
Hacker Tools:

Shell & Scripting

Noel Kwan

30 August 2022

Slides at https://bit.ly/ht2023-2

(Materials developed by Julius)

https://bit.ly/ht2023-2

Introduction Shell Scripting Conclusion

Where are we?

Introduction

Shell

Scripting

Conclusion

2/60

Introduction Shell Scripting Conclusion

NUS Hackers

http://nushackers.org

hackerschool

Friday Hacks

Hack & Roll

Hacker Tools

3/60

http://nushackers.org

Introduction Shell Scripting Conclusion

About Me

Hi! I’m Noel. My GitHub is https://github.com/kwannoel

I’m a Year 4 Computer Science Undergraduate who loves

hacking and building systems.

I also enjoy Board Games and Sci-Fi books.

4/60

https://github.com/kwannoel

Introduction Shell Scripting Conclusion

What you will learn today

How to hack on a Unix-like environment:

How to use the shell

How to create scripts for automation

5/60

Introduction Shell Scripting Conclusion

Required Software

Unix-like environment, either one of these:

Linux (you’re good if you attended and installed Linux

during our Linux Install Fest last week)

macOS1

BSD

Other Unix-like OS’es (Minix, Solaris, AIX, HP-UX, etc.)

WSL (Windows Subsystem for Linux) should also be

alright, but no guarantee

1Open Terminal, and run xcode-select --install first

6/60

Introduction Shell Scripting Conclusion

Unix? Can I eat that?

A family of multitasking, multiuser OS’es.

First developed in the 1970’s.

Popularised the use of interactive command line.

7/60

Introduction Shell Scripting Conclusion

The Unix Philosophy

1. Write programs that do one thing and do it well.

2. Write programs to work together.

3. Write programs to handle text streams, because that is a

universal interface.

8/60

Introduction Shell Scripting Conclusion

Where are we?

Introduction

Shell

Scripting

Conclusion

9/60

Introduction Shell Scripting Conclusion

Introduction to Shell

An efficient, textual interface to your computer.

Provides an interactive programming language

(“scripting”).

Many shells to choose from:

Standard ones: sh or bash

Shells that match languages: csh

”Better” shells: fish, zsh

For this workshop, the focus is on the ubiquitous sh and

bash.2

2Feel free to explore other shells. On macOS, many people prefer fish

or zsh

10/60

Introduction Shell Scripting Conclusion

The Shell Prompt

What greets you when you open a terminal.

Lets your run programmes and commands.

11/60

Introduction Shell Scripting Conclusion

Common Commands

man to get the manual pages of a command

cd to change directory

ls to list files and directories

mkdir to make directory

rm to remove files and directories

cp to copy file

mv to move file

pwd to print working directory

12/60

Introduction Shell Scripting Conclusion

Command Editing Shortcuts

bash has shortcuts based on emacs keybindings:

Ctrl + a : beginning of line

Ctrl + e : end of line

Alt + b : move back one word

Alt + f : move forward one word

Ctrl + k : delete from cursor to the end of line

Ctrl + : undo

And some special ones:

Ctrl + u : delete from cursor to the start of line

Ctrl + w : delete from cursor to start of word

You can find more in documentation for readline
13/60

Introduction Shell Scripting Conclusion

Command Control Shortcuts

Ctrl + c : terminates the command

Ctrl + z : suspends the command (fg to continue)

Ctrl + l : clears the screen

Ctrl + s : stops the output to the screen

Ctrl + q : allows output to the screen

14/60

Introduction Shell Scripting Conclusion

Where are we?

Introduction

Shell

Scripting

Introduction

Shell Syntax

Composability

Job and Process Control

Exercises

Conclusion

15/60

Introduction Shell Scripting Conclusion

Script (1/2)

You can write programs directly at the prompt, or write into a

file (writing scripts)

1 #!/bin/sh

2 echo something

Open an editor (for beginner, nano is recommended),

save the script as example-script

On your shell, run chmod +x example-script

You can run your script as ./example-script

16/60

Introduction Shell Scripting Conclusion

Script (2/2)

1 #!/bin/sh

2 echo something

Magic?

