
Downtime-Free Live Migration
in a Multitenant Database

Nicolas Michael and Yixiao Shen

Oracle Corporation, 4180 Network Circle, Santa Clara, California 95054
{nicolas.michael,yixiao.shen}@oracle.com

Abstract. Multitenant databases provide database services to a large
number of users, called tenants. In such environments, an efficient man-
agement of resources is essential for providers of these services in order
to minimize their capital as well as operational costs. This is typically
achieved by dynamic sharing of resources between tenants depending on
their current demand, which allows providers to oversubscribe their in-
frastructure and increase the density (the number of supported tenants)
of their database deployment. In order to react quickly to variability in
demand and provide consistent quality of service to all tenants, a mul-
titenant database must be very elastic and able to reallocate resources
between tenants at a low cost and with minimal disruption. While some
existing database and virtualization technologies accomplish this fairly
well for resources within a server, the cost of migrating a tenant to a
different server often remains high. We present an efficient technique for
live migration of database tenants in a shared-disk architecture which
imposes no downtime on the migrated tenant and reduces the amount of
data to be copied to a minimum. We achieve this by gradually migrating
database connections from the source to the target node of a database
cluster using a self-adapting algorithm that minimizes performance im-
pact for the migrated tenant. As part of the migration, only frequently
accessed cache content is transferred from the source to the target server,
while database integrity is guaranteed at all times. We thoroughly an-
alyze the performance characteristics of this technique through exper-
imental evaluation using various database workloads and parameters,
and demonstrate that even databases with a size of 100 GB executing
2500 transactions per second can be migrated at a minimal cost with no
downtime or failed transactions.

Keywords: database, live migration, multitenancy

1 Introduction

The rise of virtualization has eased resource provisioning by abstracting from
physical resources and allowing to create new, now virtualized, resources on de-
mand. Databases are a central component for most applications, which makes
database virtualization an important consideration of virtualized infrastruc-
tures. Virtualization implies many challenges on database management systems

2 Nicolas Michael and Yixiao Shen

(DBMS). Whether used for consolidation or multitenancy in Cloud-based ser-
vices, the density of virtualized databases, that is the number of hosted users
or tenants on a given amount of physical resources, becomes a key factor for
capital and operational cost. Density can be increased both by lowering the
footprint (the resource demand) of a tenant as well as by sharing resources be-
tween tenants. If the peak resource demand of all tenants exceeds the amount of
physical resources, the deployment is referred to as oversubscribed. One of the
key challenges for multitenant databases is to efficiently manage oversubscribed
resources without violating a tenant’s service level agreement (SLA). Since the
resource needs of a tenant are often unpredictable and can be subject to sudden
change, a multitenant database must be able to provide resources on demand
to ensure good performance and quality of service for all tenants. This becomes
more difficult as resources may currently be in use by other tenants. The ability
to quickly reassign resources from one tenant to another is therefore essential
for the elasticity of a database.

Resources managed by a database typically include CPU, memory (for cache,
metadata and other data structures), storage (capacity, as well as I/O bandwidth
and latency), and network. The choice of virtualization technology can have sig-
nificant impact on the cost at which each of these resources can be shared or
reassigned between tenants. For example, two tenants that are not bound to
particular physical processors might easily share CPU cycles given to them by
a scheduler or hypervisor on a granularity of microseconds, while sharing of
memory might be more coarse-grained if both tenants are deployed in different
virtual machines, each with dedicated memory. Consolidation technologies such
as multitenant databases [14] provide an interesting alternative to virtual ma-
chines if they can lower the footprint of each tenant by sharing resources more
efficiently and dynamically [27]. The sharing of a common cache between tenants
for example would reduce the cost of allocating and deallocating cache buffers
to the level of traditional cache management with replacement policies such as
Least Recently Used (LRU). Load-balancing and resource management within
a server are important features for multitenant databases to allocate a proper
amount of resources to every tenant at any point in time.

With unforeseen load changes of some tenants, or more tenants being pro-
visioned and becoming active, the physical resources of a server may become
exhausted and make load-balancing across servers necessary. In such a case, a
tenant may have to be migrated to another server. Also planned maintenance
operations often require to take a server offline and thereby require tenants to be
migrated. While maintenance operations might be scheduled during low traffic
times such as at night time, load-balancing can become necessary during peak
traffic hours. Many database applications, especially when they handle online
transactions, may not be able to tolerate any outage of the database as this may
lead to a loss of revenue. Those databases cannot be shut down before migra-
tion, but must be migrated online with as little disruption as possible, referred
to as live migration. Minimizing the downtime, that is the period of time in

Downtime-Free Live Migration in a Multitenant Database 3

which the database is not able to serve requests, is therefore a key objective of
implementing database live migration.

While VM live migration has been studied by many researchers [5][12][13],
only few have attempted to migrate databases in virtual machines [18][15]. More
recently, some approaches for live migration in multitenant databases have been
proposed [7][8][2]. However, none of them accomplish to migrate databases truly
free of downtime without failing any requests.

We present a technique for live migration in a multitenant shared-disk data-
base aimed at providing efficient migration of transactional online databases
with no service interruption or failed requests and minimal impact on quality
of service. The migration is facilitated by a connection pool we have imple-
mented, which migrates connections from the source to the target node using a
self-adapting algorithm to control the migration rate. The algorithm throttles
or accelerates the rate based on workload behavior and system load, attempt-
ing to minimize impact on the migrated tenant while keeping overall migration
time low. Rather than copying memory pages, the target node pulls frequently
accessed database cache blocks on demand from the source node or the shared
storage, reducing the amount of data to be copied compared to traditional VM
migration to cache content at most.

Our solution for live migration is implemented for the Oracle Database 12c
[9] and leverages the Real Application Clusters (RAC) [21] and Multitenant [19]
options. We thoroughly analyze the influence of different workload characteris-
tics on the performance and scalability of our proposed technique through an
extensive series of experiments. In our study, we not only consider downtime
as a metric, but also analyze our results with respect to total migration time,
amount of migrated data, and migration overhead.

The main contributions of this paper are:

– We present a new technique for database live migration in a shared-disk
multitenant database using a client-side connection pool with an adaptive
connection migration algorithm.

– We evaluate the performance and scalability of this migration technique by
using various workloads, and provide an in-depth analysis of key performance
metrics based on workload characteristics.

– We demonstrate how this technique successfully accomplishes to migrate
database tenants without downtime or failed transactions even for large
databases running high transaction rates.

The remainder of this paper is organized as follows: In section 2 we describe
the technologies used. In section 3 we present the design and implementation
details of our technique. In section 4 we explain the methodology of our experi-
ments and analyze their results. Further considerations are described in section
5, related work is summarized in section 6, and we conclude with section 7.

4 Nicolas Michael and Yixiao Shen

2 Background

2.1 Connection Pooling

On-Line Transaction Processing (OLTP) workloads often serve hundreds or
thousands of requests per second with response time requirements in the range
of milliseconds. To avoid the cost of establishing database connections for each
request, OLTP applications use connection pools of fixed or variable sizes from
which they acquire and release connections as needed. We leverage this by imple-
menting live migration logic inside a connection pool rather than a query router
or proxy to avoid extra latency by additional nodes in the communication chan-
nel. While this implies that our solution requires a certain degree of cooperation
of the client to enable a smooth migration, it is entirely implemented inside the
connection pool and therefore transparent for the application.

