\left\{-\left[\frac{(\mathrm{x}-1)^{2}}{2}\right]_{0}^{1}+\left[\frac{(\mathrm{x}-1)^{2}}{2}\right]_{1}^{2}\right\}$
$\Rightarrow \operatorname{ar}(\mathrm{ABCA})=2-\left\{-\left[0-\frac{1}{2}\right]+\left[\frac{1}{2}-0\right]\right\}$
$\Rightarrow \operatorname{ar}(\mathrm{ABCA})=1$ Sq. units .
Q13. (a) Solve the following differential equation :

$$
\left(y-\sin ^{2} x\right) d x+\tan x d y=0
$$

OR

(b) Find the general solution of the differential equation :

$$
\left(x^{3}+y^{3}\right) d y=x^{2} y d x .
$$

Sol. (a) Re-writing the D.E., we get $\frac{d y}{d x}+\cot x \cdot y=\sin x \cos x$
On comparing with $\frac{d y}{d x}+P(x) \cdot y=Q(x)$, we get $P(x)=\cot x, Q(x)=\sin x \cos x$
Integration factor $=\mathrm{e}^{\int \cot x \mathrm{dx}}=\mathrm{e}^{\log \sin \mathrm{x}}=\sin \mathrm{x}$
So, the solution is $y(\sin x)=\int(\sin x)(\sin x \cos x) d x+c$
Put $\sin x=t \Rightarrow(\cos x) d x=d t$ in the integral of RHS.
$\therefore \mathrm{y}(\sin \mathrm{x})=\int(\mathrm{t})^{2} \mathrm{dt}+\mathrm{c}$
$\Rightarrow \mathrm{y}(\sin \mathrm{x})=\frac{\mathrm{t}^{3}}{3}+\mathrm{c}$
$\Rightarrow y(\sin x)=\frac{\sin ^{3} x}{3}+c$ or, $y=\frac{\sin ^{2} x}{3}+\frac{c}{\sin x}$.

OR

(b) Re-writing the D.E., we get $\frac{d y}{d x}=\frac{x^{2} y}{x^{3}+y^{3}} \quad \Rightarrow \frac{d y}{d x}=\frac{\frac{y}{x}}{1+\left(\frac{y}{x}\right)^{3}}$

Put $y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
That is, $v+x \frac{d v}{d x}=\frac{v}{1+v^{3}}$

$$
\begin{aligned}
& \Rightarrow x \frac{d v}{d x}=\frac{v}{1+v^{3}}-v \\
& \Rightarrow x \frac{d v}{d x}=\frac{v-v-v^{4}}{1+v^{3}} \\
& \Rightarrow x \frac{d v}{d x}=\frac{-v^{4}}{1+v^{3}} \\
& \Rightarrow \frac{1+v^{3}}{v^{4}} d v=-\frac{d x}{x} \\
& \Rightarrow \int\left(\frac{1}{v^{4}}+\frac{1}{v}\right) d v=-\int \frac{d x}{x} \\
& \Rightarrow-\frac{1}{3 v^{3}}+\log |v|=-\log |x|+c \\
& \Rightarrow-\frac{x^{3}}{3 y^{3}}+\log \left|\frac{y}{x}\right|=-\log |x|+c \text { or, } \log |y|-\frac{x^{3}}{3 y^{3}}=c .
\end{aligned}
$$

CASE STUDY BASED QUESTION

Q14. Two motorcycles A and B are running at the speed more than the allowed speed on the roads represented by the lines $\overrightarrow{\mathrm{r}}=\lambda(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})$ and $\overrightarrow{\mathrm{r}}=(3 \hat{\mathrm{i}}+3 \hat{\mathrm{j}})+\mu(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$ respectively.

Based on the above information, answer the following questions :
(a) Find the shortest distance between the given lines.
(b) Find the point at which the motorcycles may collide.