#!/bin/sh is also known as the shebang, specifies the

interpreter3

echo is a command that prints its arguments to the

standard output.

3You can use other interpreters too, e.g. #!/usr/bin/env python

for a python script.

17/60

Introduction Shell Scripting Conclusion

Flags (1/3)

Most command line utilities take parameters using flags.

They come in short form (-h) and long form (--help)

Usually, running COMMAND -h or man COMMAND will give you

a list of the flags the program takes.

Short flags can be combined: rm -r -f is equivalent to

rm -rf or rm -fr

18/60

Introduction Shell Scripting Conclusion

Flags (2/3)

A double dash -- is used in to signify the end of

command options, after which only positional parameters

are accepted.

For example, to create a file called -v, Use touch --

-v instead of touch -v

For example, to grep a file called -v, grep pattern --

-v will work while grep pattern -v will not.

19/60

Introduction Shell Scripting Conclusion

Flags (3/3)

Some common flags are a de facto standard:

-a commonly refers to all files (i.e. also including those

that start with a period4)

-f usually refers to forcing something, e.g. rm -f

-h displays the help for most commands

-v usually enables a verbose output

-V usually prints the version of the command

4In Unix, by convention files whose names begin with a period is hidden.

The origin is an accident, find out more here

20/60

https://web.archive.org/web/20150310215704if_/https://plus.google.com/+RobPikeTheHuman/posts/R58WgWwN9jp

Introduction Shell Scripting Conclusion

Unix Directory Structure

Unix has a different directory structure from Windows.

There is no concept of drives.

Everything is files and directories. The root directory is /

We use forward slash / instead of backward slash \

Specifically for Linux, there is FHS5

5https:

//en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard

21/60

https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard

Introduction Shell Scripting Conclusion

Important Unix Directories

/bin, /sbin, /usr/bin, /usr/local/bin, /opt =

executables

On Linux: /home = user home directories

On macOS: /Users = user home directories

/var/log = log files

/tmp = temporary files

22/60

Introduction Shell Scripting Conclusion

Where are we?

Introduction

Shell

Scripting

Introduction

Shell Syntax

Composability

Job and Process Control

Exercises

Conclusion

23/60

Introduction Shell Scripting Conclusion

Running a command

echo Hello

COMMAND ARG1 ARG2 ARG3

24/60

Introduction Shell Scripting Conclusion

Variables (1/3)

echo location

name=Julius

echo $name

Used to store text

name=value to set variable

$name to access variable

25/60

Introduction Shell Scripting Conclusion

Variables (2/3)

There are also a number of special variables:

$?: get exit code of the previous command

$1 to $9: arguments to a script

$0: name of the script itself

$#: number of arguments

$$: process ID of current shell

26/60

Introduction Shell Scripting Conclusion

Variables (3/3)

Create a script variable-example containing the code

below, then try running it with various arguments.

1 #!/bin/sh

2 echo $0

3 echo $1

4 echo $2

5 echo $#

27/60

Introduction Shell Scripting Conclusion

Loop (1/4)

Loop is used to run a command a bunch of times.

For example:

for i in $(seq 1 5); do echo hello; done

28/60

Introduction Shell Scripting Conclusion

Loop (2/4)

for i in $(seq 1 5); do echo hello; done

Let’s unpack this!

for x in list; do BODY; done

; terminates a command – equivalent to newline

Split list, assign each to x, and run BODY

Split by “whitespace” – we will get into it later

Compared to C, no curly braces, instead do and done

29/60

Introduction Shell Scripting Conclusion

Loop (3/4)

for i in $(seq 1 5); do echo hello; done

Let’s unpack this!

$(seq 1 5)

Run the program seq with arguments 1 and 5

Substitute the $(...) block with the output of the

program

Equivalent to

for i in 1 2 3 4 5; do echo hello; done

30/60

Introduction Shell Scripting Conclusion

Loop (4/4)

for i in $(seq 1 5); do echo hello; done

Let’s unpack this!

echo hello

Everything in a shell script is a command

Here, it means run the echo command, with argument

hello.

