
‹#›

Daniel Mitterdorfer 
@dmitterd

Benchmarking 
Elasticsearch with Rally



Outline

2

The Need for Benchmarking in the Elasticsearch Project1

2

3

7 Deadly Benchmarking Sins

Demo



“Elasticsearch is just a 
search engine, isn't it?”

3



4



5



6



How do you evaluate 
performance for all these 

use-cases?

7



What we do: Measure, Measure, Measure

8

During Development

Source: https://github.com/elastic/elasticsearch/issues/7309



What we do: Measure, Measure, Measure

9

During Development



What we do: Measure, Measure, Measure

10

Nightly benchmarks

Source: https://elasticsearch-benchmarks.elastic.co/geonames/



What we do: Measure, Measure, Measure

11

Sizing benchmarks for specific scenarios*

*) numbers on axis intentionally stripped to avoid interpretation out of context



What we do: Measure, Measure, Measure

12

Performance measurement / tuning at customer site



13

7 Deadly 
Benchmark Sins



Sin #1: Not paying attention to system setup

• Bare-metal 

• SSDs 

• Server-class CPU 

• Single socket, multi socket? 

• Enough memory head-room for FS cache

14

Hardware



Sin #1: Not paying attention to system setup

• Linux, Windows 

• Check network configuration 

• File system, LVM, etc. 

• No Swap 

• I/O scheduler: cfq, noop, deadline 

• CPU governor: powersave, performance

15

Operating System



Sin #1: Not paying attention to system setup

• Beware of unwanted caching effects (FS cache, …) 

• Benchmark driver and ES on separate machines 

• One node per machine (or adjust JVM parameters (GC threads)) 

• Low-latency, high-throughput network between benchmark driver and ES 

• No other traffic on this network

16

Benchmark Setup



Sin #2: No warmup

• JIT compiler needs to run first 

• Creation of long-living data structures 

• FS cache for Lucene segments (memory-mapped IO) 

• Benchmark driver needs to reach stable state too

17

Awake before your first coffee? Elasticsearch isn’t either.



Warmup Behaviour: C2 Compilation Events/s

18



Warmup Behaviour: Benchmark Driver Throughput

19



Sin #3: No bottleneck analysis

• Benchmark driver 

• System setup: analysis of system background noise (jhiccup) 

• Network

20

Are you really benchmarking what you think you’re benchmarking?



First Driver Stress Tests

21

Contention all over the place



Sin #4: The divine benchmarking script

• Not paying attention how metrics are gathered 

• System.currentTimeMillis() vs. System.nanoTime() 

• Not checking measurement overhead 

• No return code checks: the fast 404 

• Blind trust in tools: No cross-verification

22

“After all, it produces numbers with 6 decimal places!”



Cross-Validation of Metrics

23

Metric Rally Flight Recorder GC log

Young Gen GC 79,416 ms 89,003 ms(?) 80,853 ms

Old Gen GC 23,964 ms 156,630 ms(?) 23,989 ms



Sin #5: Denying Statistics

• How is run-to-run variance distributed? 

• Multiple trial runs and t-test

24

Run-to-run variance



Run-to-run Variance Verification

25



Sin #5: Denying Statistics

• The meaningless mean: Half of the responses are worse than the mean 

• Cannot calculate 99.99th percentile from 10 samples 

• Don’t average percentiles 

• Latency distribution is multi-modal

26

Latency Measurement



Sin #6: Vague Metrics

• Latency 

• Service Time 

• Throughput 

• Waiting Time 

• Response Time 

• Utilisation 

• …

27



28

Service Time



while (!isDone()) {
Request req = createRequest();
long start = System.nanoTime();
// block until the request has finished
send(req);
long end = System.nanoTime();
long serviceTime = end - start;

}

Sin #6: Vague metrics
Service Time

29



30

Waiting Time



31

Response Time / 
Latency

+



// generator thread
while (!isDoneGenerating()) {

Request req = createRequest();
long start = System.nanoTime();
queue.put(req, start);

}

// request issuing thread
while (!isDoneSending()) {

request, start = queue.take();
send(request);
long end = System.nanoTime();
long latency = end - start;

}

Sin #6: Vague metrics
Latency

32



0% utilisation: no waiting time

33

Utilisation



100% utilisation: high waiting time

34

Utilisation



35

Throughput and 
Utilisation



Sin #6: Vague metrics

36

Latency … at which throughput?

Created based on http://robharrop.github.io/maths/performance/2016/02/20/service-latency-and-utilisation.html



// generator thread
while (!isDoneGenerating()) {
    Request req = createRequest();

long start = System.nanoTime();
queue.put(req, start);
Thread.sleep(waitTime(targetThroughput));

}

// request issuing thread
while (!isDoneSending()) {

request, start = queue.take();
send(request);
long end = System.nanoTime();
long latency = end - start;

}

Sin #6: Vague metrics
Latency at a defined throughput

37



Sin #7: Treat Performance as One-Dimensional

• Bulk size 

• Query parameters 

• Document structure

38

Vary inputs



Sin #7: Treat Performance as One-Dimensional

• Run queries in different order: Avoid caching effects 

• Interfere operations: How does indexing behave with concurrent queries?