Sol. (a) For the given lines $\overrightarrow{\mathrm{r}}=\lambda(\hat{i}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})$ and $\overrightarrow{\mathrm{r}}=(3 \hat{\mathrm{i}}+3 \hat{\mathrm{j}})+\mu(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$, we have
$\vec{a}_{1}=\overrightarrow{0}, \vec{b}_{1}=\hat{i}+2 \hat{j}-\hat{k}$ and $\vec{a}_{2}=3 \hat{i}+3 \hat{j}, \vec{b}_{2}=2 \hat{i}+\hat{j}+\hat{k}$
Now $\overrightarrow{\mathrm{a}}_{2}-\overrightarrow{\mathrm{a}}_{1}=3 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}, \overrightarrow{\mathrm{b}}_{1} \times \overrightarrow{\mathrm{b}}_{2}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 1 & 2 & -1 \\ 2 & 1 & 1\end{array}\right|=3 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}$
As S.D. $=\frac{\left|\left(\overrightarrow{\mathrm{a}}_{2}-\overrightarrow{\mathrm{a}}_{1}\right) \cdot\left(\overrightarrow{\mathrm{b}}_{1} \times \overrightarrow{\mathrm{b}}_{2}\right)\right|}{\left|\overrightarrow{\mathrm{b}}_{1} \times \overrightarrow{\mathrm{b}}_{2}\right|}$
\Rightarrow S.D. $=\frac{|(3 \hat{i}+3 \hat{\mathrm{j}}) \cdot(3 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}-3 \hat{\mathrm{k}})|}{|3 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}|}$
\Rightarrow S.D. $=\frac{|9-9|}{\sqrt{9+9+9}}=0$ units.
That is, the lines will intersect each other.
(b) Re-writing the given lines in Cartesian form, $\frac{x}{1}=\frac{y}{2}=\frac{z}{-1}=\lambda, \frac{x-3}{2}=\frac{y-3}{1}=\frac{z}{1}=\mu$

The coordinates of random point on these lines are $\mathrm{P}(\lambda, 2 \lambda,-\lambda)$ and $\mathrm{Q}(2 \mu+3, \mu+3, \mu)$.
As the lines intersect so, points P and Q must coincide.
That is, $\lambda=2 \mu+3 \ldots$ (i), $2 \lambda=\mu+3 \ldots$ (ii), $-\lambda=\mu \ldots$ (iii)
On solving (i) and (iii), we get : $-\mu=2 \mu+3 \Rightarrow \mu=-1$
Therefore, the required point of intersection : $(1,2,-1)$.
So, the motorcycles may collide at $(1,2,-1)$.

(Series ABCD5/5 Code No. 65/5/2)

Q01. Find the vector equation of a line passing through a point with position vector $2 \hat{i}-\hat{j}+\hat{k}$ and parallel to the line joining the points $-\hat{i}+4 \hat{j}+\hat{k}$ and $\hat{i}+2 \hat{j}+2 \hat{k}$.
Sol. The d.r.'s of a line joining the points $-\hat{i}+4 \hat{j}+\hat{k}$ and $\hat{i}+2 \hat{j}+2 \hat{k}$ are $2,-2,1$.
Therefore, the required equation of line passing through the point $2 \hat{i}-\hat{j}+\hat{k}$ and with the d.r.'s 2 , $-2,1$ is $: \vec{r}=2 \hat{i}-\hat{j}+\hat{k}+\lambda(2 \hat{i}-2 \hat{j}+\hat{k})$.
Q09. (a) Let $\vec{a}=\hat{i}+\hat{j}, \vec{b}=\hat{i}-\hat{j}$ and $\vec{c}=\hat{i}+\hat{j}+\hat{k}$. If \hat{n} is a unit vector such that $\vec{a} \cdot \hat{n}=0$ and $\vec{b} \cdot \hat{n}=0$, then find $|\overrightarrow{\mathrm{c}} . \hat{\mathrm{n}}|$.

OR

(b) If \vec{a} and \vec{b} are unit vectors inclined at an angle 30° to each other, then find the area of the parallelogram with $(\vec{a}+3 \vec{b})$ and $(3 \vec{a}+\vec{b})$ as adjacent sides.
Sol. As $\vec{a} . \hat{n}=0$ and $\vec{b} \cdot \hat{n}=0$ so, it means $\vec{a} \perp \hat{n}$ and $\vec{b} \perp \hat{n}$.
That means, \hat{n} must be in the direction of $\vec{a} \times \vec{b}$.

That is, $\hat{\mathrm{n}}=\lambda(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})=\lambda\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 1 & 1 & 0 \\ 1 & -1 & 0\end{array}\right|=-2 \lambda \hat{\mathrm{k}}$
Also $\hat{\mathrm{n}}$ is a unit vector so, $|-2 \lambda \hat{\mathrm{k}}|=1$ i.e., $\sqrt{4 \lambda^{2}}=1$ i.e., $2 \lambda= \pm 1$.
$\therefore \hat{\mathrm{n}}=-(\pm 1) \hat{\mathrm{k}}=\mp \hat{\mathrm{k}}$
Now $|\overrightarrow{\mathrm{c}} \cdot \hat{n}|=|(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}) \cdot(\mp \hat{\mathrm{k}})|=|\mp(1)|=1$.

