
Dynamical Equiriralence: comparing different
non-autonomous systems

' 

to the Introduction, it is explained why the training process in neural net-

works can be modeled as a non-autonomous iterative dynamical system. (We de-

fine non-autonomous in the first definition.) In this section, we introduce a way

to compare two different non-autonomous dynamical, systems, and we recall and

define concepts such as non-wandering and periodic. The first introduced concept

is dynamical equivalence; dynamical equivalence is a way to cbmpare whether two

different non-autonomous systems are qualitatively the same. The equivalence pre-

serves the notion of topological conjugacy when the non-autonomous sytems are

actually autonomous.

DnplNlrloN 1.1. Suppose X is a topological spare. Suppose {h,f2,...} is a se-

quence of continuous furiction, ,h"r, f; , X + X for eachi. Then (X,{fr, f2,.. .})

is a non-autonornous dynamical system.

To provide an example, recall from differential equations that a non-autonomous

systems is of the form # - F(xrt). One can construct a discrete non-autonomous
12
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dynamical system from this differential equation. First choose a sequence of times

{to,tr ,t2,tt,...}. Then choose an init ial point and time (y,t6) for the differential

equation; this choice corresponds to choosing a point V e X. Suppose 6t(y) rep-

resents the solution rc # - F(s,t) where the initial condition is (y,ts). 
-Define

'h@) - hJy). Let x e X. To define fz(c), suppose ,ht(r) represents the solu-

tion t" #: F(x,t), where the init ial condition is (c,t1). Define fz(*) - $t2@).

To defin e fn, proceed with the previous methods inductively. Sometimes we write

(X,.{f;}) to represent the discrete non-autonomous system (X,{fr, f2,...})

A non-autonomous dynamical system starts with a point in X, say r0, (cs is

the initial condition) and applies the sequence of functions to the point ro in the

same order that they are ordered as a sequence. This is analogous to choosing an

initial condition (co,ts) for # - F(r,t), and recording where this point flows to in
I

X at times {h,tz,tt, . .. }. This is the notion of the orbit of rs.

DnntnttloN 1.2. The orbit of the point xs with respect to the non-autonornous sys-

t em (X , {h , f 2 , . . . } )  f s  { r s , / r ( " 0 ) ,  f zo  f r ( " 0 ) ,  f so  f zo f r ( t o )  , f +o  ho  f zo l r ( " 0 ) ,

. .  .  ,  f r  o .  . .  o  f z  o  f t ( t o ) , .  . . ) .

The next definition qualitatively measures wh.ether the two systems are equiva-

lent. It is a natural extension of topological conjugacy which qualitatively measures

equivalent behavior between two autonomous systems.

DnFtNluoN 1.3. Suppose X and Y are topological spa,ces. The non-autonornous
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systerns (X,{ f r ,  f2, . . . } )  and (Y,{gr,gz, . .  . } )  are d,ynamical ly equiaalent i f  there

ea i s t s  a  homemorph i s rnh :  X  Y  such  t ha t  ho f *o f * - t . . . f zo  h -  g *o

gk_t . . .gz o gr o h for al l  k.

- 
The function h is what we call the dynamical equivalence. Notice that when

f* : f and g - g for all k, then the two dynamical systems are autonomous,

and the dynamical equivalence h becomes a topological conjugacy. Topological

conjugacy means that there is a homeomorphism h : X + Y that satisfies ho f -

go ! .  $

Suppose there is a sequence of times {ttrtzrtt, .. . } satisfying ti : to * i6 for

some 6 > 0. Suppose there is an integer n such that F(*,t) : F(o,t * n6) for

all r and for all t. If we record the position of (c, ts) with respect to the differ-

ent ia l  equat ion # :  F(*, t )  at  the t imer { t r  , t2, ts, . . . }  and def ine { f i  , f2, fs, . . . }
I

the same way as above, then after a time elapse of. n6, the sequence of functions

{h, fz, fs,.. . } repeats.