2.2 Database Live Migration Techniques

The choice of virtualization technology largely determines the possible tech-
niques available for live migration. In the context of database virtualization, we
distinguish between two primary concepts of virtualization, using virtual ma-
chines or in-database virtualization.

Virtual Machines

A virtual machine (VM) virtualizes the underlying hardware or operating system
(OS) and provides a database running inside the VM access to resources such
as CPU, memory, I/O, OS kernel, and file systems. Regardless of whether the
physical resources are dedicated to a VM or shared between VMs, each database
inside a VM is isolated from other databases in the sense that it can only access
the (virtualized) resources in its own VM. While this model has advantages with
respect to isolation, it also limits the degree of sharing, as it prevents for example
the sharing of common data structures or processes across databases in different
VMs. Examples of such virtual machines are KVM [16], Microsoft Hyper-V [22],
Solaris LDoms and Zones [25], VMWare ESX [30], and Xen [1]. A discussion of
their features and differences is beyond the scope of this paper.

VM Live Migration. The live migration of a VM can be accomplished in
different ways, which typically include the concepts of pre-copy [5][24][3], stop-
and-copy, and post-copy [11] of pages from the source to the target VM. Most
VMs like Xen, KVM, and VMWare ESX use a combination of the first two
concepts [24][5]. They first attempt to transfer the majority of pages from the
source to the target VM while the source VM is still running. This is often done
in multiple phases, as pages in the source VM are continuously being modified
and some pages may need to be transferred again. After some iterations, the
source VM is then brought to a stop, and during a short phase of downtime,
remaining pages are copied to the target VM to bring it into a consistent state
with the source VM. Operation is then resumed on the target VM.

Downtime-Free Live Migration in a Multitenant Database 5

For a database running in a VM this approach means that not only database
content itself is transferred between VMs, but also temporary data, process
stacks and heaps, unused cache blocks, operating system pages, and others. De-
pending on the database size relative to the size of the VM, the memory to be
transferred often not only exceeds the (cached) database size, but also the VM
size due to repeated transfers of pages [12][11]. The advantage of such a migra-
tion is that the database can be completely unaware of the migration and does
not need to provide any migration support.

In-Database Virtualization

Virtualization inside the database moves the concept of virtualization into the
database layer by hosting multiple tenants inside a common database. By do-
ing so, not only database structures can be efficiently shared between tenants,
but also live migration can be implemented in a way that considers the special
attributes and characteristics of databases.

Das et al. [7] have shown that by migrating the database cache rather than
VM pages in a shared-disk multitenant database, a downtime as short as 300
ms is achievable. In another study, Elmore et al. [8] use a combination of pulling
and pushing of database pages in a shared-nothing architecture to migrate a
multitenant database without downtime and only few failed operations. In our
study, we show that an Oracle Multitenant database running on Real Application
Clusters (RAC) can be migrated without any downtime, no failed transactions,
and minimal impact on quality of service.

Oracle RAC. Oracle Real Application Clusters is an option of the Oracle
database that allows multiple database instances, running on different nodes
(servers) in a cluster, to access a common database simultaneously. The database
resides on a shared storage and can be partially or completely cached in each
instance, where instances may cache both identical as well as different data
blocks. When an instance needs to access a block (e.g. when executing a query),
it has to request this block from another instance’s cache or from storage if it does
not hold the current copy itself. A distributed lock manager keeps track where
the current copy of each block is held, guaranteeing data consistency across all
instances. Instances communicate over a dedicated private network called cluster
interconnect. A cache transfer from one instance to another is referred to as cache
fusion [17].

Oracle Multitenant. Oracle Database 12c introduced a new option called
Oracle Multitenant that virtualizes databases within the database. The host-
ing database is referred to as container database (CDB), into which virtualized
databases called pluggable databases (PDB) are deployed (plugged). Within a
CDB, all PDBs are isolated in terms of namespace, but share a common cache
as well as database background processes. The container database can be a RAC
database spanning multiple nodes. A database service is associated with each
PDB. The PDB is accessed by establishing database connections to that service,

6 Nicolas Michael and Yixiao Shen

which creates a database connection to the node where the service is running.
While it is possible to run a service on multiple nodes at the same time and thus
connect to the same PDB through multiple nodes, we instead propose the use
of singleton services that only run on one node at a time. By doing so, all data
of a PDB is accessed on one node only, which increases cache reach by avoiding
duplicate copies of identical data blocks and reduces cache fusion traffic.

3 Design and Implementation

Based on the Oracle database options Multitenant and Real Application Clusters,
we present a new technique by which a pluggable database can be migrated
from one RAC node to another without any downtime. To achieve this goal, we
have implemented a connection pool that upon receiving a migration request
slowly drains connections to the source node while at the same time establishing
new ones to the target node. Our implementation adapts the rate at which
connections are migrated automatically to workload behavior and system load
and attempts to minimize the impact of migration on ongoing requests while
at the same time keeping overall migration time low. By doing so, we smoothly
migrate the database from one node to another, allowing the target node enough
time to fetch frequently accessed cache blocks from the source node without
causing disruption for the migrated tenant. During the migration, the database
is accessed in both nodes simultaneously, while data integrity is maintained by
Oracle RAC’s cache fusion protocol and distributed lock manager [17].

3.1 Service Migration

The migration is initiated by relocating the singleton service associated with
the tenant’s pluggable database to another node. During service relocation, the
service is first stopped on the current node and then started on the target node.
As part of starting the service, the associated PDB is opened on the target node
(if it has not been opened before), which just requires metadata operations that
typically take a few seconds only. Even though the service may be down for a
short period during migration, already established connections remain usable,
so the database continues to serve requests even if the service is down. The only
consequence is that new connections cannot be established during this time, for
example in case of pool resize operations or new applications being started. The
period in which the service is down can be further reduced to below 1 second
by first opening the PDB and then relocating the service. While this could be
a useful optimization for production systems to minimize the probability of the
service being down while applications try to connect, we do not test such a
scenario and therefore did not apply this optimization for our tests.

3.2 Connection Pool

We have implemented a client connection pool that allows to handle the live
migration of a PDB transparently for the application. It registers itself at the

Downtime-Free Live Migration in a Multitenant Database 7

database for events through the Oracle Notification Service (ONS). When a
service is stopped as part of a relocation, ONS sends out a service down event.
Since the stopping of a service has no effect on already established connections,
the client keeps using the connections in the pool just as before. Shortly after, the
service will come up on the target node. The connection pool will then receive
another ONS notification, a service up event. Only after receiving this event1,
we will now start migrating connections to the new node by disconnecting idle
connections (connections that are currently not borrowed from the pool) from
the source node and reconnecting them to the same service again, which is
now running on the target node. During a certain period of time to which we
refer as the migration time in this paper, the client is connected to both nodes
simultaneously and accesses database blocks on both nodes. The first requests
on the target node will lead to cache misses as blocks for this PDB have not
yet been cached. These blocks will be fetched either from the source node or
from disk. Previous work shows that typical workloads have a working set of
frequently accessed data that is smaller than the overall database size [28][10].
While first requests are executed on the target node, it can quickly build up a
cache of the most frequently accessed blocks without needing to load the entire
database into cache. As we continue migrating connections, more and more work
shifts from the source to the target node, until finally all connections have been
migrated. From that point on, clients exclusively access the database on the
target node.