All commands are searched in $PATH (colon-separated)

Find out where a command is located by running which

COMMAND, e.g. which ls

31/60

Introduction Shell Scripting Conclusion

Conditionals (1/2)

if test -d /bin; then echo true; else echo false; fi;

Let’s unpack this!

if CONDITION; then BODY; fi

CONDITION is a command.

If its exit code is 0 (success), then BODY is run.

Optionally, you can also hook in an else or elif

32/60

Introduction Shell Scripting Conclusion

Conditionals (2/2)

if test -d /bin; then echo true; else echo false; fi;

Let’s unpack this!

test -d /bin

test is a program that provides various checks and

comparison which exits with exit code 0 if the condition is

true6.

Alternate syntax: [condition], e.g. [-d /bin]

6Remember, you can check exit code using $?

33/60

Introduction Shell Scripting Conclusion

Everything Together

Let’s create a command like ls that only prints directories:

1 #!/bin/sh

2 for f in $(ls)

3 do

4 if test -d $f

5 then

6 echo dir $f

7 fi

8 done

34/60

Introduction Shell Scripting Conclusion

Bug!

Hold on! What if the directory is called ”My Documents”?

for f in $(ls) expands to

for f in My Documents

Will first perform the test on My, then on Documents

Not what we wanted!

35/60

Introduction Shell Scripting Conclusion

Argument Splitting

Bash splits arguments by whitespace (tab, newline, space)

Same problem somewhere else: test -d $f

If $f contains whitespace, test will error!

Need to use quote to handle spaces in arguments for f

in "My Documents"

How do we fix our script?

What do you think for f in "$(ls)" does?

36/60

Introduction Shell Scripting Conclusion

Globbing (1/2)

bash knows how to look for files using patterns:

*: any string of characters

?: any single character

{a,b,c}: any of these characters

Thus, for f in * means all files in this directory

When globbing, each matching file becomes its own

argument

However, still need to make sure to quote, e.g.

test -d "$f"

37/60

Introduction Shell Scripting Conclusion

Globbing (2/2)

You can make advanced patterns

for f in a*:

all files starting with a in the current

directory

for f in foo/*.txt: all .txt files in foo

for f in foo/*/p??.txt: all three-letter text files,

starting with p, in subdirectories of foo

38/60

Introduction Shell Scripting Conclusion

Globbing (2/2)

You can make advanced patterns

for f in a*: all files starting with a in the current

directory

for f in foo/*.txt:

all .txt files in foo

for f in foo/*/p??.txt: all three-letter text files,

starting with p, in subdirectories of foo

38/60

Introduction Shell Scripting Conclusion

Globbing (2/2)

You can make advanced patterns

for f in a*: all files starting with a in the current

directory

for f in foo/*.txt: all .txt files in foo

for f in foo/*/p??.txt:

all three-letter text files,

starting with p, in subdirectories of foo

38/60

Introduction Shell Scripting Conclusion

Globbing (2/2)

You can make advanced patterns

for f in a*: all files starting with a in the current

directory

for f in foo/*.txt: all .txt files in foo

for f in foo/*/p??.txt: all three-letter text files,

starting with p, in subdirectories of foo

38/60

Introduction Shell Scripting Conclusion

Other whitespace issues

if [$foo = "bar"]; then: What’s the issue?

What if $foo is empty? arguments to [are = and bar

Possible workaround: [x$foo = "xbar"], but very

hacky

Instead, use [[CONDITION]]: bash built-in comparator

that has special parsing

Good news: it also allows && instead of -a, || instead of

-o, etc.

39/60

Introduction Shell Scripting Conclusion

Other whitespace issues

if [$foo = "bar"]; then: What’s the issue?

What if $foo is empty? arguments to [are = and bar

Possible workaround: [x$foo = "xbar"], but very

hacky

Instead, use [[CONDITION]]: bash built-in comparator

that has special parsing

Good news: it also allows && instead of -a, || instead of

-o, etc.

39/60

Introduction Shell Scripting Conclusion

Other whitespace issues

if [$foo = "bar"]; then: What’s the issue?