DnFtnttloN 1.4. Suppose X is a topological space. The non-autonornous system

(X, {fr, fz, .. . }) is periodic with periodn if the sequence of functions it {ft, fz, . . . fo,

h, fz,. ..fo, fr, fz,. . .fo,. . . ) . We say that it has fundamental period n if there is

no k smaller than n so that the sequence it {ft, h, . . . f*, h, fz, . . . f*, . . . } . When

the word fundamental is omitted, the contest will make it clear that u)e rnean fund,a-

mental period.

We now develop some notation to enable us to refer to the funetion after k

iterates. Define lg,flk z X + X as follows. Let x e X. The expression [9,/]e(r)
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means that wefirst apply f to r, and then apply g to f (r) so we have g(f (r)).Then

apply.f to we now have f o g o f(*). The object is to alternate between applying

/ and then g, for k times; this is the value of [9, /]e(r). In other words, apply

the sequence {f ,g, f ,g,. ..} k t imes to x. The expression [/p, fp-r,... , fz, f ik(*)
'means that we first apply /r to r, and then apply fz to h@) to obtain fz o h@).

Then apply "fs. If k > p, then after applying,fp, start all over again and apply h,

f2, and so on.

'' Notice that an autonomous dynamical system is a non-autonomous ,yrt"*

with period 1. The next issue is to determine when a dynamical equivalence exists

between two non-autonomous systems. To start we use a weaker notion of compari-

son between two non-autonomous systems. In the case when both non-autonomous

dynamical systems are periodic, the weaker notion implies dynamical equivalence.

Lnuua 1.1.  Suppose (X,{ f t , . . .  ,  f " } )  and (Y,{gt , . . .  ,S" I )  are non-autonotnous

systems wi th per iod ry, .  Then {h, f2, . . .  ,  f " , f r , fz , . . .  , fn , f t , fz , . . . }  is  dynami-

cal ly  equiaalent  to {gt ,92, . . .  ,  gnrgt tg2t . . .  ,gn,gt ,gz, . . . }  i f  and only i f  there esists

a horneomorphism h : X -), Y so that the following hold,s:

For each r satisfying I 1 r 1 n

(1 .1 )  ho ( f , o " f ' - r o . . . o f i ) : ( g ro . . . 9zog r )oh

Proof: The "only if" part follows immediately from the definition of dynami-

cally equivalent. For the "if" section, it suffices to show that for any natural number
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rn 'we have h" ( f^o  fm-ro . . .o / r )  :  (g*o . . .  92ogr)oh.Th is  is  done by induct ion

on rrr. The base case holds by setting m - 1.

Using the inductive hypothesis, suppose for all /c 1m we have ho (fxo.fr_r o

. . . o / r ) :  ( g ro . . . gz  og r )oh .  Then r r r :  qn * r  whe re  0  (  r  (  n ,  and
'  ho  ( f ^+ l  o  f *o . . .  o / r )  :  ho  ( f *+ t  o . .  . o  f qn+ r  o  f qoo . . .  o f i )  :  h  o  ( f i + ro . . .  o

h  o  f q "o . . .  o  f i )  :  g j + ro  . . .  o  g to  ( h  o  f qoo . . .  o , f i )  by  se t t i ng  j  -  r  *  1  i n  t he

hypothesis. By the induction hypothesis,

L i+ to .  . .  og to (ho  f qno .  . . o f i )  :  g j + to . . .  og rogqno . . .  og roh  -  ( g *+ l  o .  . . og )oh

by'th" deflnition of the g;sequence. I

Now we turn our attention to a stronger condition than dynamical equivalence.

Suppose thereex is tsahomeomorph ismh X + Ysothat  hof ; :  g ioh for  a l l

f satisfying 1 1i 1n. This implies that equation 111 above holds for any r. As

an  examp le , cons ide r  ho f t :  g rohby  se t t i ng  r : L  Then  
\ o ( f r * r  

o . . . o , f i ) :

g r* roho( f ro . . .o f i ) .  Set t ing i :  r *1 ,  and app ly ing the induct ivehypothes is ,  we

obtain gr*r o ho (f, o. . . o /r) : (gr+ro . . . o gio h. However, equation 1.1 holding

for all r between 0 aryd n does not necessarily imply that there is one topological

conjugacy h so that h o f; : gi o I for every f. This condition is stronger than

dynamical equivalence.