In our tests we found that the ideal migration speed depends heavily on the
workload characteristics such as access patterns, working set size, and transac-
tion rate. If connections are migrated too quickly, the target node is not given
enough time to warm up its cache, resulting in high response times for many
transactions and eventually exhaustion of the number of database connections.
This leads to queuing of requests on the application side waiting for connections
to become available. To avoid this situation as much as possible, we found it
beneficial to start with a very low migration speed. Since many workloads have
a small subset of blocks such as index blocks that are frequently accessed, a few
migrated connections can be sufficient to fetch these blocks from the source node
without overwhelming the target node with too many requests at once. As the
migration of connections continues, the initially chosen speed may be too low.
At best, this only results in a longer than necessary overall migration time. For
update-intensive workloads however, especially if they have a small subset of
frequently updated blocks, a low migration speed can also lead to adverse effects
as blocks that have already been transferred to the target node are now again
being requested by the source node. In this situation, system resources can be
wasted for repeated block transfers (also referred to as block pinging).

We have therefore implemented an algorithm that automatically adjusts the
rate at which connections are being migrated to the workload and performance
characteristics of the database. It attempts to migrate a tenant as quickly as

1 If the service is taken down permanently or in case of error situations, a client is
advised to stop using the service. Our prototype does not consider this situation.

8 Nicolas Michael and Yixiao Shen

possible under the constraint of affecting its quality of service (QoS), namely
throughput and response times, as little as possible. When balancing these two
(sometimes) conflicting goals, we value QoS over migration speed.

Migration Algorithm

To allow the implementation of different migration rates and policies as the
migration is progressing, we evenly divide the migration into four stages. The
end of each stage is defined by the number of connections that have already
been migrated relative to the total number of connections (25%, 50%, 75%, and
100% for stages 1, 2, 3, and 4). During early stages, we use a low migration
rate and the possibility of additional throttling. In later stages, we allow higher
migration rates and the possibility of additional acceleration. For each stage,
the algorithm computes every second a base migration rate, being the number of
connections to migrate this second (1%, 2%, 4%, and 10% of the total number
connections in stage 1, 2, 3, and 4), rounded to the next integer. Additionally, it
computes average response times for all requests that were served by the source
and target node in the previous second. The base migration rate may then be
adjusted based on the following policies, applied in the order as described, which
then determine the actual migration rate of how many connections to migrate
each second2.

– Throttling: In the first three stages, we throttle the migration rate if response
times on the target node significantly exceed those on the source node: If
response times are 2 or more times higher, we throttle the actual migra-
tion rate to 50%; if they are 3 or more times higher, we throttle to 25%.
High response times on the target node are an indication for a cold cache.
By throttling the migration rate, we give more time to the target node to
build up its cache and not overwhelm it with too many requests. In the
last stage, where more than 75% of all connections have been migrated, the
risk of already transferred cache blocks being requested again by the source
node increases, which is counter-productive to the migration. We therefore
implement no further throttling in the last stage.

– Acceleration: If response times on the source node exceed those on the target
node, we double the migration rate. Once caches on the target node have
sufficiently filled and requests are running better on the target than on the
source node, there is no reason to hold migration back, so accelerating it
reduces overall migration time.

This algorithm has proven to reduce the impact on response times for the
migrated tenant by starting migration at a low pace, throttling the connection

2 The number of connections migrated each second is the integral component of the
calculated actual migration rate, while the remainder of it is rolled over to the next
second. For example, if a rate of 1.75 has been calculated, one connection will be
migrated, and the remaining value of 0.75 will be added to the rate calculated in the
next second.

Downtime-Free Live Migration in a Multitenant Database 9

migration rate even more when needed, and then accelerating as the cache on
the target node is warming up (section 4.4; see figure 2 for an illustration).

While the base migration rates as well as the response time thresholds, throt-
tling and acceleration factors could be made configurable for fine-tuning, we
believe this will generally not be necessary. The base migration rate is chosen
relative to the number of connections and therefore adapts to different connec-
tion pool sizes. The response time thresholds are based on relative differences
between source and target node and independent of absolute response times, and
the throttling and acceleration factors are reasonable adjustments to the base
migration rate. By considering response time differences, the algorithm adapts
not only to workload characteristics, but also performance differences between
various platforms. We successfully verified this algorithm for different workloads
and connection pool sizes between 10 and 200 connections.

4 Experimental Evaluation

We now evaluate the live migration of a PDB with our connection pool imple-
mentation using a variety of workloads to analyze how different attributes of a
workload, such as database size, transaction rate, and access type and distribu-
tion affect migration time, impact, and cost.

4.1 Test Setup

System Configuration. We conduct this analysis on an Oracle SuperCluster
T4-4 configuration using 2 T4-4 servers for the database software, and 7 X2-2
Exadata Storage Servers, connected through Infiniband fabric. Each database
server has 4 SPARC T4 processors (8 cores and 64 threads each), running at
2.998 GHz, and is equipped with 512 GB of memory. The servers run Solaris 11
Update 1 with the latest Oracle 12.1.0.1 database software. As load generator,
we use a server with 2 Intel Xeon X5670 processors running Oracle Enterprise
Linux 6, which is connected to the database servers through 10 GbE.

Load Test Environment. For load generation and statistics collection we use
CloudPerf, a Java-based performance test environment we have developed. It
uses an open load generator [26] capable of maintaining a configurable injection
rate regardless of the performance of the system under test (SUT). Requests are
served by a pool of worker threads which acquire connections from a connection
pool. Since every request needs exactly one database connection, we configure
the worker thread pool size identical to the connection pool size, with the same
minimum and maximum setting for both. Requests that wait for a worker thread
will be queued. As we adequately want to mimic the perceived performance of
applications, we include this queuing time in all reported response times. If a
request has been queued for more than 1000 ms, we discard it and count it as
a failed request to avoid infinite queuing in case the SUT does not keep up.
CloudPerf also captures all relevant operating system and database statistics
used in this study.

10 Nicolas Michael and Yixiao Shen

4.2 Workloads

In our evaluation, we use two different OLTP workloads which we have imple-
mented on CloudPerf. For our in-depth analysis of the influence of workload
characteristics on our migration technique we use CRUD, an internal workload
that performs random insert, select, update, and delete operations on a single
table. It allows us to easily change the table size and transaction mix and thus
create different data access patterns. While CRUD is a well-suited workload for
such analysis, it lacks the complexity of real-world workloads. As a more relevant
workload that resembles typical OLTP workloads more closely, we use ODB-CL,
an implementation of the Oracle Database Benchmark for CloudPerf.

CRUD. CRUD3 is an OLTP workload we developed for database experiments
to investigate certain characteristics of high-level workloads in a deterministic
and controlled manner. It performs a configurable mix of random select, update,
insert, and delete operations on a single table of arbitrary size, using a unique
number (ID) as a primary key, and a partition key (PART) for further filtering.
In a BLOB4 field (DATA), we store an arbitrary amount of binary data. The
table is partitioned based on the partition key.