OR

$$
\begin{aligned}
\text { Area of parallelogram } & =|(\vec{a}+3 \vec{b}) \times(3 \vec{a}+\vec{b})| \\
& =|\overrightarrow{0}+\vec{a} \times \vec{b}+9 \vec{b} \times \vec{a}+\overrightarrow{0}| \\
& =|\vec{a} \times \vec{b}-9 \vec{a} \times \vec{b}| \\
& =|-8 \vec{a} \times \vec{b}|=8|\vec{a}||\vec{b}| \sin 30^{\circ}
\end{aligned}
$$

$$
=8 \times 1 \times 1 \times \frac{1}{2}=4 \text { Sq. units } \quad[\because|\vec{a}|=1,|\vec{b}|=1
$$

Q10. Evaluate : $\int_{0}^{\pi / 2} \frac{1}{1+(\tan \mathrm{x})^{2 / 3}} \mathrm{dx}$.
Sol. Let $\mathrm{I}=\int_{0}^{\pi / 2} \frac{1}{1+(\tan \mathrm{x})^{2 / 3}} \mathrm{dx}$.
$\Rightarrow \mathrm{I}=\int_{0}^{\pi / 2} \frac{1}{1+\left[\tan \left(\frac{\pi}{2}-\mathrm{x}\right)\right]^{2 / 3}} \mathrm{dx}=\int_{0}^{\pi / 2} \frac{1}{1+(\cot \mathrm{x})^{2 / 3}} \mathrm{dx}$
$\Rightarrow \mathrm{I}=\int_{0}^{\pi / 2} \frac{1}{1+\frac{1}{(\tan \mathrm{x})^{2 / 3}}} \mathrm{dx}$
$\Rightarrow \mathrm{I}=\int_{0}^{\pi / 2} \frac{(\tan \mathrm{x})^{2 / 3}}{(\tan \mathrm{x})^{2 / 3}+1} \mathrm{dx}$
Adding (i) and (ii), we get $2 \mathrm{I}=\int_{0}^{\pi / 2} \frac{1}{1+(\tan \mathrm{x})^{2 / 3}} \mathrm{dx}+\int_{0}^{\pi / 2} \frac{(\tan \mathrm{x})^{2 / 3}}{(\tan \mathrm{x})^{2 / 3}+1} \mathrm{dx}$
$\Rightarrow 2 \mathrm{I}=\int_{0}^{\pi / 2} \frac{1+(\tan \mathrm{x})^{2 / 3}}{1+(\tan \mathrm{x})^{2 / 3}} \mathrm{dx}=\int_{0}^{\pi / 2} 1 \mathrm{dx}$
$\Rightarrow 2 \mathrm{I}=[\mathrm{x}]_{0}^{\pi / 2}=\frac{\pi}{2}-0$
$\therefore \mathrm{I}=\frac{\pi}{4}$.
Q13. In a factory, machine A produces 30% of total output, machine B produces 25% and the machine C produces the remaining output. The defective items produced by machines A, B and C are $1 \%, 1.2 \%, 2 \%$ respectively. An item is picked at random from a day's output and found to be defective. Find the probability that it was produced by machine B.
Sol. Let E : the chosen item is defective.

Also let $\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}$ be the events that the item was produced by machines $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectively. We have $\mathrm{P}\left(\mathrm{E}_{1}\right)=30 \%, \mathrm{P}\left(\mathrm{E}_{2}\right)=25 \%, \mathrm{P}\left(\mathrm{E}_{3}\right)=45 \%$,
$\mathrm{P}\left(\mathrm{E} \mid \mathrm{E}_{1}\right)=1 \%, \mathrm{P}\left(\mathrm{E} \mid \mathrm{E}_{2}\right)=1.2 \%, \mathrm{P}\left(\mathrm{E} \mid \mathrm{E}_{3}\right)=2 \%$.
Using Bayes' Theorem, $P\left(E_{2} \mid E\right)=\frac{P\left(E \mid E_{2}\right) P\left(E_{2}\right)}{P\left(E \mid E_{1}\right) P\left(E_{1}\right)+P\left(E \mid E_{2}\right) P\left(E_{2}\right)+P\left(E \mid E_{3}\right) P\left(E_{3}\right)}$
$\Rightarrow P\left(E_{2} \mid E\right)=\frac{\frac{1.2}{100} \times \frac{25}{100}}{\frac{1}{100} \times \frac{30}{100}+\frac{1.2}{100} \times \frac{25}{100}+\frac{45}{100} \times \frac{2}{100}}$
$\Rightarrow \mathrm{P}\left(\mathrm{E}_{2} \mid \mathrm{E}\right)=\frac{1.2 \times 5}{1 \times 6+1.2 \times 5+9 \times 2}$
$\Rightarrow \mathrm{P}\left(\mathrm{E}_{2} \mid \mathrm{E}\right)=\frac{6}{6+6+18}=\frac{6}{30}$ or, $\frac{1}{5}$.