PnoposITIoN 1.1. Suppose th'"r, eaists a homeomorphism h : X --+ y so that

h o f; : 9; o h for all i. Then h is a dynamical equiaalence between the non-

autonomous syst"* { f t ,  fz,  f t , .  .  . }  and the system {gr,gzrgsr.  .  . } .

Proof: By hypothesis, we have the base case h o f, : fi o h. using the
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induc t i vehypo thes i s ,  suppose  t ha t  ho ( f ,  o . . . o f i )  _  ( g ro . . . o  g r )oh .  Then

ho  f r+ ro ( f ,  o . . . o f i )  :  g r * roho ( f ro . . . o f i )  because  h  o  f ;  -  g ;oh  fo r  a l l  i .  The

induc t i vehypo thes i sa l l owsus tosubs t i t u t e (g ro . . . og r )oh fo rho ( f r o . . . o , f i ) ,

so  h  o  f r+ ro  ( / "  o . . .  o f i )  :  g r+ r  o  ( g ro . . .  o  91 )  o  h .  t

If, however, we do not require h to be the same for every i, the results change

drastically. If /' it topologically conjugate to g; for every i, are fi and gd necessarily

dynamically equivalent? The answer is no. Define f;, g;: IR + IR as f;(*) - Ix + I

forrevery i, and gt(x)- t* + *. Set 92(r) - t* + I. Inductively, set 9n(x\ -

(1 - 2-")* + 2-". Note that /i i, topologically conjugate to g; for every i.

We show that there can not be a dynamical equivalence by eontradiction.

Suppose there exists a dynamical equivalence h between (R, {/,}), and (n, {g;}).

First, notice that 
u!*"/* 

o f*-r...fi(.5) _ 
ntl%/*(.tl 

- 1. Since h o fi(l) -

ero h(1) ,  th is  impl ies h(1)  - .9h(1)  +.1.  Thus,  h(1)  -  1 .

The orbit of h(.5) converges to

ol*go 
o e*-r. . .eto h(.5) - 

Jgh 
o fr. .  . f i ( .5) - h(nlg f* o fx-r. . .  f t( .5)) - 1.

Since h is a homeomorphism t d : h(.5) + L From Example 1.1 (below) we see that

* l$no 
o9*- r . . .9r (o)*  l  s ince a+L Thus,

, r$0"  onn- r  o . . .9zo 9 to  h( .5)  +  ^ l$ho foo fn ;  o . . .  fzo  f i ( .5 ) .  Th is  is  a

contradiction, so a dynamical equivalence h can not exist.

Ex.q,ldptE 1.1. We construct o' ,rOurrce of real-aalued, functions {f i,92,...} so that

each g; considered as its own autonomous systerns has a stable fired point at x - 1.

Howeaer, the fined point a : I is not stable with respect to the non-autonomous

system {f i ,g2,. .  . }  in the fol lowing sense: 
ol*go 

o9*-r . . .gt(r)  < L for o,ny t  (  1,
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o'nd nly5gkogh-r. . .gr(")  > L for a,ny s > 1.

We first require a definition of infinite products and

products [APOSTOL].

a theorem about infinite

DnrtnnloN 1.5. Giaen an

is zero, we so,y the product

infinite product 
nUru", 

let p* : 
oU.-run. 

If no factor un

conaerges if there erists a number p + 0 such that the

TuoonEM 1.1. Assume that ao )

only if the series f, o* conaerges.
n: l

sequenc" {p*} conuerges to p. In this co,se, p is called the ualue of the product qnd t
, _

we write p -- fI un. If {p*} conaerges to zero, we say the product diaerges to zero.
n : l

0. Then the product ll (1 - an) conaerges if and
n=l

I

Proof: [APOSTOL].

We observe that S"@) : snn * to where sn : (1 - 2-")o and f,, : 2-n. We

proceed with the first'few iterates, gz o gr(r) - sz(sr x * tr) * tz, and

gso gzo gr ( t )  -  s3 [s2(s1  s* t r )  + tz ] * tg -  sss2s ls  +  s3s2t1  *  ss t2* tg .