Table 1. Table Sizes and Attributes (CRUD)

Rows Partitions Index Data Blks Index Blks DB Size
1 M 128 ID 271,148 6,550 2.1 GB
10 M 512 ID 2,065,880 41,367 16.1 GB
50 M 16 ID,PART 8,472,506 361,807 67.4 GB

We conduct our experiments with table sizes of 1, 10, and 50 million rows
with 1024 byte of data stored in the BLOB field using a default block size of 8192
byte, resulting in a database size of 2.1, 16.1, and 67.4 GB, respectively (table 1).
The mix of queries we run consists of select, update, insert, and delete operations,
which each select, update, insert, or delete 5 rows per execution. For select and
update operations, the first of these rows is randomly picked using a uniform
distribution across the entire range of IDs, while the remaining 4 are rows with
the next-highest ID in the same partition. Both operations fetch and update the
data in the BLOB field. The remaining operations insert or delete rows beyond
the last provisioned row at a predetermined index that is incremented with every
insert and delete.

For the first set of experiments with 1 and 10 million rows, we only use
a unique index on the ID column, which forces select and update queries to
scan parts of a table partition, thus accessing a large number of blocks on each
execution. In these experiments, block accesses spread equally across all blocks,

3 The name CRUD refers to Create, Read, Update, Delete (in database context Insert,
Select, Update, Delete).

4 Binary Large Object

Downtime-Free Live Migration in a Multitenant Database 11

Table 2. Block Accesses per Query (CRUD)

Rows Select Update Insert Delete
1 M 2020 2072 43 48
10 M 4079 4080 77 95
50 M 24 51 65 56

with about 99% of the blocks accessed being table blocks (tables 2 and 3). For the
experiments with 50 million rows, we create an additional index on ID and PART.
By doing so, we eliminate table blocks scans, reducing overall block accesses for
select and update operations significantly, and shift the access distribution more
towards index blocks, which now account for 56% of all block accesses (tables 2
and 3). Since the number of index blocks is just a fraction of the number of data
blocks, this leads to a small set of frequently accessed blocks, while the majority
of the blocks is less frequently accessed, a pattern more typical for many real
workloads [28][10]. With respect to block modifications, the update operations
only modify data blocks, which again spread equally across the entire table.
The insert and delete operations however need to maintain the index as well,
reflected in modifications of index blocks. Since there are much fewer index than
data blocks, index modifications can lead to concurrent updates of index blocks
(especially root index blocks), which might need to be repeatedly transferred
between nodes if accessed on both nodes simultaneously. We use this to include
effects arising from increased update concurrency in our analysis. For each of the
three aforementioned table sizes, we run a set of four experiments, varying the
transaction mix between 100% select, 80% select and 20% update, 20% select
and 80% update, and 20% select, 40% update, 20% insert, 20% delete.

Table 3. Block Access by Table and Index (CRUD)

Rows Statement Mix Reads (Tbl/Idx) Updates (Tbl/Idx)
1M, 10M Select only 99% / 1% none
1M, 10M Select/Update 99% / 1% 100% / 0%

1M S/U/I/D 98% / 2% 65% / 35%
10M S/U/I/D 99% / 1% 23% / 77%
50M S/U/I/D 44% / 56% 64% / 36%

ODB-CL. ODB-CL is an implementation of the Oracle Database Benchmark
(ODB) [10] for CloudPerf. Its data model consists of 9 tables, accessed by 5
transactions, which portray the order management of a wholesale supplier with
a number of warehouses organized in districts5. We report throughput as trans-

5 While ODB-CL has similarities with the industry-standard TPC-C Benchmark [29],
it is not a compliant TPC-C implementation. Any results presented here should not
be interpreted as or compared to any published TPC-C Benchmark results. TPC-C
Benchmark is a trademark of Transaction Processing Performance Council (TPC).

12 Nicolas Michael and Yixiao Shen

actions per second (tps), being the total number of executed transactions of any
of the five types.

4.3 Methodology

In an initial series of experiments, we migrate a single database running at a
steady load from one node to another, using different workloads and workload
parameters. For these experiments, this database is the only active database, that
is the target node is idle before the migration, and the source node is idle after
the migration. After analyzing the results obtained from these experiments, we
then migrate a tenant’s database running concurrently with other tenants from
a node under load to another node under equal load.

Each experiment consists of a warmup phase long enough to bring the work-
load into a steady state, followed by three phases of five minutes each: steady
state before migration, migration, and steady state after migration (figure 1).

Phase 1 (5 min)
Steady state before

Phase 2 (5 min)
Migration

Phase 3 (5 min)
Steady state after

A

B C

Migration Time

D

Migration Impact TimeService Relocation Time

A – Initiate migration (service down on source node)
B – Service up on target node
C – All connections migrated to target node
D – Quality of Service for migrated PDB fully restored (may be before or after C)

Fig. 1. Overview of Migration Phases

For single-tenant migration tests, the container database cache size has been
configured to 32 GB (unless otherwise noted), which is sufficiently large to cache
the tenant’s entire database in memory. In the test with multiple active tenants,
we use a cache size of 320 GB.

Migration Phases

Phase 1 - Steady State before Migration. In the first phase, we collect
data during steady state before the migration. This data is used as a reference
point to later determine migration overhead by comparing performance metrics
during migration against the metrics collected in this phase.

Phase 2 - Migration. During the second phase, we migrate the database from
the source to the target node. This phase begins with initiating the migration
by failing over the service to the target node, which includes opening of the
PDB on that node. After the service is back up, we begin migrating connections
until all connections have been reconnected to the target node. Once the last

Downtime-Free Live Migration in a Multitenant Database 13

connection has been migrated, we consider the migration as completed and note
this time as the migration time. Since the target node fetches database blocks
only on demand, either from the other node or from disk, the transfer of blocks
to the target node may continue after migrating the last connection. The tenant
might therefore still face some degradation in quality of service if the cache on
the target node has not yet fully been build-up. We measure the time during
which a tenant’s response times are affected, beginning with migrating the first
connection, as the migration impact time.

Phase 3 - Steady State after Migration. The last phase of 5 minutes only
serves as a verification of whether throughput and response times as well as
CPU utilization match those of phase 1 again, where the expectation for CPU
utilization is that the target node is now running at the same CPU utilization
as the source node before the migration, and vice versa.

Metrics

Common metrics used by researchers to evaluate live migration performance
are downtime, total migration time, amount of migrated data, and migration
overhead [13]. Since by design our technique does not impose any downtime, we
omit this metric. In the beginning of the migration phase, the service is relocated,
and the database is opened on the target node. While we measure the service
relocation time (few seconds in our tests), we do not explicitly report it in this
paper as it does not affect the workload, but include this time in the reported
migration time.

With our solution, the total migration time is difficult to determine as there
is no clearly defined end of the migration. Therefore we note the time from
initiating the service relocation until the last connection has been migrated as
migration time. As a second metric, we calculate the time from migrating the
first connection until the quality of service of the migrated tenant has been fully
reestablished, which we define as average response times being within 10% of
those during steady state before migration, and request failure rate being zero.
We refer to this time as the migration impact time. Requests that cannot be
handled by the database immediately (because all connections in the pool are
in use) will be queued for up to 1 second in the load generator. After 1 second,
they will be discarded and counted as failed requests. For a failure rate of 0,
throughput is identical to the injection rate. Instead of throughput of successful
transactions, we report injection rate and the number of failed requests, and in
case of failures also the failure rate (based on overall requests in phase 2).

We measure average response times across all database transactions in the
steady-state phase before migration as well as during migration, and report latter
ones for the period of time in which a tenant is impacted (migration impact time).
These response times include any potential queuing time in the load generator.