What if $foo is empty? arguments to [are = and bar

Possible workaround: [x$foo = "xbar"], but very

hacky

Instead, use [[CONDITION]]: bash built-in comparator

that has special parsing

Good news: it also allows && instead of -a, || instead of

-o, etc.

39/60

Introduction Shell Scripting Conclusion

shellcheck

The mentioned problems are the most common bugs in

shell scripts.

A good tool to check for these kinds of possible bugs in

your shell script: https://www.shellcheck.net/

40/60

https://www.shellcheck.net/

Introduction Shell Scripting Conclusion

Where are we?

Introduction

Shell

Scripting

Introduction

Shell Syntax

Composability

Job and Process Control

Exercises

Conclusion

41/60

Introduction Shell Scripting Conclusion

Composability

Shell is powerful, in part because of Composability

You can chain multiple programs together, rather than

one program that does everything

Remember The Unix Philosophy:

1. Write programs that do one thing and do it well.

2. Write programs to work together.

3. Write programs to handle text streams, because that is a

universal interface.

42/60

Introduction Shell Scripting Conclusion

Pipe (1/2)

dmesg | tail

Let’s unpack this!

a | b

Means run both a and b, but send all the output of a as

input to b, and then print the output of b

43/60

Introduction Shell Scripting Conclusion

Pipe (2/2)

You can chain this even longer!

cat /var/log/sys*log | grep "Sep 10" | tail

cat /var/log/sys*log prints the system log

This output is fed into grep Sep 10, which looks for all

entries from today.

This output is then further fed into tail, which prints

only the last 10 lines.

44/60

Introduction Shell Scripting Conclusion

Streams

All programs launched have 3 streams:

STDIN: the program reads input from here

STDOUT: the program prints to here

STDERR: a second output that the program can choose

to use.

By default, STDIN is your keyboard, STDOUT and STDERR

are both your terminal

45/60

Introduction Shell Scripting Conclusion

Stream Redirection (1/2)

However, this can be changed!

a | b: makes STDOUT of a the STDIN of b.

a > foo: STDOUT of a goes to the file foo

a 2> foo: STDERR of a goes to the file foo

a < foo: STDIN of a is read from the file foo

a <<< some text: STDIN of a is read from what comes

after <<<

You can also pipe to tee (look up in man what tee does)

46/60

Introduction Shell Scripting Conclusion

Stream Redirection (2/2)

So why is this useful?

It lets you manipulate output of a program!

ls | grep foo: all files that contain the word foo

ps | grep foo: all processes that contain the word foo

On Linux: journalctl | grep -i intel | tail -n 5:

last 5 system log messages with the word intel

(case-insensitive)

Note that this forms the basis for data-wrangling, which

will be covered later.

47/60

Introduction Shell Scripting Conclusion

Stream Redirection (2/2)

So why is this useful?

It lets you manipulate output of a program!

ls | grep foo: all files that contain the word foo

ps | grep foo: all processes that contain the word foo

On Linux: journalctl | grep -i intel | tail -n 5:

last 5 system log messages with the word intel

(case-insensitive)

Note that this forms the basis for data-wrangling, which

will be covered later.

47/60

Introduction Shell Scripting Conclusion

Stream Redirection (2/2)

So why is this useful?

It lets you manipulate output of a program!

ls | grep foo: all files that contain the word foo

ps | grep foo: all processes that contain the word foo

On Linux: journalctl | grep -i intel | tail -n 5:

last 5 system log messages with the word intel

(case-insensitive)

Note that this forms the basis for data-wrangling, which

will be covered later.

47/60

Introduction Shell Scripting Conclusion

Grouping Commands

(a; b) | tac

Run a, then b, and send all their output to tac7

For example: (echo qwe; echo asd; echo zxc) | tac

7tac print in reverse

48/60

Introduction Shell Scripting Conclusion

Process Substitution

b <(a)

Run a, generate a temporary file name for its output

stream, and pass that filename to b

To demonstrate: echo <(echo a) <(echo b)

On Linux: diff <(journalctl -b -1 | head -n20)

<(journalctl -b -2 | head -n20)

This shows the difference between the first 20 lines of the

last boot log and the one before that.