(Series ABCD5/5 Code No. 65/5/3)

Q 01 . The Cartesian equation of a line AB is:

$$
\frac{2 x-1}{12}=\frac{y+2}{2}=\frac{z-3}{3}
$$

Find the direction cosines of a line parallel to line $A B$.
Sol. Re-writing the equation of line : $\frac{x-\frac{1}{2}}{6}=\frac{y+2}{2}=\frac{z-3}{3}$.
The d.r.'s of the line are $6,2,3$.
Therefore, the d.c.'s are $\pm \frac{6}{\sqrt{6^{2}+2^{2}+3^{2}}}, \pm \frac{2}{\sqrt{36+4+9}}, \pm \frac{3}{\sqrt{49}}$ i.e., $\pm \frac{6}{7}, \pm \frac{2}{7}, \pm \frac{3}{7}$.
Q09. Evaluate : $\int_{1}^{3} \frac{\sqrt{\mathrm{x}}}{\sqrt{\mathrm{x}}+\sqrt{4-\mathrm{x}}} \mathrm{dx}$.
Sol. Let $I=\int_{1}^{3} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{4-x}} d x$
$\Rightarrow I=\int_{1}^{3} \frac{\sqrt{1+3-x}}{\sqrt{1+3-x}+\sqrt{4-(1+3-x)}} d x$
$\Rightarrow I=\int_{1}^{3} \frac{\sqrt{4-x}}{\sqrt{4-x}+\sqrt{x}} d x$
Adding (i) and (ii), we get $2 I=\int_{1}^{3} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{4-x}} d x+\int_{1}^{3} \frac{\sqrt{4-x}}{\sqrt{4-x}+\sqrt{x}} d x$
$\Rightarrow 2 \mathrm{I}=\int_{1}^{3} \frac{\sqrt{\mathrm{x}}+\sqrt{4-\mathrm{x}}}{\sqrt{\mathrm{x}}+\sqrt{4-\mathrm{x}}} \mathrm{dx}=\int_{1}^{3} 1 \mathrm{dx}=[\mathrm{x}]_{1}^{3}=3-1=2$
$\therefore \mathrm{I}=1$.
Q10. Find the distance of the point $(2,3,4)$ measured along the line $\frac{x-4}{3}=\frac{y+5}{6}=\frac{z+1}{2}$ from the plane $3 \mathrm{x}+2 \mathrm{y}+2 \mathrm{z}+5=0$.

Sol. Equation of a line PQ (see diagram) passing through $\mathrm{P}(2,3,4)$ and parallel to (along) the given line $L: \frac{x-4}{3}=\frac{y+5}{6}=\frac{z+1}{2}$ is, $\frac{x-2}{3}=\frac{y-3}{6}=\frac{z-4}{2}=\lambda \ldots$..(i).
Any random point on line (i) is $\mathrm{Q}(3 \lambda+2,6 \lambda+3,2 \lambda+4)$.
If Q lies on the given equation of plane $3 x+2 y+2 z+5=0$, then, $3(3 \lambda+2)+2(6 \lambda+3)+2(2 \lambda+4)+5=0$
$\Rightarrow \lambda=-1$.
So, coordinates of the point Q are $\mathrm{Q}(-1,-3,2)$.
\therefore Required distance, $\mathrm{PQ}=\sqrt{(2+1)^{2}+(3+3)^{2}+(4-2)^{2}}$

$\therefore \mathrm{PQ}=7$ units.
Q13. There are two boxes, namely box-I and box-II. Box-I contains 3 red and 6 black balls. Box-II contains 5 red and 5 black balls. One of the two boxes, is selected at random and a ball is drawn at random. The ball drawn is found to be red. Find the probability that this red ball comes out from box-II.
Sol. Let E_{1} : box-I is selected, E_{2} : box-II is selected, $\mathrm{A}:$ getting a red ball.
Here $\mathrm{P}\left(\mathrm{E}_{1}\right)=\mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{1}{2}, \mathrm{P}\left(\mathrm{A} \mid \mathrm{E}_{1}\right)=\frac{3}{9}=\frac{1}{3}, \mathrm{P}\left(\mathrm{A} \mid \mathrm{E}_{2}\right)=\frac{5}{10}$.
By Bayes' theorem, $P\left(E_{2} \mid A\right)=\frac{P\left(E_{2}\right) P\left(A \mid E_{2}\right)}{P\left(E_{1}\right) P\left(A \mid E_{1}\right)+P\left(E_{2}\right) P\left(A \mid E_{2}\right)}$
$\Rightarrow \mathrm{P}\left(\mathrm{E}_{2} \mid \mathrm{A}\right)=\frac{\frac{1}{2} \times \frac{5}{10}}{\frac{1}{2} \times \frac{1}{3}+\frac{1}{2} \times \frac{5}{10}}=\frac{\frac{5}{10}}{\frac{1}{3}+\frac{5}{10}}=\frac{3}{5}$.