Due to the nature of our migration technique, we split the amount of trans-
ferred data during migration into two categories: data transferred from the source
to the target node, and data transferred in the opposite direction. The latter can

14 Nicolas Michael and Yixiao Shen

occur if blocks modified on the target node during migration are again requested
by transactions still running on the source node.

We calculate CPU cost of migration as the ratio of aggregate CPU utilization
from source and target node during the migration phase (phase 2) divided by
the aggregate CPU utilization during the steady-state phase before migration.
A cost of 1.1 would mean that the combined CPU utilization of both nodes was
10% higher during migration than during steady-state.

For each experiment, we verify that response times and CPU utilization dur-
ing steady-state before and after migration are within 10% (with CPU utilization
on both hosts interchanged), and that not a single request has failed in any of the
three phases. Only then we call an experiment successful. Otherwise we consider
it failed.

For each experiment, we capture and report the following metrics:

– migration time (Migr Tm)
– migration impact time (Impact Tm)
– number of failed transactions for migrated tenant (Failed TX))
– response times for migrated tenant during steady-state before migration

(Resp Steady) and during the migration impact time (Rsp Migr)
– amount of data transferred from source to target node (Data Rcvd)
– amount of data transferred from target back to source node (Data Sent)
– CPU cost of migration (CPU Cost)
– test result (Result, successful (unless otherwise stated) or failed)

4.4 Experiments and Analysis

CRUD (Connection Migration)

In the first series of experiments (table 4), we evaluate the behavior of different
connection migration algorithms by migrating a single tenant running the CRUD
workload on a table with 10 million rows at a rate of 2500 transactions per second
(80% select, 20% update), using a connection pool size of 200.

Table 4. CRUD 10M rows (16.1 GB), 200 conn, IR=2500, S/U/I/D Ratio 80/20/0/0

Conn Pool Conn Migr Rate Migr Tm Impact Tm Failed TX Rsp Steady Rsp Migr Result
UCP abrupt/max 17.0 s 38 s 62,006 (8.3%) 24.2 ms 1932.0 ms failed

CloudPerf 10 Conn/s 30.8 s 41 s 15,113 (2.0%) 24.3 ms 369.2 ms failed
CloudPerf 5 Conn/s 47.6 s 37 s 0 24.3 ms 49.6 ms successful
CloudPerf 3 Conn/s 73.6 s 31 s 0 24.3 ms 41.5 ms successful
CloudPerf adaptive 62.5 s 38 s 0 24.2 ms 32.4 ms successful

As a baseline, we compare against the Oracle Universal Connection Pool
(UCP) version 12.1.0.1, which in this version6 immediately after receiving the

6 Based on our work, UCP version 12.1.0.2 will implement a similar connection mi-
gration as presented in this paper, including a timeout in case the service is taken
down permanently.

Downtime-Free Live Migration in a Multitenant Database 15

service down event terminates all connections that are returned to the pool, and
begins establishing new connections after the service is back up at the fastest
possible rate until the configured minimum pool size has been reached again.
Table 4 shows that this leads to a high rate of failed transactions (8.3% of
all transactions in phase 2) and average response times (including queuing) of
almost 2 seconds over a period of 38 seconds, caused by a combination of a short
time during which the service is down on both nodes, and a high rate of requests
hitting the target node and its empty cache all at once as soon as service is
resumed. Note that the failed transactions are exclusively a result of queuing
exceeding 1 second; the database itself does not abort or fail any transactions.

Fig. 2. CRUD 10M rows, 200 conn, IR=2500, S/U=80/20: Connection Migration Rate

Fig. 3. CRUD 10M rows, 200 conn, IR=2500, S/U=80/20: Cached Blocks

Our connection pool prototype for CloudPerf only starts migrating connec-
tions after the service has come back up, therefore completely avoiding any
downtime. With a fixed connection migration rate of 10 connections per second,
we still see requests failing because of queuing as the target node does not keep
up servicing requests in a timely manner due to a cold cache, even though the
failure rate has reduced to 2.0%. In order to give the target node enough time to
warmup its cache, connections need to be migrated at an even lower rate, such

16 Nicolas Michael and Yixiao Shen

as 5 or 3 connections per second. The difficulty with a fixed rate however is to
find the right balance between migration time and migration impact.

Our connection migration algorithm described in section 3.2 minimizes re-
sponse times during migration and achieves a similar migration time without
the need of manual tuning (table 4). Figure 2 shows how our algorithm starts
migrating connections at a very low rate, giving the target node enough time to
fetch most frequently accessed blocks (figure 3), and then accelerates the rate
once response times on the target node stabilize again. In the beginning of the
migration, the source node has to serve cache blocks for the target node, increas-
ing its CPU utilization temporarily (figure 4), which then drops again as more
and more work is transferred to the target node.

Fig. 4. CRUD 10M rows, 200 conn, IR=2500, S/U=80/20: CPU Utilization

CRUD (Single Tenant, fully cached)

For the next series of experiments, we again migrate a single database tenant
running the CRUD workload from one node to another, while no other tenants
are active. The tenant’s database is fully cached in the source node before mi-
gration. We analyze the impact of different database sizes, transaction rates,
and transaction mixes on live migration performance, using our connection pool
prototype with adaptive tuning of the connection migration rate. The results are
shown in tables 5, 6, and 7.

Table 5. CRUD 1M rows (2.1 GB), 30 connections, IR = 1000 tps

S/U/I/D Ratio Migr Tm Impact Tm Failed TX Rsp Steady Rsp Migr Data Rcvd Data Sent CPU Cost
100/0/0/0 24.5 s 11 s 0 7.7 ms 9.1 ms 2.0 GB 0.0 GB 1.01
80/20/0/0 40.4 s 56 s 0 9.0 ms 11.9 ms 4.1 GB 0.1 GB 1.19
20/80/0/0 42.2 s 91 s 0 11.9 ms 16.3 ms 6.1 GB 0.4 GB 1.13

20/40/20/20 42.8 s 123 s 0 7.5 ms 10.7 ms 5.8 GB 0.6 GB 1.19

The transaction rate has only a small influence on migration time and impact.
Since a higher transaction rate requires a larger number of connections to sustain
the traffic, our algorithm migrates connections at a rate proportional to the pool

Downtime-Free Live Migration in a Multitenant Database 17

size, and throttles if necessary when transactions on the target node face too
high response times. For this reason, migration times increase a bit with higher
transaction rate, but the migration impact time decreases as higher throughput
(given a fixed database size) reduced the time until all blocks have been requested
on the target node at least once.

Table 6. CRUD 1M rows (2.1 GB), 100 connections, IR = 2500 tps

S/U/I/D Ratio Migr Tm Impact Tm Failed TX Rsp Steady Rsp Migr Data Rcvd Data Sent CPU Cost
100/0/0/0 29.1 s 10 s 0 10.9 ms 11.9 ms 2.1 GB 0.0 GB 0.98
80/20/0/0 43.6 s 38 s 0 14.0 ms 17.3 ms 6.3 GB 0.4 GB 1.11
20/80/0/0 54.3 s 73 s 0 15.8 ms 23.6 ms 10.6 GB 1.9 GB 1.16

20/40/20/20 54.2 s 119 s 0 9.4 ms 15.5 ms 10.2 GB 4.1 GB 1.36

While it is not a surprise that a larger (cached) database increases migration
time, it is worth noting that the additional time needed is underproportional to
the database size: Eight times more cached data can be migrated in just about
twice the time, while the time the tenant is impacted is even less than double.
The reason lies in the self-adapting migration algorithm which imposes an upper
bound on migration time, provided network bandwidth is sufficient.