By induction,

e*o ek-t. . .er(") - ( . f i  r ,) '  + ((. f i  r ,) t ,  + (f i  si) tz+...s*fr-r *t*.
. d=l '  i=2 d=3

Hence,, ,$oo o6n-r. . .9r(r)  -  (- f r , r , )r+ (- fr^rr) tr  + (- frr , ) t ,  +. . . -
d=l i=2 d:3

( fl "i)t 
+ D ( l l t i)rr-r. Notice S"G): 1 for any n, and l9,r'(1)l : sn ( 1, so 1

d:l k--2 i=k

a stable fixed point for each i. Thus, for any &, we obtain 
ol9g* 

o gki...gl(1)

,-fr "i) * -it,4sd)te-r 
- 1. Hence, if c <

is
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,frt;) + -f ( ffi-r,)tn-, : l. This inequality is strict because 1frr;) ) 0 follows
d:l k=2 i=k 

-d=l

from Theorem 1.1. When x 1Lr w€ obtain ,rl$0" o gn-r...gr(r) < 1. Since the

functions gd are symmetrical about the diagonal g(s) : t,t when s ) 1, we have

, .$0 "  
onn - r . . . l r ( t )  >  1 .  I

Now we turn our attention to definitions about the behavior of the orbit of

a point with respect to a fixed non-autonomous system. We show that dynamical

equivalence preserves certain properties of an orbit. This means that dynamical
J

equivalence is a useful way of judging when two dynamical systems are qualitatively

the same.

DnrnmloN 1.6. A point p e X is a periodic point of,the non-autonornous system

(X,{f ; } )  wi th per iod k i f  for  al l  m € N, fmko fmk-r o. . .  fzo fr(p) -  p.

Notice that this notion of periodic point has to do with the orbit of a point

in X, while the notion of periodic for a non-autonomous system has to do with

the periodicity of the functions applied. We now show that dynamical equivalences

preserve periodic orbits.

RpulnK 1.1 .  Supposethe non-autonornous system" (X, { f r , f2, . . . } )  and,(Y,{gr,gz

...)) are dynamically equiualent. Leth:X +Y be a dynamical equiaalence.

If p has period k with respect to (X, {h, fz, . . . }), then h(p) has period le-with respect

t o  (Y , { f i , 92 , . . . } ) .
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Proof: For each natural number n) we have h(p) - h o fok o fnk-r o .. . fz o

h@)g"* o 1nk-1o .  .  .  9z o gr(h(p)) .  I

This next definition captures the intuitive notion that even though an orbit

'may not be periodic, it still may return arbitrarily close to its initial starting point

an infinite number of times. The definition reduces to the standard definition of

non-wandering point for autonomous dynamical systems.

DnrnnloN 1 .7. A point x e X is a non-wandering point of the non-autononlous

system (X, {f ;}) if for each neighborhood, U of x there esists k ) 0, $ * d,epend,ent

on n and U) and a q e U so that f*o f*-t . . .  fzolr(q) e U. Let A({f;}) denote the

set of all non-wandering points with respect to the nofl-autonornous system {/r}.

RpnaanK L.2. Any periodic point is a non-wandering point.

Lnnanae 1.2. A dynamical equiaalence rnaps non-wandering points to non-wandering

points. Formally, if h is a dynamical equiaalence between (X,{/i}), and (Y,{g;}),

then p is a non-ua,ndering poinJ of (X,{/,} ) if arid only tf h(p) is a non-wandering

point  of  (Y,{gi}) .

Proof: Let p be a non-wandering point of f;. Consider h(p) € Y . Let U

be a neighborhood of h(p). Then there exists ,t ) 0, and a g € h-\U) so that

f *o  fx- r . . . f r (q)  e  h- r (q .  But  th is  impl ies that  ho fxo f * - r . . . f r (q)  eU.  In
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turn, because h is a dynamicalequivalence, we have that gkogk_l ... f ioh(q) eU.