39

Vary execution order



Sin #7: Treat Performance as One-Dimensional

• Hardware 

• OS 

• JDK 

• …

40

And more



How we measure 

41



42



Rally

https://github.com/elastic/rally

43

You know … for benchmarking Elasticsearch

https://github.com/elastic/rally


10.000 feet view of Rally

44

Rally benchmarked 
cluster

provisions

attached 
telemetry

system metrics

applies load

Tracks  
(Benchmark Data)

Metrics Store



45

Demo



Summary 

46



47



‹#›

Performance is easy, all you 
need to know is everything

Sergey Kuksenko, Oracle Performance Engineer



49

Questions?



Slides

50

https://bit.ly/rally-javazone-16

https://bit.ly/rally-javazone-16


Further Resources: Talks and Articles

• What is coordinated omission? https://groups.google.com/forum/#!msg/
mechanical-sympathy/icNZJejUHfE/BfDekfBEs_sJ 

• Example: “Fixing Coordinated Omission in Cassandra Stress”: https://psy-
lob-saw.blogspot.de/2016/07/fixing-co-in-cstress.html 

• Relating Service Utilisation to Latency: http://robharrop.github.io/maths/
performance/2016/02/20/service-latency-and-utilisation.html 

• “How not to measure latency”: http://www.youtube.com/watch?
v=lJ8ydIuPFeU 

• “Benchmarking Blunders and Things That Go Bump in the Night”: http://
arxiv.org/pdf/cs/0404043v1.pdf

51

https://groups.google.com/forum/#!msg/mechanical-sympathy/icNZJejUHfE/BfDekfBEs_sJ
https://psy-lob-saw.blogspot.de/2016/07/fixing-co-in-cstress.html
http://robharrop.github.io/maths/performance/2016/02/20/service-latency-and-utilisation.html
http://www.youtube.com/watch?v=lJ8ydIuPFeU
http://arxiv.org/pdf/cs/0404043v1.pdf


Further Resources: Tools & Methodology

• USE method: http://www.brendangregg.com/usemethod.html 

• Java Flight Recorder: http://docs.oracle.com/javacomponents/jmc-5-5/jfr-
runtime-guide/index.html 

• JITWatch: https://github.com/AdoptOpenJDK/jitwatch 

• Rally: https://github.com/elastic/rally

52

http://www.brendangregg.com/usemethod.html
http://docs.oracle.com/javacomponents/jmc-5-5/jfr-runtime-guide/index.html
https://github.com/AdoptOpenJDK/jitwatch
https://github.com/elastic/rally


Image Sources (1/3)

• “book_stacks” by “Hung Thai”: https://www.flickr.com/photos/
96055807@N02/10893926256/ (CC BY 2.0) 

• “Curiosity Mastcam L sol 673” by “2di7 & titanio44”: https://www.flickr.com/
photos/lunexit/14570422596/ (CC BY-NC-ND 2.0) 

• “80's style Hacker Picture” by “Brian Klug”: https://www.flickr.com/photos/
brianklug/6870005158/ (CC BY-NC 2.0) 

• “gags9999”: https://www.flickr.com/photos/gags9999/14124313715/ (CC 
BY 2.0) 

• “Espresso Machine” by “Joseph Morris”: https://www.flickr.com/photos/
josephmorris/16961075629/ (CC BY 2.0)

53

https://www.flickr.com/photos/96055807@N02/10893926256/
https://www.flickr.com/photos/lunexit/14570422596/
https://www.flickr.com/photos/brianklug/6870005158/
https://www.flickr.com/photos/gags9999/14124313715/
https://www.flickr.com/photos/josephmorris/16961075629/


Image Sources (2/3)

• “Its about the Coffee” by “Neil Moralee”: https://www.flickr.com/photos/
neilmoralee/8179963297/ (CC BY-NC-ND 2.0) 

• “On an adventure” by “Dirk Dallas”: https://www.flickr.com/photos/dirkdallas/
14988429720/ (CC BY-NC 2.0) 

• “Traffic Jam” by “lorenz.markus97”: https://www.flickr.com/photos/
lorenz_markus/17449315008/ (CC BY 2.0) 

• “Swirl Me Back Home” by “Nick Fisher”: https://www.flickr.com/photos/
cobrasick/5297980956/ (CC BY-ND 2.0) 

• “Works Mini Cooper S DJB 93B” by “Andrew Basterfield”: https://
www.flickr.com/photos/andrewbasterfield/4759364589/ (CC BY-SA 2.0)

54

https://www.flickr.com/photos/neilmoralee/8179963297/
https://www.flickr.com/photos/dirkdallas/14988429720/
https://www.flickr.com/photos/lorenz_markus/17449315008/
https://www.flickr.com/photos/cobrasick/5297980956/
https://www.flickr.com/photos/andrewbasterfield/4759364589/


Image Sources (3/3)

• “photo” by “Odi Kosmatos”: https://www.flickr.com/photos/kosmatos/
8162850619/ (CC BY 2.0) 

• “Bachelor Students - Chemistry Lab” by “NTNU”: https://www.flickr.com/
photos/92416586@N05/12188423293/ (CC BY 2.0) 

• “42” by “Lisa Risager”: https://www.flickr.com/photos/risager/5067595483/ 
(CC BY-SA 2.0) 

55

https://www.flickr.com/photos/kosmatos/8162850619/
https://www.flickr.com/photos/92416586@N05/12188423293/
https://www.flickr.com/photos/risager/5067595483/