Table 7. CRUD 10M rows (16.1 GB), 200 connections, IR = 2500 tps

S/U/I/D Ratio Migr Tm Impact Tm Failed TX Rsp Steady Rsp Migr Data Rcvd Data Sent CPU Cost
100/0/0/0 45.3 s 21 s 0 21.7 ms 26.2 ms 15.8 GB 0.0 GB 1.02
80/20/0/0 62.5 s 38 s 0 24.2 ms 32.4 ms 21.1 GB 0.3 GB 1.10
20/80/0/0 86.0 s 153 s 0 30.3 ms 40.1 ms 33.7 GB 1.3 GB 1.28

20/40/20/20 87.7 s 104 s 0 16.8 ms 29.5 ms 33.6 GB 4.0 GB 1.55

The workload mix however has a dominating effect on both migration time
and cost. In a read-only workload, each block only has to be fetched from the
source node at most once, limiting the amount of data to be transferred to the
amount of cached blocks on the source node. For these experiments, the database
was fully cached in memory, and the amount of data transferred from the source
to the target node matches the database size. The CPU cost is negligible7, and
response times during migration are only 10-20% higher than at steady state.
Even migrating a 16 GB fully-cached database impacts the tenant’s response
times for just 21 seconds. When transactions modify blocks, Oracle clones them
to provide consistent read (CR) for concurrent sessions. The cache on the source
node before migration consists of both regular data blocks as well as co-called
CR blocks, which during migration may both be transferred to the target node.
Additionally, transactions executed on the source node during migration may
request some already transferred blocks, visible in the results as data sent back
to the source node, which might then be requested again at a later point. Hot

7 For the test of 1 million rows and 2500 tps, the average CPU utilization across both
nodes is even lower then during steady state, caused by better hardware efficiency
(reduced cache misses in CPU caches) as both nodes share traffic.

18 Nicolas Michael and Yixiao Shen

blocks, such as frequently updated index blocks, contribute most to this scenario
and may ping back and forth between nodes multiple times: They contribute
30% to the blocks being sent back to the source node in the tests with insert and
delete operations. Those tests have a 2-3 times higher number of blocks pinging
than tests with a high update rate on data blocks only, even though index blocks
in this workload make up only for 2% of overall blocks. As a consequence, also
response times during migration are up to 75% higher than at steady state when
concurrent updates on a small number of blocks increase.

CRUD (Single Tenant, partially cached)

Typical workloads do not access all content of a database with equal probability,
but rather have a small set of frequently needed blocks, allowing databases to
be significantly larger than the cache, which attempts to cache hot blocks while
purging less frequently used ones. To analyze the effects partially cached work-
loads have on our migration technique, we grow the database to 50 million rows
(67 GB) and create an additional index that eliminates the scans of table blocks
(table 8). In this configuration, index blocks make up for 4% of the total blocks
(2.8 GB), but are subject to 56% of all read accesses and 36% of all updates.
With 64 GB of cache, the database is (nearly) fully cached. While the migration
itself is fast (47 seconds), the time during which the tenant is impacted by at
least 10% higher response times lasts for 327 seconds. As a result of eliminating
the partial table scan, it now takes much longer for the workload to access all
data blocks at least once, so only index blocks are transferred quickly. Once we
shrink the cache and the database is not fully cached any more, the impact time
drops to 43 - 49 seconds as the tenant’s queries face a higher cache miss rate
even in steady state. During migration, after the frequently accessed index blocks
have been cached in the target node, the tenant quickly reaches similar response
times as before the migration. As we shrink the cache, more and more blocks
which the target node needs to read into its cache are read from disk rather
than fetched from the source node8. From this experiments we conclude that
our migration technique is friendly to partially cached workloads and benefits
from them as it only transfers frequently accessed cache blocks between nodes
and is independent of the database size on disk.

Table 8. CRUD 50M rows (67.4 GB), 50 conn, IR=2500, S/U/I/D Ratio 60/20/10/10

DB Cache Migr Tm Impact Tm Failed TX Rsp Steady Rsp Migr Data Rcvd Rmt Data Read Dsk
64G 47.4 s 327 s 0 2.6 ms 3.1 ms 46% 54%
32G 40.6 s 49 s 0 3.1 ms 4.2 ms 29% 71%
16G 43.3 s 43 s 0 3.2 ms 4.3 ms 25% 75%
8G 39.8 s 49 s 0 3.2 ms 4.5 ms 20% 80%

8 Dynamic remastering changes block mastership to the node where blocks are most
frequently accessed. Once blocks are mastered on the target node, it may prefer to
read them from disk rather than remote cache, resulting in some disk reads even for
fully-cached databases.

Downtime-Free Live Migration in a Multitenant Database 19

ODB-CL (Single Tenant)

After analyzing the characteristics of our migration technique using a simple
workload such as CRUD, we apply it to a more complex database workload. In
these experiments, we migrate a single database tenant running the ODB-CL
workload using different number of warehouses and transaction rates as described
in section 4.2 from one node to another. The results are shown in table 9.

Table 9. ODB-CL 10, 500 and 1000 warehouses (1, 50 and 100 GB)

WH IR Conn Migr Tm Impact Tm Failed TX Rsp Steady Rsp Migr Data Rcvd Data Sent CPU Cost
10 100 tps 10 22.2 s 147 s 0 4.8 ms 7.2 ms 0.9 GB 0.0 GB 1.06
500 1000 tps 25 54.1 s 287 s 0 6.0 ms 9.0 ms 19.1 GB 0.4 GB 1.40
1000 1000 tps 25 54.1 s 302 s 0 7.5 ms 11.6 ms 21.4 GB 0.3 GB 1.45
1000 2500 tps 100 72.2 s 166 s 0 7.6 ms 13.9 ms 31.5 GB 1.8 GB 1.53

Fig. 5. ODB-CL (1000 warehouses, 100 connections, IR = 2500 tps): Cached Blocks

In contrast to CRUD, the data access in ODB-CL spreads across multiple
tables and indexes, with none of them contributing more than 5% (a very small
table of only 8 MB size) to the overall accesses. The four tables which together
account for 50% of all block changes also consume half the database size. With
this, the time during which the migrated tenant is impacted by higher response
times is fairly large with values between 2.5 and 5 minutes. While this may seem
long, it is caused by a very long tail of slightly increased response times as the
cache on the target node is slowly being filled (figure 5). The total amount of
data transferred from source to target node, with only about 20 GB transferred
data for a 50 GB database, and 32 GB transferred data for a 100 GB database, is
a factor 2-3 smaller than the database size. While this is partially due to the fact
that we configured only a cache of 32 GB, a tenant in a consolidated environment
will also not get the entire cache for itself, as the next test will show. With a
cache limitation of 32 GB, we are trying to simulate limited cache resources
even for this single-tenant experiment, which still allowed the tenant to achieve
a cache hit rate of about 98%. The percentage of the data that is transferred back

20 Nicolas Michael and Yixiao Shen

to the source node, mostly data blocks from the stock and warehouse tables9, is
with 2-4% of the total amount of transferred data much smaller than in some of
the previous experiments with the CRUD workload. While the CRUD workload
allowed us to study the dependencies of our algorithm, the more realistic ODB-
CL workload behaves more balanced.