Also, h(q) e U, so h(p) is a non-wandering point for g;. Since h is a homeomorphism

the reverse argument holds. From this, we conclude that h maps the non-wandering

points of f; homeomorphically onto the non-wandering points of g;. t

This Lemma is important because in Section IV, we show that the topological

entropy of a non-autonomous system on X equals the topological entropy restricted

to the non-wandering points. The next Remark originates from standard results

about non-wandering points in autonomous systems [BOWENJ. r

RnuenK 1.3. The set of non-wandering points of any non-autono*ius d,ynamical

system (X,{ fr ,  fz,  fs, .  . . } )  is a c losed set in X.

Proof: Suppose {*r} is a sequence of non-wurrd"ling points and rr, -> p. (W"

argue by contradiction.) Suppose p is not a non-wanderin$ point. Then there

exists an open neighborhood U of p such that Il n 0.f* o fn-t o ... fz o h(U) :
n : l '

0. Since c,, -+ p, there is a large enough rrt, such that x6 € U. Since U is

open, there exists an open set 17 satisfying c* € W C U. This means that

w n F-r f "o f , - ro. . .  fzo f r (w) cu n"prf i  o fnto. . .  fzo f r (u) :0.  s ince w

is an open set containing c-, this contradicts that r,r, is a non-wandering point. t

Again, following thi standard results about non-wandering points for autonomous

systems [BOWEN], we have the definition of an invariant set.

DEpluluoN 1.8. Let V be a subset of X. Let (X,{f;}) b, a non-autonomous sys-
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tem. The setv ist/d) inaariant if for all k we haae that f*o f*-to fzo fr(V) CV

RnulnK 1.4. The set of non-wandering points is not {/r} inaariant. The set is not

eoen f; inooriant for a period2 non-aatonomoas systetn i.e. {f ,gtf ,grf ,gr...}

' The following example verifies R€mark 1.4. Define /,g : [0, 1] [0, lJ as

fo l lows .  Se t / (c ) : ,o2  when *S*  
( land4oawhen0(  a<1 .  Se tg (c ) :@.

Thl" function sequence i, {/, g, f , g, f , g, . . .l .

Claim: All points in the open interval (0, +) a,re wandering points.
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Let p € (0,  | ; .  f f r""  / (p) --  p2. l .  I f  e (  *-p, then gof(p*e) :  z(p+ r)2 :

2p2 + e(4p*.). Because 2pz : (zp)p 1 p, we may choose e ) 0 small enough so that

e(4p* . )  <  p -2p2 .Thus ,  2 (p+r )2  <  p .Se t  6  -  m in { (p -p2) , (p -2 (p+ . ) ' ) } .

Define the open interval U - (p - 6,p * e). From the previous calculations, we see

^ that  
f (U) :  ( (p  -  6 ) ' , (p+e)2)  and (p+ 42 <2@+r) '<p-6 .

Thus, f (U)nU - 0.  Further,  eo f(U) c 10,2(p+r) ' l  c [0,p-6] because

2(p+42 <p-6.  Hence,  gof (U) i tJ :0 .  Nowforany a  < l ,w€have gof (n)  < t

and /(c) < c. Thus, for any * e (go f)(U), we have (gol)e(x) < p-6 for_al l

f  d  x ,andwehave  f  o (go  f )k ( r )  S  p -  6 fo ra l l  &  e  x .  Thus ,  (go l )k (U)n (J :0 ,

and /o (go f lkg)nU : 0 for al l  & € N. I .

Notice that /(0) - 0, so {0} is a non-wandering point . If p, +,then f (p) : p2

and g 
" f(p): tF 

- p. Hence, the set of non-wandering points of the non-

autonomous system {.f, g, f ,g,. ..} ir the set [], tl U {0}.

Now the goal is to find a non-wandering point c satisfyin_g /(c) - p such that

p lies in (0, |). Set c : tFu. Thus, 
" 

> 1fo : L,so 9 o /(c) - sk\ : c. Hence, c is

anon-wandering point. Furthertp: fk) -?. Thus,pis awandering point. We

conclude that the non-wandering points are not /, invariant, even for a period two

non-autonomous system. t.