49/60

Introduction Shell Scripting Conclusion

Where are we?

Introduction

Shell

Scripting

Introduction

Shell Syntax

Composability

Job and Process Control

Exercises

Conclusion

50/60

Introduction Shell Scripting Conclusion

Job (1/2)

Used to run longer-term things in the background.

Use the & suffix

It will give back your prompt immediately.

For example: (for i in $(seq 1 100); do echo

hi; sleep 1; done) &

Note that the running program still has your terminal as

STDOUT. Instead, can redirect STDOUT to file.

Handy especially to run 2 programs at the same time

like a server and client: server & client

For example: nc -l 1234 & nc localhost 1234 <<<

test

51/60

Introduction Shell Scripting Conclusion

Job (2/2)

jobs: see all jobs

fg %JOBS: bring the job corresponding to the id to the

foreground (with no argument, bring the latest job to

foreground)

You can also background the current program: ^Z8, then

run bg

^Z stops the current process and makes it a job.

bg runs the last job in the background.

$! is the PID of the last background process.

8 Ctrl is usually denoted as ˆ, thus Ctrl + z is denoted as ^Z

52/60

Introduction Shell Scripting Conclusion

Process Control (1/2)

ps: lists running processes

ps -A: lists processes from all users

Check out the man page for other arguments.

pgrep: find processes by searching (like ps -A | grep)

pgrep -f: find processes with arguments

kill: send a signal to a process by ID (pkill to search

and run kill)

Signal tells a process to do something

SIGKILL (-9 or -KILL): tell it to exit right now

(equivalent to ^\)
SIGTERM (-15 or -TERM): tell it to exit gracefully

(equivalent to ^C)

53/60

Introduction Shell Scripting Conclusion

Process Control (2/2)

kill: send a signal to a process by ID (pkill to search

and run kill)

Signal tells a process to do something
Most common9:

SIGKILL (-9 or -KILL): tell it to exit right now

(equivalent to ^\)
SIGTERM (-15 or -TERM): tell it to exit gracefully

(equivalent to ^C)

9Prefer SIGTERM over SIGKILL:

https://turnoff.us/geek/dont-sigkill/

54/60

https://turnoff.us/geek/dont-sigkill/

Introduction Shell Scripting Conclusion

More Resources

If you are completely new to the shell, you might want to

read a comprehensive guide, such as BashGuide10.

For a more in-depth introduction, The Linux Command

Line11 is a good resource.

10http://mywiki.wooledge.org/BashGuide
11http://linuxcommand.org/tlcl.php

55/60

http://mywiki.wooledge.org/BashGuide
http://linuxcommand.org/tlcl.php

Introduction Shell Scripting Conclusion

Where are we?

Introduction

Shell

Scripting

Introduction

Shell Syntax

Composability

Job and Process Control

Exercises

Conclusion

56/60

Introduction Shell Scripting Conclusion

xargs

Sometimes piping doesn’t quite work because the

command being piped into does not expect the newline

separated format.

For example, file command tells you properties of the

file.

Try running ls | file and ls | xargs file

What is xargs doing?

57/60

Introduction Shell Scripting Conclusion

Other Exercises

Try running touch {a,b}{a,b}, then ls. What appeared?

Sometimes you want to keep STDIN and still output to a

file. Try running echo HELLO | tee hello.txt

Run echo HELLO > hello.txt, then echo WORLD >>

hello.txt. What are the contents of hello.txt? How

is > different from >>?

58/60

Introduction Shell Scripting Conclusion

Where are we?

Introduction

Shell

Scripting

Conclusion

59/60

Introduction Shell Scripting Conclusion

Talk to us!

Feedback form: https://bit.ly/HTfeedback2

Upcoming Hacker Tools:

Data Wrangling, 6th September 2022, 6.30pm

60/60

https://bit.ly/HTfeedback2

	Introduction
	

	Shell
	

	Scripting
	Introduction
	Shell Syntax
	Composability
	Job and Process Control
	Exercises

	Conclusion
	