ODB-CL (Multiple Tenants)

Fig. 6. ODB-CL - 33 active tenants (IR=1000); migrated tenant: 500 WH, 50 conn

For the last experiment, we deploy a total of 33 tenants: 16 tenants on node
1 and 16 tenants on node 2, issuing 1000 transactions per second against a
ODB-CL database of 500-1000 warehouses each, and one tenant that is being
migrated from node 1 to node 2. The migrated tenant’s database comprises
500 warehouses, and is being accessed at the same rate of 1000 transactions per
second, using a connection pool of 50 connections. The result of this test is shown
in table 10 as well as figure 6. The database cache has a size 320 GB per node.
As our tenant has to compete for cache with the other tenants, the amount of its
data cached in the source node is 23.8 GB before migration, similar to previous
tests where we artificially limited the database cache size. While the database
servers are running at around 50% CPU utilization, migrating this tenant takes
91 seconds. Its response times, on average 50% higher than before migration, are
affected for a duration of 370 seconds, slowly approaching a steady level, with a
long tail of slightly elevated response times. For the database size of 50 GB, only
18.5 GB had to be transferred to the target node, which caused CPU utilization
to increase by only 7% during the migration phase. This increase is lower than
in earlier experiments where the migrated tenant was running in isolation; while
the absolute CPU cost is similar, the relative cost on a heavily utilized system
with many tenants becomes marginal.

As for all other experiments with our connection pool and migration algo-
rithm, this tenant faced no downtime, and not a single transaction was aborted.

9 Both tables are frequently updated. The warehouse table is a small table with high
concurrency.

Downtime-Free Live Migration in a Multitenant Database 21

The effect on other tenants is negligible: Their response times increase no more
than 4% during a short period in which CPU utilization increases as blocks are
being transferred. After the migration, tenants on node 2 face slightly higher
response times (13 ms) than before migration (12 ms) as overall load on node 2
has increased, while response times for tenants on node 1 have dropped from 13
ms to 12 ms on the now lower utilized node.

Table 10. ODB-CL - 33 active tenants (IR=1000); mig. tenant: 500 WH , 50 conn

Migr Tm Impact Tm Failed TX Rsp Steady Rsp Migr Cached before Migr Data Rcvd Data Sent CPU Cost
91.1 s 370 s 0 12.8 ms 19.8 ms 23.8 GB 18.5 GB 0.7 GB 1.07

Summary

The experiments demonstrate the scalability of our migration technique to large
databases of even 100 GB size and transaction rates of 2500 tps, proving the
feasibility of this approach also in consolidated environments with many active
tenants. Our self-adapting algorithm successfully controls the connection migra-
tion rate, limiting the effect on the migrated tenant by automatically throttling
or accelerating migration speed as needed. In all experiments, the tenant was
migrated with not a single failed request and no downtime. Migration took be-
tween 24 and 91 seconds and increased response times for the migrated tenant
by 20-50% for most experiments, with only a few tests in which response times
almost doubled.

With our migration technique, transactions will never fail at the database
layer. The only possible cause for failed requests in our experiment are due
to queuing times in the load generator exceeding 1 second when injection rate
exceeds processing rate. In order to maintain throughput when response times
increase, a sufficient number of connections is needed. For our experiments, we
used a connection pool size about twice as high as the connection demand during
steady state. Based on our experience with production systems, such a pool
size is typical for many OLTP workloads, which have to accommodate peaks
in response time also in situations other than live migration. While we would
typically not advise the use of dynamic connection pools with the maximum
pool size being set higher than the minimum size, a temporary increase of the
pool size during migration could be a worthwhile extension of our technique.

5 Further Considerations

5.1 Provider’s View

Our migration technique is implemented inside a client connection pool, which
reacts to service relocation events it receives from the database. For environments
in which the database service provider also controls the applications, this might
be sufficient. However, to protect against misbehaving clients, especially when

22 Nicolas Michael and Yixiao Shen

they are external, the provider should close the PDB after a certain time on
the source node, which then disconnects all clients from that node and flushes
remaining cache contents to disk. By doing so, further access to the database
on this node is prevented, both for clients as well as other nodes in the cluster.
For experiments not quoted in this paper, we have explicitly closed the PDB on
the source node 120 seconds after relocating the service. This shall give clients
sufficient time to gradually migrate their connections, while at the same time
providing a guarantee to the provider that no further access will happen on the
source node after 2 minutes. A client that did not act accordingly upon receiving
the relocation notifications will then face errors when attempting to access the
database. Therefore it is in the sole interest of the client to comply and migrate
its connections in time.

5.2 Server-Side Migration Control

As an extension of our idea, migration control could be implemented in the
server by explicitly disconnecting (idle) client connections one by one on the
server side10. The connection pool could then, transparent for the application,
reestablish them to the target node without failure of any transactions. If trans-
actions were interrupted when a connection was terminated, features like Ap-
plication Continuity [20] could transparently replay these transactions on the
target node. A similar algorithm as presented in this paper to determine the
rate at which to close connections could then be implemented in the server.
Further enhancements could potentially eliminate any dependency on a client’s
connection pool if database connections including their TCP socket could be
relocated to another host [4] without the need of reestablishing them. We leave
the investigation of these possibilities for future work.

5.3 Long-Running Transactions

Our prototype only migrates connections that are currently not in use by a
client, which avoids migration of connections that are within a transaction. This
implies that workloads with long-running transactions will only migrate their
connections after transactions have completed, causing potentially longer mi-
gration times. With the enhancements described in section 5.1, the provider can
limit the maximum migration time regardless of transaction duration.

5.4 Other Workloads

Other workloads such as Decision Support Systems (DSS) and batch workloads
often do not use connection pools but establish connections on demand. Af-
ter the service has been relocated, their next request will be directed to the
new node automatically. The previous section also applies to their long-running
transactions.
10 Oracle 12.1.0.2 will implement a pluggable database relocate command to accomplish

this.

Downtime-Free Live Migration in a Multitenant Database 23

5.5 Failure Scenarios

Traditional VM live migration only addresses planned migrations and does not
help in supporting unplanned outages where VMs fail unexpectedly. For high
availability of virtualized database deployments, alternative solutions have been
proposed [23]. Our technique is based on Oracle RAC which can handle both
planned and unplanned events. While the migration of databases in case of a
node failure will not be as seamless as in a controlled migration, services will
fail-over and connections will be reestablished in a similar way. The presented
technology can therefore cover both planned migration as well as failure scenarios
and provide seamless live migration and high availability at the same time.

It is worth noting that our technique is therefore also robust against node
failures during migration. A failure of the source node during migration will
terminate connections to this node, which will then be reestablished to the target
node. The migration therefore continues. A failure of the target node will cause
the service to fail back to the source node (or another node in the cluster) and
essentially abort or revert the migration. In both cases, no data is lost, and
operation resumes after a short cluster reconfiguration phase.

6 Related Work

Live migration has become a popular technique, but few studies focus on the live
migration of databases. For virtual machines in general, Hu et al. [12] quantify
migration time using different hypervisors and demonstrate how both memory
size as well as memory dirtying rate affect migration time. Their study shows
that the amount of data to be transferred can in some cases exceed the VM size
by a factor of 2 if pages are repeatedly updated, similar to results in [13]. Liu et
al. [18] have migrated a database in a 1 GB VM running TPC-C in less than 20
seconds at a downtime of 25 ms using Xen.

Our migration technique is based on the idea of migrating a tenant’s database
connections and transferring database content rather than VM pages. A simi-
lar approach for shared-disk databases, named Albatross, has been proposed by
Das et al. [7]. By copying database cache using an iterative pre-copy technique,
they were able to migrate databases with downtimes as low as 300 ms. For a 1
GB TPC-C database, the downtime increased to slightly below 1 second with
more requests failing when the transaction rate was increased to 2500 tpmC
(equivalent to about 93 tps11). For shared nothing architectures, Elmore et al.
[8] presented Zephyr, which migrates a database without downtime by copying
database content using a combination of an on-demand pull phase similar to
ours, followed by a push phase. In contrast to our implementation, Zephyr redi-
rects requests to the target node abruptly, which requires frequently accessed
data to be transferred quickly during the pull-phase. Using YCSB [6] as a work-
load, which like CRUD performs a mix of read, update, and insert operations
on a table, they observe a 10-20% increase in query response times and some

11 Based on a 45% share of NEWORDER transactions as quoted in the paper.

24 Nicolas Michael and Yixiao Shen

aborted transactions due to index modifications during migration. Both Alba-
tross and Zephyr use a query router to direct traffic to the correct database
node. Our technique is different as clients connect directly to the database and
the migration of connections is handled in the client’s connection pool rather
than a router. Slacker, a database migration system presented by Barker et al.
[2], migrates database content by taking an initial database snapshot followed
by streaming of change records to the target database, and achieves downtimes
of less than 1 second with response times increasing from 79 to 153 ms during
migration for a 1 GB YCSB database.

7 Conclusions

Providing on-demand database service requires database consolidation to be
elastic and scalable, while at the same time achieving a high density through re-
source sharing between tenants. In such a multitenant database environment, an
efficient method to seamlessly migrate tenants from one set of physical resources
to another is a crucial component to support dynamic changes in demand and
implement load balancing. We have presented a technique that allows to migrate
a tenant’s database by only transferring database cache. Our prototype connec-
tion pool implements an algorithm to automatically adapt migration speed to
workload and system behavior in order to minimize impact on the migrated ten-
ant while keeping overall migration time low. It is completely transparent to the
application and requires no modifications on the application side. To demon-
strate the scalability and feasibility for real-world workloads, we evaluated our
technique at much larger scale than other researchers with per-tenant database
sizes of up to 100 GB and transaction rates up to 2500 tps. In a detailed analysis,
we characterized the performance of our solution depending on various workload
parameters and verified that also in an environment under load, with 33 tenants
executing queries at a rate of 33,000 tps, our technique allows the migration of
a tenant with no downtime, not a single failed transaction, and only a moderate
increase of response times.

References

1. P. Barham, B. Dragovic, K. Fraser, S. Hand, et al. Xen and the art of virtualization.
ACM SIGOPS, 37(5):164–177, 2003.

2. S. Barker, Y. Chi, H. J. Moon, H. Hacigümüş, et al. Cut me some slack: Latency-
aware live migration for databases. In EDBT, pages 432–443. ACM, 2012.

3. D. Breitgand, G. Kutiel, and D. Raz. Cost-aware live migration of services in the
cloud. In SYSTOR, 2010.

4. H. Chu, S. Kurakake, and Y. Song. Communication socket migration among dif-
ferent devices, 2001.

5. C. Clark, K. Fraser, S. Hand, J. G. Hansen, et al. Live migration of virtual ma-
chines. In NSDI, pages 273–286, 2005.

6. B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, et al. Benchmarking cloud
serving systems with YCSB. In ACM CLOUD, pages 143–154. ACM, 2010.

Downtime-Free Live Migration in a Multitenant Database 25

7. S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi. Albatross: Lightweight elas-
ticity in shared storage databases for the cloud using live data migration. PVLDB,
4(8):494–505, 2011.

8. A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi. Zephyr: Live migration in
shared nothing databases for elastic cloud platforms. In ACM SIGMOD, pages
301–312. ACM, 2011.

9. J. Gelhausen. Oracle Database 12c product family. Oracle White Paper, 2013.
10. R. Hankins, T. Diep, M. Annavaram, B. Hirano, et al. Scaling and character-

izing database workloads: Bridging the gap between research and practice. In
IEEE/ACM MICRO, page 151. IEEE Computer Society, 2003.

11. M. R. Hines and K. Gopalan. Post-copy based live virtual machine migration using
adaptive pre-paging and dynamic self-ballooning. In ACM SIGOPS, pages 51–60,
2009.

12. W. Hu, A. Hicks, L. Zhang, E. M. Dow, et al. A quantitative study of virtual
machine live migration. In ACM CLOUD, page 11. ACM, 2013.

13. D. Huang, D. Ye, Q. He, J. Chen, et al. Virt-LM: A benchmark for live migration
of virtual machine. In ACM SIGSOFT, volume 36, pages 307–316, 2011.

14. D. Jacobs, S. Aulbach, et al. Ruminations on multi-tenant databases. In BTW,
volume 103, pages 514–521, 2007.

15. X. Jiang, F. Yan, and K. Ye. Performance influence of live migration on multi-tier
workloads in virtualization environments. In IARIA CLOUD, pages 72–81, 2012.

16. A. Kivity, Y. Kamay, D. Laor, U. Lublin, et al. kvm: the Linux virtual machine
monitor. In Linux Symposium, volume 1, pages 225–230, 2007.

17. T. Lahiri, V. Srihari, W. Chan, N. Macnaughton, et al. Cache fusion: Extending
shared-disk clusters with shared caches. In VLDB, volume 1, pages 683–686, 2001.

18. H. Liu, H. Jin, C.-Z. Xu, and X. Liao. Performance and energy modeling for live
migration of virtual machines. Cluster computing, 16(2):249–264, 2013.

19. B. Llewellyn. Oracle Multitenant. Oracle White Paper, 2013.
20. K. Mensah. Oracle Database 12c Application Continuity for Java. Oracle White

Paper, 2013.
21. M. Michalewicz. Oracle Real Application Clusters (RAC). Oracle White Paper,

2013.
22. Microsoft. Server virtualization: Windows Server 2012, 2012.
23. U. Minhas, S. Rajagopalan, B. Cully, A. Aboulnaga, et al. Remusdb: Transparent

high availability for database systems. PVLDB, 22(1):29–45, 2013.
24. M. Nelson, B.-H. Lim, G. Hutchins, et al. Fast transparent migration for virtual

machines. In USENIX, pages 391–394, 2005.
25. Oracle. Best practices for building a virtualized SPARC computing environment.

Oracle White Paper, 2012.
26. B. Schroeder, A. Wierman, and M. Harchol-Balter. Open versus closed: A cau-

tionary tale. In NSDI, volume 6, pages 18–18, 2006.
27. Y. Shen and N. Michael. Oracle Multitenant on SuperCluster T5-8: Scalability

study. Oracle White Paper, 2014.
28. R. Stoica and A. Ailamaki. Enabling efficient OS paging for main-memory OLTP

databases. In DaMoN, page 7. ACM, 2013.
29. The Transaction Processing Performance Council. TPC-C benchmark revision

5.11, 2010.
30. C. A. Waldspurger. Memory resource management in VMware ESX server. ACM

SIGOPS, 36(SI):181–194, 2002.

